Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(6.85909810893757400230158763128 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.20755961 \pm 1.7 \cdot 10^{-6} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.45820021 \pm 1.9 \cdot 10^{-6} \) | \(a_{5}= +0.72418480 \pm 1.3 \cdot 10^{-6} \) | \(a_{6}= -0.69718487 \pm 1.7 \cdot 10^{-6} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.65425554 \pm 1.9 \cdot 10^{-6} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.87449632 \pm 1.6 \cdot 10^{-6} \) | \(a_{11}= +0.09359931 \pm 1.3 \cdot 10^{-6} \) | \(a_{12}= -0.26454201 \pm 1.9 \cdot 10^{-6} \) |
\(a_{13}= -1.27477243 \pm 1.5 \cdot 10^{-6} \) | \(a_{14}= -0.45641463 \pm 1.7 \cdot 10^{-6} \) | \(a_{15}= -0.41810829 \pm 1.3 \cdot 10^{-6} \) |
\(a_{16}= -1.24825278 \pm 1.6 \cdot 10^{-6} \) | \(a_{17}= -0.66253888 \pm 1.4 \cdot 10^{-6} \) | \(a_{18}= +0.40251987 \pm 1.7 \cdot 10^{-6} \) |
\(a_{19}= -0.49939365 \pm 1.4 \cdot 10^{-6} \) | \(a_{20}= +0.33182163 \pm 1.9 \cdot 10^{-6} \) | \(a_{21}= +0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +0.11302675 \pm 1.7 \cdot 10^{-6} \) | \(a_{23}= -1.57396439 \pm 1.4 \cdot 10^{-6} \) | \(a_{24}= +0.37773461 \pm 1.9 \cdot 10^{-6} \) |
\(a_{25}= -0.47555637 \pm 1.3 \cdot 10^{-6} \) | \(a_{26}= -1.53936370 \pm 1.6 \cdot 10^{-6} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.17318340 \pm 1.9 \cdot 10^{-6} \) | \(a_{29}= -0.22794120 \pm 1.5 \cdot 10^{-6} \) | \(a_{30}= -0.50489068 \pm 3.0 \cdot 10^{-6} \) |
\(a_{31}= +1.40290068 \pm 1.5 \cdot 10^{-6} \) | \(a_{32}= -0.85308409 \pm 1.5 \cdot 10^{-6} \) | \(a_{33}= -0.05403959 \pm 1.3 \cdot 10^{-6} \) |
\(a_{34}= -0.80005519 \pm 1.3 \cdot 10^{-6} \) | \(a_{35}= -0.27371613 \pm 1.3 \cdot 10^{-6} \) | \(a_{36}= +0.15273340 \pm 1.9 \cdot 10^{-6} \) |
\(a_{37}= +1.61380135 \pm 1.3 \cdot 10^{-6} \) | \(a_{38}= -0.60304760 \pm 1.6 \cdot 10^{-6} \) | \(a_{39}= +0.73599021 \pm 1.5 \cdot 10^{-6} \) |
\(a_{40}= -0.47380192 \pm 1.8 \cdot 10^{-6} \) | \(a_{41}= -0.28987441 \pm 1.1 \cdot 10^{-6} \) | \(a_{42}= +0.26351111 \pm 1.7 \cdot 10^{-6} \) |
\(a_{43}= +0.48770373 \pm 1.5 \cdot 10^{-6} \) | \(a_{44}= +0.04288722 \pm 1.9 \cdot 10^{-6} \) | \(a_{45}= +0.24139493 \pm 1.3 \cdot 10^{-6} \) |
\(a_{46}= -1.90065582 \pm 1.6 \cdot 10^{-6} \) | \(a_{47}= -0.50665410 \pm 1.3 \cdot 10^{-6} \) | \(a_{48}= +0.72067908 \pm 1.6 \cdot 10^{-6} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.57426267 \pm 1.3 \cdot 10^{-6} \) | \(a_{51}= +0.38251700 \pm 1.4 \cdot 10^{-6} \) |
\(a_{52}= -0.58410099 \pm 1.8 \cdot 10^{-6} \) | \(a_{53}= +0.99961283 \pm 1.5 \cdot 10^{-6} \) | \(a_{54}= -0.23239496 \pm 1.7 \cdot 10^{-6} \) |
\(a_{55}= +0.06778320 \pm 1.1 \cdot 10^{-6} \) | \(a_{56}= +0.24728535 \pm 1.9 \cdot 10^{-6} \) | \(a_{57}= +0.28832506 \pm 1.4 \cdot 10^{-6} \) |
\(a_{58}= -0.27525258 \pm 1.4 \cdot 10^{-6} \) | \(a_{59}= -0.76470330 \pm 1.0 \cdot 10^{-6} \) | \(a_{60}= -0.19157731 \pm 3.3 \cdot 10^{-6} \) |
\(a_{61}= -1.28159386 \pm 1.3 \cdot 10^{-6} \) | \(a_{62}= +1.69408619 \pm 1.8 \cdot 10^{-6} \) | \(a_{63}= -0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= +0.21810289 \pm 1.3 \cdot 10^{-6} \) | \(a_{65}= -0.92317082 \pm 1.4 \cdot 10^{-6} \) | \(a_{66}= -0.06525602 \pm 3.0 \cdot 10^{-6} \) |
\(a_{67}= +0.91515066 \pm 1.4 \cdot 10^{-6} \) | \(a_{68}= -0.30357545 \pm 1.3 \cdot 10^{-6} \) | \(a_{69}= +0.90872876 \pm 1.4 \cdot 10^{-6} \) |
\(a_{70}= -0.33052854 \pm 3.0 \cdot 10^{-6} \) | \(a_{71}= +1.39402125 \pm 1.8 \cdot 10^{-6} \) | \(a_{72}= -0.21808518 \pm 1.9 \cdot 10^{-6} \) |
\(a_{73}= -1.75891094 \pm 1.3 \cdot 10^{-6} \) | \(a_{74}= +1.94876133 \pm 1.5 \cdot 10^{-6} \) | \(a_{75}= +0.27456260 \pm 1.3 \cdot 10^{-6} \) |
\(a_{76}= -0.22882227 \pm 1.6 \cdot 10^{-6} \) | \(a_{77}= -0.03537721 \pm 1.3 \cdot 10^{-6} \) | \(a_{78}= +0.88875205 \pm 3.2 \cdot 10^{-6} \) |
\(a_{79}= -0.84093527 \pm 9.6 \cdot 10^{-7} \) | \(a_{80}= -0.90396569 \pm 1.7 \cdot 10^{-6} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.35004063 \pm 1.2 \cdot 10^{-6} \) | \(a_{83}= -0.54429188 \pm 1.3 \cdot 10^{-6} \) | \(a_{84}= +0.09998748 \pm 1.9 \cdot 10^{-6} \) |
\(a_{85}= -0.47980059 \pm 1.0 \cdot 10^{-6} \) | \(a_{86}= +0.58893133 \pm 2.0 \cdot 10^{-6} \) | \(a_{87}= +0.13160191 \pm 1.5 \cdot 10^{-6} \) |
\(a_{88}= -0.06123787 \pm 1.9 \cdot 10^{-6} \) | \(a_{89}= -1.52818059 \pm 1.2 \cdot 10^{-6} \) | \(a_{90}= +0.29149877 \pm 3.0 \cdot 10^{-6} \) |
\(a_{91}= +0.48181869 \pm 1.5 \cdot 10^{-6} \) | \(a_{92}= -0.72119081 \pm 2.0 \cdot 10^{-6} \) | \(a_{93}= -0.80996508 \pm 1.5 \cdot 10^{-6} \) |
\(a_{94}= -0.61181503 \pm 1.7 \cdot 10^{-6} \) | \(a_{95}= -0.36165329 \pm 1.0 \cdot 10^{-6} \) | \(a_{96}= +0.49252833 \pm 1.5 \cdot 10^{-6} \) |
\(a_{97}= +1.15971967 \pm 9.0 \cdot 10^{-7} \) | \(a_{98}= +0.17250852 \pm 1.7 \cdot 10^{-6} \) | \(a_{99}= +0.03119977 \pm 1.3 \cdot 10^{-6} \) |
\(a_{100}= -0.21790003 \pm 1.4 \cdot 10^{-6} \) | \(a_{101}= +0.26871105 \pm 1.5 \cdot 10^{-6} \) | \(a_{102}= +0.46191208 \pm 3.1 \cdot 10^{-6} \) |
\(a_{103}= +1.01351189 \pm 1.2 \cdot 10^{-6} \) | \(a_{104}= +0.83402693 \pm 1.8 \cdot 10^{-6} \) | \(a_{105}= +0.15803008 \pm 1.3 \cdot 10^{-6} \) |
\(a_{106}= +1.20709207 \pm 1.9 \cdot 10^{-6} \) | \(a_{107}= +1.48291974 \pm 1.6 \cdot 10^{-6} \) | \(a_{108}= -0.08818067 \pm 1.9 \cdot 10^{-6} \) |
\(a_{109}= -1.45743997 \pm 1.5 \cdot 10^{-6} \) | \(a_{110}= +0.08185225 \pm 1.4 \cdot 10^{-6} \) | \(a_{111}= -0.93172865 \pm 1.3 \cdot 10^{-6} \) |
\(a_{112}= +0.47179520 \pm 1.6 \cdot 10^{-6} \) | \(a_{113}= +0.71113190 \pm 1.0 \cdot 10^{-6} \) | \(a_{114}= +0.34816969 \pm 3.1 \cdot 10^{-6} \) |
\(a_{115}= -1.13984109 \pm 1.4 \cdot 10^{-6} \) | \(a_{116}= -0.10444270 \pm 1.7 \cdot 10^{-6} \) | \(a_{117}= -0.42492414 \pm 1.5 \cdot 10^{-6} \) |
\(a_{118}= -0.92342482 \pm 1.2 \cdot 10^{-6} \) | \(a_{119}= +0.25041616 \pm 1.4 \cdot 10^{-6} \) | \(a_{120}= +0.27354967 \pm 3.3 \cdot 10^{-6} \) |
\(a_{121}= -0.99123917 \pm 1.2 \cdot 10^{-6} \) | \(a_{122}= -1.54760098 \pm 1.5 \cdot 10^{-6} \) | \(a_{123}= +0.16735907 \pm 1.1 \cdot 10^{-6} \) |
\(a_{124}= +0.64280938 \pm 2.0 \cdot 10^{-6} \) | \(a_{125}= -1.06857550 \pm 1.2 \cdot 10^{-6} \) | \(a_{126}= -0.15213821 \pm 1.7 \cdot 10^{-6} \) |
\(a_{127}= -0.53427156 \pm 1.6 \cdot 10^{-6} \) | \(a_{128}= +1.11645633 \pm 1.5 \cdot 10^{-6} \) | \(a_{129}= -0.28157588 \pm 1.5 \cdot 10^{-6} \) |
\(a_{130}= -1.11478380 \pm 1.8 \cdot 10^{-6} \) | \(a_{131}= -0.12998250 \pm 1.2 \cdot 10^{-6} \) | \(a_{132}= -0.02476095 \pm 3.3 \cdot 10^{-6} \) |
\(a_{133}= +0.18875306 \pm 1.4 \cdot 10^{-6} \) | \(a_{134}= +1.10509897 \pm 1.4 \cdot 10^{-6} \) | \(a_{135}= -0.13936943 \pm 1.3 \cdot 10^{-6} \) |
\(a_{136}= +0.43346974 \pm 1.4 \cdot 10^{-6} \) | \(a_{137}= +1.68043788 \pm 1.2 \cdot 10^{-6} \) | \(a_{138}= +1.09734415 \pm 3.1 \cdot 10^{-6} \) |
\(a_{139}= -1.02533367 \pm 1.5 \cdot 10^{-6} \) | \(a_{140}= -0.12541679 \pm 3.3 \cdot 10^{-6} \) | \(a_{141}= +0.29251688 \pm 1.4 \cdot 10^{-6} \) |
\(a_{142}= +1.68336376 \pm 1.7 \cdot 10^{-6} \) | \(a_{143}= -0.11931782 \pm 1.3 \cdot 10^{-6} \) | \(a_{144}= -0.41608426 \pm 1.6 \cdot 10^{-6} \) |
\(a_{145}= -0.16507155 \pm 1.1 \cdot 10^{-6} \) | \(a_{146}= -2.12398980 \pm 1.6 \cdot 10^{-6} \) | \(a_{147}= -0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= +0.73944412 \pm 1.7 \cdot 10^{-6} \) | \(a_{149}= -1.16277373 \pm 1.3 \cdot 10^{-6} \) | \(a_{150}= +0.33155070 \pm 3.0 \cdot 10^{-6} \) |
\(a_{151}= +0.86426788 \pm 1.4 \cdot 10^{-6} \) | \(a_{152}= +0.32673106 \pm 1.7 \cdot 10^{-6} \) | \(a_{153}= -0.22084629 \pm 1.4 \cdot 10^{-6} \) |
\(a_{154}= -0.04272009 \pm 3.0 \cdot 10^{-6} \) | \(a_{155}= +1.01595935 \pm 1.4 \cdot 10^{-6} \) | \(a_{156}= +0.33723087 \pm 3.5 \cdot 10^{-6} \) |
\(a_{157}= +0.51979578 \pm 1.4 \cdot 10^{-6} \) | \(a_{158}= -1.01547947 \pm 1.2 \cdot 10^{-6} \) | \(a_{159}= -0.57712674 \pm 1.5 \cdot 10^{-6} \) |
\(a_{160}= -0.61779053 \pm 1.4 \cdot 10^{-6} \) | \(a_{161}= +0.59490262 \pm 1.4 \cdot 10^{-6} \) | \(a_{162}= +0.13417329 \pm 1.7 \cdot 10^{-6} \) |
\(a_{163}= +1.06583868 \pm 1.4 \cdot 10^{-6} \) | \(a_{164}= -0.13282051 \pm 1.5 \cdot 10^{-6} \) | \(a_{165}= -0.03913465 \pm 2.6 \cdot 10^{-6} \) |
\(a_{166}= -0.65726489 \pm 1.4 \cdot 10^{-6} \) | \(a_{167}= -0.45147122 \pm 1.1 \cdot 10^{-6} \) | \(a_{168}= -0.14277026 \pm 1.9 \cdot 10^{-6} \) |
\(a_{169}= +0.62504475 \pm 1.7 \cdot 10^{-6} \) | \(a_{170}= -0.57938781 \pm 8.7 \cdot 10^{-7} \) | \(a_{171}= -0.16646455 \pm 1.4 \cdot 10^{-6} \) |
\(a_{172}= +0.22346595 \pm 2.3 \cdot 10^{-6} \) | \(a_{173}= +0.18473877 \pm 1.6 \cdot 10^{-6} \) | \(a_{174}= +0.15891715 \pm 3.2 \cdot 10^{-6} \) |
\(a_{175}= +0.17974341 \pm 1.3 \cdot 10^{-6} \) | \(a_{176}= -0.11683560 \pm 1.5 \cdot 10^{-6} \) | \(a_{177}= +0.44150166 \pm 1.0 \cdot 10^{-6} \) |
\(a_{178}= -1.84536916 \pm 1.5 \cdot 10^{-6} \) | \(a_{179}= -1.11989479 \pm 1.2 \cdot 10^{-6} \) | \(a_{180}= +0.11060721 \pm 3.3 \cdot 10^{-6} \) |
\(a_{181}= -0.49817862 \pm 1.1 \cdot 10^{-6} \) | \(a_{182}= +0.58182479 \pm 3.2 \cdot 10^{-6} \) | \(a_{183}= +0.73992856 \pm 1.4 \cdot 10^{-6} \) |
\(a_{184}= +1.02977493 \pm 2.0 \cdot 10^{-6} \) | \(a_{185}= +1.16869042 \pm 1.5 \cdot 10^{-6} \) | \(a_{186}= -0.97808112 \pm 3.2 \cdot 10^{-6} \) |
\(a_{187}= -0.06201318 \pm 1.3 \cdot 10^{-6} \) | \(a_{188}= -0.23214902 \pm 2.1 \cdot 10^{-6} \) | \(a_{189}= +0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= -0.43671790 \pm 1.0 \cdot 10^{-6} \) | \(a_{191}= -0.42507486 \pm 1.5 \cdot 10^{-6} \) | \(a_{192}= -0.12592176 \pm 1.3 \cdot 10^{-6} \) |
\(a_{193}= -1.99043844 \pm 1.5 \cdot 10^{-6} \) | \(a_{194}= +1.40043063 \pm 8.6 \cdot 10^{-7} \) | \(a_{195}= +0.53299292 \pm 2.8 \cdot 10^{-6} \) |
\(a_{196}= +0.06545717 \pm 1.9 \cdot 10^{-6} \) | \(a_{197}= +0.14801173 \pm 1.1 \cdot 10^{-6} \) | \(a_{198}= +0.03767558 \pm 3.0 \cdot 10^{-6} \) |
\(a_{199}= -1.23816743 \pm 9.8 \cdot 10^{-7} \) | \(a_{200}= +0.31113539 \pm 1.1 \cdot 10^{-6} \) | \(a_{201}= -0.52836248 \pm 1.4 \cdot 10^{-6} \) |
\(a_{202}= +0.32448460 \pm 1.5 \cdot 10^{-6} \) | \(a_{203}= +0.08615367 \pm 1.5 \cdot 10^{-6} \) | \(a_{204}= +0.17526937 \pm 3.4 \cdot 10^{-6} \) |
\(a_{205}= -0.20992264 \pm 9.5 \cdot 10^{-7} \) | \(a_{206}= +1.22387602 \pm 1.6 \cdot 10^{-6} \) | \(a_{207}= -0.52465480 \pm 1.4 \cdot 10^{-6} \) |
\(a_{208}= +1.59123823 \pm 1.3 \cdot 10^{-6} \) | \(a_{209}= -0.04674290 \pm 1.4 \cdot 10^{-6} \) | \(a_{210}= +0.19083074 \pm 3.0 \cdot 10^{-6} \) |
\(a_{211}= -0.04125652 \pm 1.4 \cdot 10^{-6} \) | \(a_{212}= +0.45802281 \pm 2.2 \cdot 10^{-6} \) | \(a_{213}= -0.80483854 \pm 1.8 \cdot 10^{-6} \) |
\(a_{214}= +1.79071398 \pm 1.9 \cdot 10^{-6} \) | \(a_{215}= +0.35318763 \pm 1.2 \cdot 10^{-6} \) | \(a_{216}= +0.12591154 \pm 1.9 \cdot 10^{-6} \) |
\(a_{217}= -0.53024662 \pm 1.5 \cdot 10^{-6} \) | \(a_{218}= -1.75994564 \pm 1.6 \cdot 10^{-6} \) | \(a_{219}= +1.01550770 \pm 1.3 \cdot 10^{-6} \) |
\(a_{220}= +0.03105828 \pm 1.6 \cdot 10^{-6} \) | \(a_{221}= +0.84458630 \pm 1.2 \cdot 10^{-6} \) | \(a_{222}= -1.12511788 \pm 3.0 \cdot 10^{-6} \) |
\(a_{223}= -0.82557421 \pm 1.6 \cdot 10^{-6} \) | \(a_{224}= +0.32243548 \pm 1.5 \cdot 10^{-6} \) | \(a_{225}= -0.15851879 \pm 1.3 \cdot 10^{-6} \) |
\(a_{226}= +0.85873416 \pm 1.4 \cdot 10^{-6} \) | \(a_{227}= +1.06007763 \pm 1.5 \cdot 10^{-6} \) | \(a_{228}= +0.13211060 \pm 3.4 \cdot 10^{-6} \) |
\(a_{229}= +1.64470007 \pm 1.8 \cdot 10^{-6} \) | \(a_{230}= -1.37642606 \pm 1.6 \cdot 10^{-6} \) | \(a_{231}= +0.02042504 \pm 1.3 \cdot 10^{-6} \) |
\(a_{232}= +0.14913179 \pm 1.6 \cdot 10^{-6} \) | \(a_{233}= -1.31474375 \pm 1.3 \cdot 10^{-6} \) | \(a_{234}= -0.51312123 \pm 3.2 \cdot 10^{-6} \) |
\(a_{235}= -0.36691120 \pm 1.3 \cdot 10^{-6} \) | \(a_{236}= -0.35038721 \pm 1.5 \cdot 10^{-6} \) | \(a_{237}= +0.48551421 \pm 9.7 \cdot 10^{-7} \) |
\(a_{238}= +0.30239244 \pm 3.1 \cdot 10^{-6} \) | \(a_{239}= +0.56324669 \pm 1.2 \cdot 10^{-6} \) | \(a_{240}= +0.52190484 \pm 2.9 \cdot 10^{-6} \) |
\(a_{241}= -1.69571608 \pm 1.4 \cdot 10^{-6} \) | \(a_{242}= -1.19698038 \pm 1.6 \cdot 10^{-6} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.58722657 \pm 1.7 \cdot 10^{-6} \) | \(a_{245}= +0.10345497 \pm 1.3 \cdot 10^{-6} \) | \(a_{246}= +0.20209605 \pm 2.8 \cdot 10^{-6} \) |
\(a_{247}= +0.63661325 \pm 1.1 \cdot 10^{-6} \) | \(a_{248}= -0.91785555 \pm 2.0 \cdot 10^{-6} \) | \(a_{249}= +0.31424706 \pm 1.3 \cdot 10^{-6} \) |
\(a_{250}= -1.29036861 \pm 1.4 \cdot 10^{-6} \) | \(a_{251}= -1.35466216 \pm 1.1 \cdot 10^{-6} \) | \(a_{252}= -0.05772780 \pm 1.9 \cdot 10^{-6} \) |
\(a_{253}= -0.14732198 \pm 1.1 \cdot 10^{-6} \) | \(a_{254}= -0.64516475 \pm 2.2 \cdot 10^{-6} \) | \(a_{255}= +0.27701300 \pm 2.8 \cdot 10^{-6} \) |
\(a_{256}= +1.13008468 \pm 1.5 \cdot 10^{-6} \) | \(a_{257}= +0.98460489 \pm 1.3 \cdot 10^{-6} \) | \(a_{258}= -0.34001966 \pm 3.2 \cdot 10^{-6} \) |
\(a_{259}= -0.60995958 \pm 1.3 \cdot 10^{-6} \) | \(a_{260}= -0.42299706 \pm 2.0 \cdot 10^{-6} \) | \(a_{261}= -0.07598040 \pm 1.5 \cdot 10^{-6} \) |
\(a_{262}= -0.15696162 \pm 1.7 \cdot 10^{-6} \) | \(a_{263}= +0.83433288 \pm 1.4 \cdot 10^{-6} \) | \(a_{264}= +0.03535570 \pm 3.3 \cdot 10^{-6} \) |
\(a_{265}= +0.72390442 \pm 1.1 \cdot 10^{-6} \) | \(a_{266}= +0.22793057 \pm 3.1 \cdot 10^{-6} \) | \(a_{267}= +0.88229548 \pm 1.2 \cdot 10^{-6} \) |
\(a_{268}= +0.41932222 \pm 1.6 \cdot 10^{-6} \) | \(a_{269}= +1.64815104 \pm 1.3 \cdot 10^{-6} \) | \(a_{270}= -0.16829689 \pm 3.0 \cdot 10^{-6} \) |
\(a_{271}= -0.70218735 \pm 1.2 \cdot 10^{-6} \) | \(a_{272}= +0.82701600 \pm 9.6 \cdot 10^{-7} \) | \(a_{273}= -0.27817815 \pm 1.5 \cdot 10^{-6} \) |
\(a_{274}= +2.02922890 \pm 1.5 \cdot 10^{-6} \) | \(a_{275}= -0.04451175 \pm 1.2 \cdot 10^{-6} \) | \(a_{276}= +0.41637971 \pm 3.4 \cdot 10^{-6} \) |
\(a_{277}= -1.04723686 \pm 1.2 \cdot 10^{-6} \) | \(a_{278}= -1.23815152 \pm 1.8 \cdot 10^{-6} \) | \(a_{279}= +0.46763356 \pm 1.5 \cdot 10^{-6} \) |
\(a_{280}= +0.17908029 \pm 3.3 \cdot 10^{-6} \) | \(a_{281}= +0.89885174 \pm 1.7 \cdot 10^{-6} \) | \(a_{282}= +0.35323157 \pm 3.1 \cdot 10^{-6} \) |
\(a_{283}= +1.09176962 \pm 1.1 \cdot 10^{-6} \) | \(a_{284}= +0.63874083 \pm 2.2 \cdot 10^{-6} \) | \(a_{285}= +0.20880062 \pm 2.7 \cdot 10^{-6} \) |
\(a_{286}= -0.14408338 \pm 1.3 \cdot 10^{-6} \) | \(a_{287}= +0.10956223 \pm 1.1 \cdot 10^{-6} \) | \(a_{288}= -0.28436136 \pm 1.5 \cdot 10^{-6} \) |
\(a_{289}= -0.56104223 \pm 1.3 \cdot 10^{-6} \) | \(a_{290}= -0.19933374 \pm 1.3 \cdot 10^{-6} \) | \(a_{291}= -0.66956446 \pm 9.1 \cdot 10^{-7} \) |
\(a_{292}= -0.80593336 \pm 1.9 \cdot 10^{-6} \) | \(a_{293}= -1.51902604 \pm 1.2 \cdot 10^{-6} \) | \(a_{294}= -0.09959784 \pm 1.7 \cdot 10^{-6} \) |
\(a_{295}= -0.55378651 \pm 8.9 \cdot 10^{-7} \) | \(a_{296}= -1.05583848 \pm 1.7 \cdot 10^{-6} \) | \(a_{297}= -0.01801320 \pm 1.3 \cdot 10^{-6} \) |
\(a_{298}= -1.40411859 \pm 1.8 \cdot 10^{-6} \) | \(a_{299}= +2.00644641 \pm 1.6 \cdot 10^{-6} \) | \(a_{300}= +0.12580464 \pm 3.3 \cdot 10^{-6} \) |
\(a_{301}= -0.18433468 \pm 1.5 \cdot 10^{-6} \) | \(a_{302}= +1.04365499 \pm 1.9 \cdot 10^{-6} \) | \(a_{303}= -0.15514039 \pm 1.5 \cdot 10^{-6} \) |
\(a_{304}= +0.62336951 \pm 1.1 \cdot 10^{-6} \) | \(a_{305}= -0.92811079 \pm 1.0 \cdot 10^{-6} \) | \(a_{306}= -0.26668506 \pm 3.1 \cdot 10^{-6} \) |
\(a_{307}= +0.47622588 \pm 1.8 \cdot 10^{-6} \) | \(a_{308}= -0.01620985 \pm 3.3 \cdot 10^{-6} \) | \(a_{309}= -0.58515136 \pm 1.2 \cdot 10^{-6} \) |
\(a_{310}= +1.22683148 \pm 1.8 \cdot 10^{-6} \) | \(a_{311}= -0.52713180 \pm 1.6 \cdot 10^{-6} \) | \(a_{312}= -0.48152567 \pm 3.5 \cdot 10^{-6} \) |
\(a_{313}= -1.04444965 \pm 1.8 \cdot 10^{-6} \) | \(a_{314}= +0.62768439 \pm 1.5 \cdot 10^{-6} \) | \(a_{315}= -0.09123871 \pm 1.3 \cdot 10^{-6} \) |
\(a_{316}= -0.38531672 \pm 1.4 \cdot 10^{-6} \) | \(a_{317}= -1.94234761 \pm 1.6 \cdot 10^{-6} \) | \(a_{318}= -0.69691493 \pm 3.2 \cdot 10^{-6} \) |
\(a_{319}= -0.02133514 \pm 1.0 \cdot 10^{-6} \) | \(a_{320}= +0.15794679 \pm 1.0 \cdot 10^{-6} \) | \(a_{321}= -0.85616411 \pm 1.6 \cdot 10^{-6} \) |
\(a_{322}= +0.71838038 \pm 3.1 \cdot 10^{-6} \) | \(a_{323}= +0.33086771 \pm 1.8 \cdot 10^{-6} \) | \(a_{324}= +0.05091113 \pm 1.9 \cdot 10^{-6} \) |
\(a_{325}= +0.60622615 \pm 1.3 \cdot 10^{-6} \) | \(a_{326}= +1.28706374 \pm 1.1 \cdot 10^{-6} \) | \(a_{327}= +0.84145336 \pm 1.5 \cdot 10^{-6} \) |
\(a_{328}= +0.18965194 \pm 1.4 \cdot 10^{-6} \) | \(a_{329}= +0.19149725 \pm 1.4 \cdot 10^{-6} \) | \(a_{330}= -0.04725742 \pm 4.3 \cdot 10^{-6} \) |
\(a_{331}= +0.42851518 \pm 1.2 \cdot 10^{-6} \) | \(a_{332}= -0.24939465 \pm 1.5 \cdot 10^{-6} \) | \(a_{333}= +0.53793378 \pm 1.3 \cdot 10^{-6} \) |
\(a_{334}= -0.54517841 \pm 1.5 \cdot 10^{-6} \) | \(a_{335}= +0.66273820 \pm 1.4 \cdot 10^{-6} \) | \(a_{336}= -0.27239109 \pm 1.6 \cdot 10^{-6} \) |
\(a_{337}= -0.04871613 \pm 1.7 \cdot 10^{-6} \) | \(a_{338}= +0.75477879 \pm 1.6 \cdot 10^{-6} \) | \(a_{339}= -0.41057219 \pm 1.0 \cdot 10^{-6} \) |
\(a_{340}= -0.21984473 \pm 9.3 \cdot 10^{-7} \) | \(a_{341}= +0.13131054 \pm 1.1 \cdot 10^{-6} \) | \(a_{342}= -0.20101587 \pm 3.1 \cdot 10^{-6} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.31908287 \pm 2.3 \cdot 10^{-6} \) | \(a_{345}= +0.65808756 \pm 2.7 \cdot 10^{-6} \) |
\(a_{346}= +0.22308308 \pm 2.0 \cdot 10^{-6} \) | \(a_{347}= +0.44678549 \pm 1.5 \cdot 10^{-6} \) | \(a_{348}= +0.06030002 \pm 3.5 \cdot 10^{-6} \) |
\(a_{349}= -0.85543937 \pm 1.4 \cdot 10^{-6} \) | \(a_{350}= +0.21705089 \pm 3.0 \cdot 10^{-6} \) | \(a_{351}= +0.24533007 \pm 1.5 \cdot 10^{-6} \) |
\(a_{352}= -0.07984808 \pm 1.4 \cdot 10^{-6} \) | \(a_{353}= -1.17605851 \pm 1.1 \cdot 10^{-6} \) | \(a_{354}= +0.53313957 \pm 2.7 \cdot 10^{-6} \) |
\(a_{355}= +1.00952900 \pm 1.7 \cdot 10^{-6} \) | \(a_{356}= -0.70021267 \pm 1.4 \cdot 10^{-6} \) | \(a_{357}= -0.14457784 \pm 1.4 \cdot 10^{-6} \) |
\(a_{358}= -1.35233971 \pm 1.5 \cdot 10^{-6} \) | \(a_{359}= +0.94044061 \pm 9.8 \cdot 10^{-7} \) | \(a_{360}= -0.15793397 \pm 3.3 \cdot 10^{-6} \) |
\(a_{361}= -0.75060599 \pm 1.6 \cdot 10^{-6} \) | \(a_{362}= -0.60158038 \pm 1.4 \cdot 10^{-6} \) | \(a_{363}= +0.57229220 \pm 1.2 \cdot 10^{-6} \) |
\(a_{364}= +0.22076942 \pm 3.5 \cdot 10^{-6} \) | \(a_{365}= -1.27377657 \pm 1.3 \cdot 10^{-6} \) | \(a_{366}= +0.89350784 \pm 3.1 \cdot 10^{-6} \) |
\(a_{367}= -0.49204246 \pm 1.1 \cdot 10^{-6} \) | \(a_{368}= +1.96470542 \pm 1.6 \cdot 10^{-6} \) | \(a_{369}= -0.09662480 \pm 1.1 \cdot 10^{-6} \) |
\(a_{370}= +1.41126334 \pm 1.7 \cdot 10^{-6} \) | \(a_{371}= -0.37781814 \pm 1.5 \cdot 10^{-6} \) | \(a_{372}= -0.37112617 \pm 3.5 \cdot 10^{-6} \) |
\(a_{373}= -0.63497699 \pm 1.8 \cdot 10^{-6} \) | \(a_{374}= -0.07488461 \pm 1.6 \cdot 10^{-6} \) | \(a_{375}= +0.61694235 \pm 1.2 \cdot 10^{-6} \) |
\(a_{376}= +0.33148126 \pm 2.2 \cdot 10^{-6} \) | \(a_{377}= +0.29057315 \pm 1.1 \cdot 10^{-6} \) | \(a_{378}= +0.08783704 \pm 1.7 \cdot 10^{-6} \) |
\(a_{379}= +1.20189147 \pm 1.2 \cdot 10^{-6} \) | \(a_{380}= -0.16570961 \pm 1.3 \cdot 10^{-6} \) | \(a_{381}= +0.30846183 \pm 1.7 \cdot 10^{-6} \) |
\(a_{382}= -0.51330323 \pm 2.1 \cdot 10^{-6} \) | \(a_{383}= +1.55015880 \pm 1.7 \cdot 10^{-6} \) | \(a_{384}= -0.64458636 \pm 1.5 \cdot 10^{-6} \) |
\(a_{385}= -0.02561964 \pm 2.6 \cdot 10^{-6} \) | \(a_{386}= -2.40357307 \pm 1.6 \cdot 10^{-6} \) | \(a_{387}= +0.16256791 \pm 1.5 \cdot 10^{-6} \) |
\(a_{388}= +0.53138379 \pm 1.1 \cdot 10^{-6} \) | \(a_{389}= -0.74943049 \pm 1.2 \cdot 10^{-6} \) | \(a_{390}= +0.64362072 \pm 4.5 \cdot 10^{-6} \) |
\(a_{391}= +1.04281261 \pm 1.0 \cdot 10^{-6} \) | \(a_{392}= -0.09346508 \pm 1.9 \cdot 10^{-6} \) | \(a_{393}= +0.07504543 \pm 1.2 \cdot 10^{-6} \) |
\(a_{394}= +0.17873298 \pm 1.2 \cdot 10^{-6} \) | \(a_{395}= -0.60899254 \pm 9.7 \cdot 10^{-7} \) | \(a_{396}= +0.01429574 \pm 3.3 \cdot 10^{-6} \) |
\(a_{397}= -0.57939732 \pm 1.1 \cdot 10^{-6} \) | \(a_{398}= -1.49516098 \pm 1.3 \cdot 10^{-6} \) | \(a_{399}= -0.10897663 \pm 1.4 \cdot 10^{-6} \) |
\(a_{400}= +0.59361456 \pm 1.1 \cdot 10^{-6} \) | \(a_{401}= -0.05004576 \pm 1.4 \cdot 10^{-6} \) | \(a_{402}= -0.63802919 \pm 3.1 \cdot 10^{-6} \) |
\(a_{403}= -1.78837911 \pm 1.3 \cdot 10^{-6} \) | \(a_{404}= +0.12312346 \pm 2.0 \cdot 10^{-6} \) | \(a_{405}= +0.08046498 \pm 1.3 \cdot 10^{-6} \) |
\(a_{406}= +0.10403570 \pm 3.2 \cdot 10^{-6} \) | \(a_{407}= +0.15105069 \pm 1.1 \cdot 10^{-6} \) | \(a_{408}= -0.25026387 \pm 3.4 \cdot 10^{-6} \) |
\(a_{409}= -0.44376828 \pm 1.2 \cdot 10^{-6} \) | \(a_{410}= -0.25349410 \pm 1.2 \cdot 10^{-6} \) | \(a_{411}= -0.97020126 \pm 1.2 \cdot 10^{-6} \) |
\(a_{412}= +0.46439136 \pm 1.8 \cdot 10^{-6} \) | \(a_{413}= +0.28903068 \pm 1.0 \cdot 10^{-6} \) | \(a_{414}= -0.63355194 \pm 3.1 \cdot 10^{-6} \) |
\(a_{415}= -0.39416791 \pm 1.3 \cdot 10^{-6} \) | \(a_{416}= +1.08748808 \pm 1.3 \cdot 10^{-6} \) | \(a_{417}= +0.59197667 \pm 1.5 \cdot 10^{-6} \) |
\(a_{418}= -0.05644484 \pm 2.0 \cdot 10^{-6} \) | \(a_{419}= -0.84131304 \pm 1.5 \cdot 10^{-6} \) | \(a_{420}= +0.07240942 \pm 3.3 \cdot 10^{-6} \) |
\(a_{421}= +1.03604219 \pm 1.2 \cdot 10^{-6} \) | \(a_{422}= -0.04981971 \pm 1.5 \cdot 10^{-6} \) | \(a_{423}= -0.16888470 \pm 1.4 \cdot 10^{-6} \) |
\(a_{424}= -0.65400223 \pm 2.3 \cdot 10^{-6} \) | \(a_{425}= +0.31507459 \pm 1.3 \cdot 10^{-6} \) | \(a_{426}= -0.97189052 \pm 3.5 \cdot 10^{-6} \) |
\(a_{427}= +0.48439695 \pm 1.4 \cdot 10^{-6} \) | \(a_{428}= +0.67947414 \pm 2.4 \cdot 10^{-6} \) | \(a_{429}= +0.06888818 \pm 2.8 \cdot 10^{-6} \) |
\(a_{430}= +0.42649512 \pm 1.9 \cdot 10^{-6} \) | \(a_{431}= +0.30296864 \pm 1.4 \cdot 10^{-6} \) | \(a_{432}= +0.24022636 \pm 1.6 \cdot 10^{-6} \) |
\(a_{433}= +0.86157363 \pm 1.0 \cdot 10^{-6} \) | \(a_{434}= -0.64030440 \pm 3.2 \cdot 10^{-6} \) | \(a_{435}= +0.09530410 \pm 2.8 \cdot 10^{-6} \) |
\(a_{436}= -0.66779930 \pm 1.7 \cdot 10^{-6} \) | \(a_{437}= +0.78602782 \pm 1.2 \cdot 10^{-6} \) | \(a_{438}= +1.22628608 \pm 3.0 \cdot 10^{-6} \) |
\(a_{439}= +0.26722199 \pm 1.4 \cdot 10^{-6} \) | \(a_{440}= -0.04434753 \pm 1.5 \cdot 10^{-6} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= +1.01988831 \pm 1.0 \cdot 10^{-6} \) | \(a_{443}= +0.15235466 \pm 1.4 \cdot 10^{-6} \) | \(a_{444}= -0.42691826 \pm 3.3 \cdot 10^{-6} \) |
\(a_{445}= -1.10668516 \pm 1.4 \cdot 10^{-6} \) | \(a_{446}= -0.99693007 \pm 1.6 \cdot 10^{-6} \) | \(a_{447}= +0.67132773 \pm 1.3 \cdot 10^{-6} \) |
\(a_{448}= -0.08243514 \pm 1.3 \cdot 10^{-6} \) | \(a_{449}= +1.69351967 \pm 1.2 \cdot 10^{-6} \) | \(a_{450}= -0.19142089 \pm 3.0 \cdot 10^{-6} \) |
\(a_{451}= -0.02713204 \pm 9.3 \cdot 10^{-7} \) | \(a_{452}= +0.32584078 \pm 1.6 \cdot 10^{-6} \) | \(a_{453}= -0.49898529 \pm 1.5 \cdot 10^{-6} \) |
\(a_{454}= +1.28010693 \pm 1.4 \cdot 10^{-6} \) | \(a_{455}= +0.34892577 \pm 2.8 \cdot 10^{-6} \) | \(a_{456}= -0.18863827 \pm 3.4 \cdot 10^{-6} \) |
\(a_{457}= -1.49890499 \pm 1.5 \cdot 10^{-6} \) | \(a_{458}= +1.98607338 \pm 1.7 \cdot 10^{-6} \) | \(a_{459}= +0.12750567 \pm 1.4 \cdot 10^{-6} \) |
\(a_{460}= -0.52227543 \pm 2.1 \cdot 10^{-6} \) | \(a_{461}= +0.92863092 \pm 1.7 \cdot 10^{-6} \) | \(a_{462}= +0.02466446 \pm 3.0 \cdot 10^{-6} \) |
\(a_{463}= +0.85840413 \pm 1.3 \cdot 10^{-6} \) | \(a_{464}= +0.28452823 \pm 1.3 \cdot 10^{-6} \) | \(a_{465}= -0.58656440 \pm 2.9 \cdot 10^{-6} \) |
\(a_{466}= -1.58763145 \pm 1.4 \cdot 10^{-6} \) | \(a_{467}= -0.32880684 \pm 1.5 \cdot 10^{-6} \) | \(a_{468}= -0.19470033 \pm 3.5 \cdot 10^{-6} \) |
\(a_{469}= -0.34589444 \pm 1.4 \cdot 10^{-6} \) | \(a_{470}= -0.44306715 \pm 1.8 \cdot 10^{-6} \) | \(a_{471}= -0.30010423 \pm 1.4 \cdot 10^{-6} \) |
\(a_{472}= +0.50031137 \pm 1.5 \cdot 10^{-6} \) | \(a_{473}= +0.04564873 \pm 1.2 \cdot 10^{-6} \) | \(a_{474}= +0.58628734 \pm 2.6 \cdot 10^{-6} \) |
\(a_{475}= +0.23748983 \pm 1.3 \cdot 10^{-6} \) | \(a_{476}= +0.11474074 \pm 3.4 \cdot 10^{-6} \) | \(a_{477}= +0.33320428 \pm 1.5 \cdot 10^{-6} \) |
\(a_{478}= +0.68015395 \pm 1.5 \cdot 10^{-6} \) | \(a_{479}= -0.40810382 \pm 1.4 \cdot 10^{-6} \) | \(a_{480}= +0.35668153 \pm 2.8 \cdot 10^{-6} \) |
\(a_{481}= -2.05722948 \pm 1.3 \cdot 10^{-6} \) | \(a_{482}= -2.04767824 \pm 1.4 \cdot 10^{-6} \) | \(a_{483}= -0.34346719 \pm 1.4 \cdot 10^{-6} \) |
\(a_{484}= -0.45418599 \pm 1.8 \cdot 10^{-6} \) | \(a_{485}= +0.83985136 \pm 8.4 \cdot 10^{-7} \) | \(a_{486}= -0.07746499 \pm 1.7 \cdot 10^{-6} \) |
\(a_{487}= +0.19017890 \pm 1.2 \cdot 10^{-6} \) | \(a_{488}= +0.83848989 \pm 1.6 \cdot 10^{-6} \) | \(a_{489}= -0.61536225 \pm 1.4 \cdot 10^{-6} \) |
\(a_{490}= +0.12492805 \pm 3.0 \cdot 10^{-6} \) | \(a_{491}= -1.59135780 \pm 1.1 \cdot 10^{-6} \) | \(a_{492}= +0.07668396 \pm 3.1 \cdot 10^{-6} \) |
\(a_{493}= +0.15101991 \pm 1.6 \cdot 10^{-6} \) | \(a_{494}= +0.76874845 \pm 1.3 \cdot 10^{-6} \) | \(a_{495}= +0.02259440 \pm 2.6 \cdot 10^{-6} \) |
\(a_{496}= -1.75117467 \pm 1.6 \cdot 10^{-6} \) | \(a_{497}= -0.52689051 \pm 1.8 \cdot 10^{-6} \) | \(a_{498}= +0.37947206 \pm 3.0 \cdot 10^{-6} \) |
\(a_{499}= +0.07640184 \pm 1.3 \cdot 10^{-6} \) | \(a_{500}= -0.48962152 \pm 1.7 \cdot 10^{-6} \) | \(a_{501}= +0.26065703 \pm 1.1 \cdot 10^{-6} \) |
\(a_{502}= -1.63583531 \pm 1.4 \cdot 10^{-6} \) | \(a_{503}= -0.00463397 \pm 1.5 \cdot 10^{-6} \) | \(a_{504}= +0.08242845 \pm 1.9 \cdot 10^{-6} \) |
\(a_{505}= +0.19459646 \pm 1.0 \cdot 10^{-6} \) | \(a_{506}= -0.17790007 \pm 1.3 \cdot 10^{-6} \) | \(a_{507}= -0.36086976 \pm 1.7 \cdot 10^{-6} \) |
\(a_{508}= -0.24480334 \pm 2.7 \cdot 10^{-6} \) | \(a_{509}= +0.28499823 \pm 1.4 \cdot 10^{-6} \) | \(a_{510}= +0.33450971 \pm 4.5 \cdot 10^{-6} \) |
\(a_{511}= +0.66480585 \pm 1.3 \cdot 10^{-6} \) | \(a_{512}= +0.24818829 \pm 1.8 \cdot 10^{-6} \) | \(a_{513}= +0.09610835 \pm 1.4 \cdot 10^{-6} \) |
\(a_{514}= +1.18896910 \pm 1.3 \cdot 10^{-6} \) | \(a_{515}= +0.73396991 \pm 1.3 \cdot 10^{-6} \) | \(a_{516}= -0.12901813 \pm 3.5 \cdot 10^{-6} \) |
\(a_{517}= -0.04742247 \pm 1.1 \cdot 10^{-6} \) | \(a_{518}= -0.73656255 \pm 3.0 \cdot 10^{-6} \) | \(a_{519}= -0.10665898 \pm 1.6 \cdot 10^{-6} \) |
\(a_{520}= +0.60398963 \pm 1.9 \cdot 10^{-6} \) | \(a_{521}= -0.98325296 \pm 1.6 \cdot 10^{-6} \) | \(a_{522}= -0.09175086 \pm 3.2 \cdot 10^{-6} \) |
\(a_{523}= +1.14908984 \pm 1.4 \cdot 10^{-6} \) | \(a_{524}= -0.05955801 \pm 2.0 \cdot 10^{-6} \) | \(a_{525}= -0.10377491 \pm 1.3 \cdot 10^{-6} \) |
\(a_{526}= +1.00750668 \pm 1.5 \cdot 10^{-6} \) | \(a_{527}= -0.92947625 \pm 1.7 \cdot 10^{-6} \) | \(a_{528}= +0.06745506 \pm 2.9 \cdot 10^{-6} \) |
\(a_{529}= +1.47736389 \pm 1.4 \cdot 10^{-6} \) | \(a_{530}= +0.87415774 \pm 1.6 \cdot 10^{-6} \) | \(a_{531}= -0.25490110 \pm 1.0 \cdot 10^{-6} \) |
\(a_{532}= +0.08648669 \pm 3.4 \cdot 10^{-6} \) | \(a_{533}= +0.36952390 \pm 1.5 \cdot 10^{-6} \) | \(a_{534}= +1.06542438 \pm 2.9 \cdot 10^{-6} \) |
\(a_{535}= +1.07390794 \pm 1.2 \cdot 10^{-6} \) | \(a_{536}= -0.59874239 \pm 1.8 \cdot 10^{-6} \) | \(a_{537}= +0.64657156 \pm 1.2 \cdot 10^{-6} \) |
\(a_{538}= +1.99024062 \pm 1.4 \cdot 10^{-6} \) | \(a_{539}= +0.01337133 \pm 1.3 \cdot 10^{-6} \) | \(a_{540}= -0.06385910 \pm 3.3 \cdot 10^{-6} \) |
\(a_{541}= -1.16372983 \pm 1.3 \cdot 10^{-6} \) | \(a_{542}= -0.84793308 \pm 1.5 \cdot 10^{-6} \) | \(a_{543}= +0.28762356 \pm 1.1 \cdot 10^{-6} \) |
\(a_{544}= +0.56520138 \pm 1.1 \cdot 10^{-6} \) | \(a_{545}= -1.05545588 \pm 1.1 \cdot 10^{-6} \) | \(a_{546}= -0.33591670 \pm 3.2 \cdot 10^{-6} \) |
\(a_{547}= -0.63342745 \pm 1.1 \cdot 10^{-6} \) | \(a_{548}= +0.76997699 \pm 1.7 \cdot 10^{-6} \) | \(a_{549}= -0.42719795 \pm 1.4 \cdot 10^{-6} \) |
\(a_{550}= -0.05375059 \pm 1.4 \cdot 10^{-6} \) | \(a_{551}= +0.11383239 \pm 1.2 \cdot 10^{-6} \) | \(a_{552}= -0.59454083 \pm 3.4 \cdot 10^{-6} \) |
\(a_{553}= +0.31784366 \pm 9.7 \cdot 10^{-7} \) | \(a_{554}= -1.26460093 \pm 1.5 \cdot 10^{-6} \) | \(a_{555}= -0.67474373 \pm 2.7 \cdot 10^{-6} \) |
\(a_{556}= -0.46980810 \pm 2.0 \cdot 10^{-6} \) | \(a_{557}= +0.89251618 \pm 1.4 \cdot 10^{-6} \) | \(a_{558}= +0.56469540 \pm 3.2 \cdot 10^{-6} \) |
\(a_{559}= -0.62171127 \pm 1.6 \cdot 10^{-6} \) | \(a_{560}= +0.34166692 \pm 2.9 \cdot 10^{-6} \) | \(a_{561}= +0.03580333 \pm 2.8 \cdot 10^{-6} \) |
\(a_{562}= +1.08541706 \pm 1.9 \cdot 10^{-6} \) | \(a_{563}= -1.32021155 \pm 1.0 \cdot 10^{-6} \) | \(a_{564}= +0.13403130 \pm 3.3 \cdot 10^{-6} \) |
\(a_{565}= +0.51499091 \pm 9.3 \cdot 10^{-7} \) | \(a_{566}= +1.31837689 \pm 1.3 \cdot 10^{-6} \) | \(a_{567}= -0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -0.91204613 \pm 2.0 \cdot 10^{-6} \) | \(a_{569}= -1.03748867 \pm 1.3 \cdot 10^{-6} \) | \(a_{570}= +0.25213920 \pm 4.5 \cdot 10^{-6} \) |
\(a_{571}= -0.30384508 \pm 1.4 \cdot 10^{-6} \) | \(a_{572}= -0.05467145 \pm 1.4 \cdot 10^{-6} \) | \(a_{573}= +0.24541708 \pm 1.6 \cdot 10^{-6} \) |
\(a_{574}= +0.13230292 \pm 2.8 \cdot 10^{-6} \) | \(a_{575}= +0.74850879 \pm 1.5 \cdot 10^{-6} \) | \(a_{576}= +0.07270096 \pm 1.3 \cdot 10^{-6} \) |
\(a_{577}= -1.84080465 \pm 1.6 \cdot 10^{-6} \) | \(a_{578}= -0.67749193 \pm 1.7 \cdot 10^{-6} \) | \(a_{579}= +1.14918017 \pm 1.5 \cdot 10^{-6} \) |
\(a_{580}= -0.07563582 \pm 1.4 \cdot 10^{-6} \) | \(a_{581}= +0.20572299 \pm 1.3 \cdot 10^{-6} \) | \(a_{582}= -0.80853900 \pm 2.6 \cdot 10^{-6} \) |
\(a_{583}= +0.09356307 \pm 1.6 \cdot 10^{-6} \) | \(a_{584}= +1.15077723 \pm 1.9 \cdot 10^{-6} \) | \(a_{585}= -0.30772361 \pm 2.8 \cdot 10^{-6} \) |
\(a_{586}= -1.83431449 \pm 1.6 \cdot 10^{-6} \) | \(a_{587}= +1.16187756 \pm 1.8 \cdot 10^{-6} \) | \(a_{588}= -0.03779172 \pm 1.9 \cdot 10^{-6} \) |
\(a_{589}= -0.70059969 \pm 1.4 \cdot 10^{-6} \) | \(a_{590}= -0.66873022 \pm 1.3 \cdot 10^{-6} \) | \(a_{591}= -0.08545461 \pm 1.1 \cdot 10^{-6} \) |
\(a_{592}= -2.01443202 \pm 1.6 \cdot 10^{-6} \) | \(a_{593}= +0.16656339 \pm 1.0 \cdot 10^{-6} \) | \(a_{594}= -0.02175201 \pm 3.0 \cdot 10^{-6} \) |
\(a_{595}= +0.18134758 \pm 2.8 \cdot 10^{-6} \) | \(a_{596}= -0.53278317 \pm 2.1 \cdot 10^{-6} \) | \(a_{597}= +0.71485630 \pm 9.9 \cdot 10^{-7} \) |
\(a_{598}= +2.42290364 \pm 1.5 \cdot 10^{-6} \) | \(a_{599}= +0.71463624 \pm 1.7 \cdot 10^{-6} \) | \(a_{600}= -0.17963410 \pm 3.3 \cdot 10^{-6} \) |
\(a_{601}= +1.09956582 \pm 1.5 \cdot 10^{-6} \) | \(a_{602}= -0.22259512 \pm 3.2 \cdot 10^{-6} \) | \(a_{603}= +0.30505022 \pm 1.4 \cdot 10^{-6} \) |
\(a_{604}= +0.39600772 \pm 2.3 \cdot 10^{-6} \) | \(a_{605}= -0.71784034 \pm 8.0 \cdot 10^{-7} \) | \(a_{606}= -0.18734127 \pm 3.2 \cdot 10^{-6} \) |
\(a_{607}= -0.50515908 \pm 1.6 \cdot 10^{-6} \) | \(a_{608}= +0.42602478 \pm 1.0 \cdot 10^{-6} \) | \(a_{609}= -0.04974085 \pm 1.5 \cdot 10^{-6} \) |
\(a_{610}= -1.12074911 \pm 1.3 \cdot 10^{-6} \) | \(a_{611}= +0.64586868 \pm 1.2 \cdot 10^{-6} \) | \(a_{612}= -0.10119182 \pm 3.4 \cdot 10^{-6} \) |
\(a_{613}= -0.30584605 \pm 1.3 \cdot 10^{-6} \) | \(a_{614}= +0.57507114 \pm 2.0 \cdot 10^{-6} \) | \(a_{615}= +0.12119889 \pm 2.4 \cdot 10^{-6} \) |
\(a_{616}= +0.02314574 \pm 3.3 \cdot 10^{-6} \) | \(a_{617}= +1.17136595 \pm 1.4 \cdot 10^{-6} \) | \(a_{618}= -0.70660515 \pm 2.9 \cdot 10^{-6} \) |
\(a_{619}= -0.13707798 \pm 1.2 \cdot 10^{-6} \) | \(a_{620}= +0.46551279 \pm 1.9 \cdot 10^{-6} \) | \(a_{621}= +0.30290959 \pm 1.4 \cdot 10^{-6} \) |
\(a_{622}= -0.63654307 \pm 1.6 \cdot 10^{-6} \) | \(a_{623}= +0.57759797 \pm 1.2 \cdot 10^{-6} \) | \(a_{624}= -0.91870182 \pm 3.1 \cdot 10^{-6} \) |
\(a_{625}= -0.29828977 \pm 1.2 \cdot 10^{-6} \) | \(a_{626}= -1.26123521 \pm 1.9 \cdot 10^{-6} \) | \(a_{627}= +0.02698703 \pm 2.7 \cdot 10^{-6} \) |
\(a_{628}= +0.23817053 \pm 1.7 \cdot 10^{-6} \) | \(a_{629}= -1.06920615 \pm 1.1 \cdot 10^{-6} \) | \(a_{630}= -0.11017618 \pm 3.0 \cdot 10^{-6} \) |
\(a_{631}= +1.03072715 \pm 1.5 \cdot 10^{-6} \) | \(a_{632}= +0.55018656 \pm 1.3 \cdot 10^{-6} \) | \(a_{633}= +0.02381947 \pm 1.4 \cdot 10^{-6} \) |
\(a_{634}= -2.34550052 \pm 1.9 \cdot 10^{-6} \) | \(a_{635}= -0.38691134 \pm 1.4 \cdot 10^{-6} \) | \(a_{636}= -0.26443959 \pm 3.5 \cdot 10^{-6} \) |
\(a_{637}= -0.18211035 \pm 1.5 \cdot 10^{-6} \) | \(a_{638}= -0.02576345 \pm 1.6 \cdot 10^{-6} \) | \(a_{639}= +0.46467375 \pm 1.8 \cdot 10^{-6} \) |
\(a_{640}= +0.80852070 \pm 1.2 \cdot 10^{-6} \) | \(a_{641}= -0.48147214 \pm 1.4 \cdot 10^{-6} \) | \(a_{642}= -1.03386920 \pm 3.3 \cdot 10^{-6} \) |
\(a_{643}= +1.05625169 \pm 1.3 \cdot 10^{-6} \) | \(a_{644}= +0.27258450 \pm 3.4 \cdot 10^{-6} \) | \(a_{645}= -0.20391297 \pm 2.8 \cdot 10^{-6} \) |
\(a_{646}= +0.39954248 \pm 1.8 \cdot 10^{-6} \) | \(a_{647}= +0.59949870 \pm 1.9 \cdot 10^{-6} \) | \(a_{648}= -0.07269506 \pm 1.9 \cdot 10^{-6} \) |
\(a_{649}= -0.07157570 \pm 1.0 \cdot 10^{-6} \) | \(a_{650}= +0.73205421 \pm 1.3 \cdot 10^{-6} \) | \(a_{651}= +0.30613803 \pm 1.5 \cdot 10^{-6} \) |
\(a_{652}= +0.48836750 \pm 1.2 \cdot 10^{-6} \) | \(a_{653}= +0.16596407 \pm 1.4 \cdot 10^{-6} \) | \(a_{654}= +1.01610509 \pm 3.2 \cdot 10^{-6} \) |
\(a_{655}= -0.09413135 \pm 1.0 \cdot 10^{-6} \) | \(a_{656}= +0.36183653 \pm 1.1 \cdot 10^{-6} \) | \(a_{657}= -0.58630365 \pm 1.3 \cdot 10^{-6} \) |
\(a_{658}= +0.23124435 \pm 3.1 \cdot 10^{-6} \) | \(a_{659}= -0.34274609 \pm 1.6 \cdot 10^{-6} \) | \(a_{660}= -0.01793150 \pm 4.6 \cdot 10^{-6} \) |
\(a_{661}= +0.43057937 \pm 1.4 \cdot 10^{-6} \) | \(a_{662}= +0.51745763 \pm 1.3 \cdot 10^{-6} \) | \(a_{663}= -0.48762213 \pm 3.0 \cdot 10^{-6} \) |
\(a_{664}= +0.35610598 \pm 1.4 \cdot 10^{-6} \) | \(a_{665}= +0.13669210 \pm 2.7 \cdot 10^{-6} \) | \(a_{666}= +0.64958711 \pm 3.0 \cdot 10^{-6} \) |
\(a_{667}= +0.35877133 \pm 8.9 \cdot 10^{-7} \) | \(a_{668}= -0.20686421 \pm 2.0 \cdot 10^{-6} \) | \(a_{669}= +0.47664549 \pm 1.7 \cdot 10^{-6} \) |
\(a_{670}= +0.80029588 \pm 1.5 \cdot 10^{-6} \) | \(a_{671}= -0.11995630 \pm 1.2 \cdot 10^{-6} \) | \(a_{672}= -0.18615821 \pm 1.5 \cdot 10^{-6} \) |
\(a_{673}= +0.31933999 \pm 1.2 \cdot 10^{-6} \) | \(a_{674}= -0.05882764 \pm 1.8 \cdot 10^{-6} \) | \(a_{675}= +0.09152087 \pm 1.3 \cdot 10^{-6} \) |
\(a_{676}= +0.28639564 \pm 2.0 \cdot 10^{-6} \) | \(a_{677}= -0.09571841 \pm 1.7 \cdot 10^{-6} \) | \(a_{678}= -0.49579040 \pm 2.7 \cdot 10^{-6} \) |
\(a_{679}= -0.43833283 \pm 9.1 \cdot 10^{-7} \) | \(a_{680}= +0.31391220 \pm 8.5 \cdot 10^{-7} \) | \(a_{681}= -0.61203611 \pm 1.5 \cdot 10^{-6} \) |
\(a_{682}= +0.15856530 \pm 1.5 \cdot 10^{-6} \) | \(a_{683}= +1.32493146 \pm 1.2 \cdot 10^{-6} \) | \(a_{684}= -0.07627409 \pm 3.4 \cdot 10^{-6} \) |
\(a_{685}= +1.21694757 \pm 7.6 \cdot 10^{-7} \) | \(a_{686}= -0.06520209 \pm 1.7 \cdot 10^{-6} \) | \(a_{687}= -0.94956803 \pm 1.8 \cdot 10^{-6} \) |
\(a_{688}= -0.60877754 \pm 1.8 \cdot 10^{-6} \) | \(a_{689}= -1.27427887 \pm 1.6 \cdot 10^{-6} \) | \(a_{690}= +0.79467996 \pm 4.5 \cdot 10^{-6} \) |
\(a_{691}= -0.73842404 \pm 1.7 \cdot 10^{-6} \) | \(a_{692}= +0.08464734 \pm 2.2 \cdot 10^{-6} \) | \(a_{693}= -0.01179240 \pm 1.3 \cdot 10^{-6} \) |
\(a_{694}= +0.53952011 \pm 1.5 \cdot 10^{-6} \) | \(a_{695}= -0.74253106 \pm 1.6 \cdot 10^{-6} \) | \(a_{696}= -0.08610128 \pm 3.4 \cdot 10^{-6} \) |
\(a_{697}= +0.19205307 \pm 7.1 \cdot 10^{-7} \) | \(a_{698}= -1.03299404 \pm 1.5 \cdot 10^{-6} \) | \(a_{699}= +0.75906766 \pm 1.3 \cdot 10^{-6} \) |
\(a_{700}= +0.08235847 \pm 3.3 \cdot 10^{-6} \) | \(a_{701}= +0.31972792 \pm 1.4 \cdot 10^{-6} \) | \(a_{702}= +0.29625068 \pm 3.2 \cdot 10^{-6} \) |
\(a_{703}= -0.80592214 \pm 9.8 \cdot 10^{-7} \) | \(a_{704}= +0.02041428 \pm 1.4 \cdot 10^{-6} \) | \(a_{705}= +0.21183628 \pm 2.7 \cdot 10^{-6} \) |
\(a_{706}= -1.42016075 \pm 1.2 \cdot 10^{-6} \) | \(a_{707}= -0.10156323 \pm 1.5 \cdot 10^{-6} \) | \(a_{708}= +0.20229615 \pm 3.0 \cdot 10^{-6} \) |
\(a_{709}= -1.14710450 \pm 1.4 \cdot 10^{-6} \) | \(a_{710}= +1.21906645 \pm 1.8 \cdot 10^{-6} \) | \(a_{711}= -0.28031176 \pm 9.7 \cdot 10^{-7} \) |
\(a_{712}= +0.99982063 \pm 1.4 \cdot 10^{-6} \) | \(a_{713}= -2.20811571 \pm 1.3 \cdot 10^{-6} \) | \(a_{714}= -0.17458636 \pm 3.1 \cdot 10^{-6} \) |
\(a_{715}= -0.08640815 \pm 1.3 \cdot 10^{-6} \) | \(a_{716}= -0.51313603 \pm 1.7 \cdot 10^{-6} \) | \(a_{717}= -0.32519063 \pm 1.2 \cdot 10^{-6} \) |
\(a_{718}= +1.13563810 \pm 1.4 \cdot 10^{-6} \) | \(a_{719}= -1.41982984 \pm 1.1 \cdot 10^{-6} \) | \(a_{720}= -0.30132190 \pm 2.9 \cdot 10^{-6} \) |
\(a_{721}= -0.38307149 \pm 1.2 \cdot 10^{-6} \) | \(a_{722}= -0.90640147 \pm 1.8 \cdot 10^{-6} \) | \(a_{723}= +0.97902213 \pm 1.4 \cdot 10^{-6} \) |
\(a_{724}= -0.22826555 \pm 1.8 \cdot 10^{-6} \) | \(a_{725}= +0.10839889 \pm 1.1 \cdot 10^{-6} \) | \(a_{726}= +0.69107695 \pm 2.9 \cdot 10^{-6} \) |
\(a_{727}= -0.85324421 \pm 1.6 \cdot 10^{-6} \) | \(a_{728}= -0.31523255 \pm 3.5 \cdot 10^{-6} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -1.53816114 \pm 1.6 \cdot 10^{-6} \) | \(a_{731}= -0.32312269 \pm 1.3 \cdot 10^{-6} \) | \(a_{732}= +0.33903542 \pm 3.3 \cdot 10^{-6} \) |
\(a_{733}= +1.00847580 \pm 1.3 \cdot 10^{-6} \) | \(a_{734}= -0.59417060 \pm 1.4 \cdot 10^{-6} \) | \(a_{735}= -0.05972976 \pm 1.3 \cdot 10^{-6} \) |
\(a_{736}= +1.34272398 \pm 1.4 \cdot 10^{-6} \) | \(a_{737}= +0.08565747 \pm 1.2 \cdot 10^{-6} \) | \(a_{738}= -0.11668021 \pm 2.8 \cdot 10^{-6} \) |
\(a_{739}= -1.25675231 \pm 1.5 \cdot 10^{-6} \) | \(a_{740}= +0.53549419 \pm 1.9 \cdot 10^{-6} \) | \(a_{741}= -0.36754883 \pm 2.9 \cdot 10^{-6} \) |
\(a_{742}= -0.45623792 \pm 3.2 \cdot 10^{-6} \) | \(a_{743}= +1.15751042 \pm 1.4 \cdot 10^{-6} \) | \(a_{744}= +0.52992415 \pm 3.5 \cdot 10^{-6} \) |
\(a_{745}= -0.84206306 \pm 1.2 \cdot 10^{-6} \) | \(a_{746}= -0.76677256 \pm 2.2 \cdot 10^{-6} \) | \(a_{747}= -0.18143063 \pm 1.3 \cdot 10^{-6} \) |
\(a_{748}= -0.02841445 \pm 1.6 \cdot 10^{-6} \) | \(a_{749}= -0.56049098 \pm 1.6 \cdot 10^{-6} \) | \(a_{750}= +0.74499467 \pm 2.9 \cdot 10^{-6} \) |
\(a_{751}= +0.62178794 \pm 1.5 \cdot 10^{-6} \) | \(a_{752}= +0.63243239 \pm 2.1 \cdot 10^{-6} \) | \(a_{753}= +0.78211456 \pm 1.1 \cdot 10^{-6} \) |
\(a_{754}= +0.35088440 \pm 1.4 \cdot 10^{-6} \) | \(a_{755}= +0.62588967 \pm 1.5 \cdot 10^{-6} \) | \(a_{756}= +0.03332916 \pm 1.9 \cdot 10^{-6} \) |
\(a_{757}= +1.07750756 \pm 1.4 \cdot 10^{-6} \) | \(a_{758}= +1.45135559 \pm 1.2 \cdot 10^{-6} \) | \(a_{759}= +0.08505639 \pm 2.7 \cdot 10^{-6} \) |
\(a_{760}= +0.23661367 \pm 1.2 \cdot 10^{-6} \) | \(a_{761}= -0.14666197 \pm 1.6 \cdot 10^{-6} \) | \(a_{762}= +0.37248604 \pm 3.4 \cdot 10^{-6} \) |
\(a_{763}= +0.55086053 \pm 1.5 \cdot 10^{-6} \) | \(a_{764}= -0.19476939 \pm 2.6 \cdot 10^{-6} \) | \(a_{765}= -0.15993353 \pm 2.8 \cdot 10^{-6} \) |
\(a_{766}= +1.87190915 \pm 2.1 \cdot 10^{-6} \) | \(a_{767}= +0.97482269 \pm 1.3 \cdot 10^{-6} \) | \(a_{768}= -0.65245469 \pm 1.5 \cdot 10^{-6} \) |
\(a_{769}= +0.64988258 \pm 1.6 \cdot 10^{-6} \) | \(a_{770}= -0.03093724 \pm 4.3 \cdot 10^{-6} \) | \(a_{771}= -0.56846190 \pm 1.3 \cdot 10^{-6} \) |
\(a_{772}= -0.91201931 \pm 2.0 \cdot 10^{-6} \) | \(a_{773}= +0.97480478 \pm 1.3 \cdot 10^{-6} \) | \(a_{774}= +0.19631044 \pm 3.2 \cdot 10^{-6} \) |
\(a_{775}= -0.66715836 \pm 1.3 \cdot 10^{-6} \) | \(a_{776}= -0.75875302 \pm 1.1 \cdot 10^{-6} \) | \(a_{777}= +0.35216033 \pm 1.3 \cdot 10^{-6} \) |
\(a_{778}= -0.90498199 \pm 1.4 \cdot 10^{-6} \) | \(a_{779}= +0.14476144 \pm 9.3 \cdot 10^{-7} \) | \(a_{780}= +0.24421747 \pm 4.8 \cdot 10^{-6} \) |
\(a_{781}= +0.13047943 \pm 1.2 \cdot 10^{-6} \) | \(a_{782}= +1.25925838 \pm 1.0 \cdot 10^{-6} \) | \(a_{783}= +0.04386730 \pm 1.5 \cdot 10^{-6} \) |
\(a_{784}= -0.17832183 \pm 1.6 \cdot 10^{-6} \) | \(a_{785}= +0.37642820 \pm 1.6 \cdot 10^{-6} \) | \(a_{786}= +0.09062183 \pm 2.9 \cdot 10^{-6} \) |
\(a_{787}= -1.08510572 \pm 1.1 \cdot 10^{-6} \) | \(a_{788}= +0.06781900 \pm 1.2 \cdot 10^{-6} \) | \(a_{789}= -0.48170231 \pm 1.4 \cdot 10^{-6} \) |
\(a_{790}= -0.73539480 \pm 1.1 \cdot 10^{-6} \) | \(a_{791}= -0.26878259 \pm 1.0 \cdot 10^{-6} \) | \(a_{792}= -0.02041262 \pm 3.3 \cdot 10^{-6} \) |
\(a_{793}= +1.63374052 \pm 1.5 \cdot 10^{-6} \) | \(a_{794}= -0.69965680 \pm 1.9 \cdot 10^{-6} \) | \(a_{795}= -0.41794641 \pm 2.9 \cdot 10^{-6} \) |
\(a_{796}= -0.56732858 \pm 1.6 \cdot 10^{-6} \) | \(a_{797}= +0.89011310 \pm 1.2 \cdot 10^{-6} \) | \(a_{798}= -0.13159577 \pm 3.1 \cdot 10^{-6} \) |
\(a_{799}= +0.33567804 \pm 1.2 \cdot 10^{-6} \) | \(a_{800}= +0.40568958 \pm 1.1 \cdot 10^{-6} \) | \(a_{801}= -0.50939353 \pm 1.2 \cdot 10^{-6} \) |
\(a_{802}= -0.06043323 \pm 1.6 \cdot 10^{-6} \) | \(a_{803}= -0.16463285 \pm 1.1 \cdot 10^{-6} \) | \(a_{804}= -0.24209580 \pm 3.4 \cdot 10^{-6} \) |
\(a_{805}= +0.43081944 \pm 2.7 \cdot 10^{-6} \) | \(a_{806}= -2.15957438 \pm 1.6 \cdot 10^{-6} \) | \(a_{807}= -0.95156044 \pm 1.3 \cdot 10^{-6} \) |
\(a_{808}= -0.17580569 \pm 1.9 \cdot 10^{-6} \) | \(a_{809}= +0.13144750 \pm 1.5 \cdot 10^{-6} \) | \(a_{810}= +0.09716626 \pm 3.0 \cdot 10^{-6} \) |
\(a_{811}= +1.35165408 \pm 1.4 \cdot 10^{-6} \) | \(a_{812}= +0.03947563 \pm 3.5 \cdot 10^{-6} \) | \(a_{813}= +0.40540805 \pm 1.2 \cdot 10^{-6} \) |
\(a_{814}= +0.18240272 \pm 1.3 \cdot 10^{-6} \) | \(a_{815}= +0.77186417 \pm 1.1 \cdot 10^{-6} \) | \(a_{816}= -0.47747791 \pm 3.1 \cdot 10^{-6} \) |
\(a_{817}= -0.24355615 \pm 1.5 \cdot 10^{-6} \) | \(a_{818}= -0.53587665 \pm 1.2 \cdot 10^{-6} \) | \(a_{819}= +0.16060623 \pm 1.5 \cdot 10^{-6} \) |
\(a_{820}= -0.09618660 \pm 1.4 \cdot 10^{-6} \) | \(a_{821}= -1.57556222 \pm 1.1 \cdot 10^{-6} \) | \(a_{822}= -1.17157585 \pm 2.9 \cdot 10^{-6} \) |
\(a_{823}= -0.40379470 \pm 1.1 \cdot 10^{-6} \) | \(a_{824}= -0.66309577 \pm 1.8 \cdot 10^{-6} \) | \(a_{825}= +0.02569887 \pm 2.6 \cdot 10^{-6} \) |
\(a_{826}= +0.34902178 \pm 2.7 \cdot 10^{-6} \) | \(a_{827}= +1.23321808 \pm 1.7 \cdot 10^{-6} \) | \(a_{828}= -0.24039694 \pm 3.4 \cdot 10^{-6} \) |
\(a_{829}= +0.81838077 \pm 1.1 \cdot 10^{-6} \) | \(a_{830}= -0.47598124 \pm 1.6 \cdot 10^{-6} \) | \(a_{831}= +0.60462248 \pm 1.2 \cdot 10^{-6} \) |
\(a_{832}= -0.27803154 \pm 9.4 \cdot 10^{-7} \) | \(a_{833}= -0.09464841 \pm 1.4 \cdot 10^{-6} \) | \(a_{834}= +0.71484712 \pm 3.2 \cdot 10^{-6} \) |
\(a_{835}= -0.32694860 \pm 1.0 \cdot 10^{-6} \) | \(a_{836}= -0.02141761 \pm 2.1 \cdot 10^{-6} \) | \(a_{837}= -0.26998836 \pm 1.5 \cdot 10^{-6} \) |
\(a_{838}= -1.01593565 \pm 1.6 \cdot 10^{-6} \) | \(a_{839}= +1.53241938 \pm 1.5 \cdot 10^{-6} \) | \(a_{840}= -0.10339206 \pm 3.3 \cdot 10^{-6} \) |
\(a_{841}= -0.94804281 \pm 1.7 \cdot 10^{-6} \) | \(a_{842}= +1.25108270 \pm 1.3 \cdot 10^{-6} \) | \(a_{843}= -0.51895230 \pm 1.7 \cdot 10^{-6} \) |
\(a_{844}= -0.01890375 \pm 1.6 \cdot 10^{-6} \) | \(a_{845}= +0.45264791 \pm 1.4 \cdot 10^{-6} \) | \(a_{846}= -0.20393834 \pm 3.1 \cdot 10^{-6} \) |
\(a_{847}= +0.37465319 \pm 1.2 \cdot 10^{-6} \) | \(a_{848}= -1.24776949 \pm 2.0 \cdot 10^{-6} \) | \(a_{849}= -0.63033348 \pm 1.2 \cdot 10^{-6} \) |
\(a_{850}= +0.38047135 \pm 1.2 \cdot 10^{-6} \) | \(a_{851}= -2.54006586 \pm 1.4 \cdot 10^{-6} \) | \(a_{852}= -0.36877719 \pm 3.8 \cdot 10^{-6} \) |
\(a_{853}= +0.14970211 \pm 1.5 \cdot 10^{-6} \) | \(a_{854}= +0.58493819 \pm 3.1 \cdot 10^{-6} \) | \(a_{855}= -0.12055110 \pm 2.7 \cdot 10^{-6} \) |
\(a_{856}= -0.97020846 \pm 2.3 \cdot 10^{-6} \) | \(a_{857}= +1.32810174 \pm 1.3 \cdot 10^{-6} \) | \(a_{858}= +0.08318658 \pm 4.5 \cdot 10^{-6} \) |
\(a_{859}= -0.94343738 \pm 1.4 \cdot 10^{-6} \) | \(a_{860}= +0.16183065 \pm 2.3 \cdot 10^{-6} \) | \(a_{861}= -0.06325578 \pm 1.1 \cdot 10^{-6} \) |
\(a_{862}= +0.36585269 \pm 1.5 \cdot 10^{-6} \) | \(a_{863}= -0.11014046 \pm 1.5 \cdot 10^{-6} \) | \(a_{864}= +0.16417611 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= +0.13378501 \pm 1.6 \cdot 10^{-6} \) | \(a_{866}= +1.04040151 \pm 1.3 \cdot 10^{-6} \) | \(a_{867}= +0.32391788 \pm 1.3 \cdot 10^{-6} \) |
\(a_{868}= -0.24295911 \pm 3.5 \cdot 10^{-6} \) | \(a_{869}= -0.07871096 \pm 9.1 \cdot 10^{-7} \) | \(a_{870}= +0.11508539 \pm 4.5 \cdot 10^{-6} \) |
\(a_{871}= -1.16660883 \pm 1.6 \cdot 10^{-6} \) | \(a_{872}= +0.95353818 \pm 2.1 \cdot 10^{-6} \) | \(a_{873}= +0.38657322 \pm 9.1 \cdot 10^{-7} \) |
\(a_{874}= +0.94917544 \pm 1.4 \cdot 10^{-6} \) | \(a_{875}= +0.40388358 \pm 1.2 \cdot 10^{-6} \) | \(a_{876}= +0.46530584 \pm 3.3 \cdot 10^{-6} \) |
\(a_{877}= +0.33212475 \pm 1.5 \cdot 10^{-6} \) | \(a_{878}= +0.32268648 \pm 1.9 \cdot 10^{-6} \) | \(a_{879}= +0.87701009 \pm 1.3 \cdot 10^{-6} \) |
\(a_{880}= -0.08461057 \pm 1.5 \cdot 10^{-6} \) | \(a_{881}= +0.23078959 \pm 1.3 \cdot 10^{-6} \) | \(a_{882}= +0.05750284 \pm 1.7 \cdot 10^{-6} \) |
\(a_{883}= -0.39212231 \pm 1.5 \cdot 10^{-6} \) | \(a_{884}= +0.38698962 \pm 8.6 \cdot 10^{-7} \) | \(a_{885}= +0.31972879 \pm 2.4 \cdot 10^{-6} \) |
\(a_{886}= +0.18397733 \pm 1.8 \cdot 10^{-6} \) | \(a_{887}= +0.78522109 \pm 1.1 \cdot 10^{-6} \) | \(a_{888}= +0.60958863 \pm 3.3 \cdot 10^{-6} \) |
\(a_{889}= +0.20193567 \pm 1.7 \cdot 10^{-6} \) | \(a_{890}= -1.33638830 \pm 1.9 \cdot 10^{-6} \) | \(a_{891}= +0.01039992 \pm 1.3 \cdot 10^{-6} \) |
\(a_{892}= -0.37827828 \pm 2.0 \cdot 10^{-6} \) | \(a_{893}= +0.25301984 \pm 1.0 \cdot 10^{-6} \) | \(a_{894}= +0.81066825 \pm 3.0 \cdot 10^{-6} \) |
\(a_{895}= -0.81101079 \pm 1.0 \cdot 10^{-6} \) | \(a_{896}= -0.42198083 \pm 1.5 \cdot 10^{-6} \) | \(a_{897}= -1.15842237 \pm 2.9 \cdot 10^{-6} \) |
\(a_{898}= +2.04502595 \pm 1.5 \cdot 10^{-6} \) | \(a_{899}= -0.31977886 \pm 1.7 \cdot 10^{-6} \) | \(a_{900}= -0.07263334 \pm 3.3 \cdot 10^{-6} \) |
\(a_{901}= -0.66228237 \pm 1.5 \cdot 10^{-6} \) | \(a_{902}= -0.03276356 \pm 1.0 \cdot 10^{-6} \) | \(a_{903}= +0.10642568 \pm 1.5 \cdot 10^{-6} \) |
\(a_{904}= -0.46526199 \pm 1.6 \cdot 10^{-6} \) | \(a_{905}= -0.36077339 \pm 9.3 \cdot 10^{-7} \) | \(a_{906}= -0.60255449 \pm 3.2 \cdot 10^{-6} \) |
\(a_{907}= -1.04727377 \pm 1.2 \cdot 10^{-6} \) | \(a_{908}= +0.48572779 \pm 1.7 \cdot 10^{-6} \) | \(a_{909}= +0.08957035 \pm 1.5 \cdot 10^{-6} \) |
\(a_{910}= +0.42134867 \pm 4.5 \cdot 10^{-6} \) | \(a_{911}= +1.21319502 \pm 1.1 \cdot 10^{-6} \) | \(a_{912}= -0.35990255 \pm 3.0 \cdot 10^{-6} \) |
\(a_{913}= -0.05094534 \pm 1.2 \cdot 10^{-6} \) | \(a_{914}= -1.81001713 \pm 2.0 \cdot 10^{-6} \) | \(a_{915}= +0.53584502 \pm 2.7 \cdot 10^{-6} \) |
\(a_{916}= +0.75360192 \pm 2.3 \cdot 10^{-6} \) | \(a_{917}= +0.04912877 \pm 1.2 \cdot 10^{-6} \) | \(a_{918}= +0.15397069 \pm 3.1 \cdot 10^{-6} \) |
\(a_{919}= +0.03521533 \pm 1.8 \cdot 10^{-6} \) | \(a_{920}= +0.74574735 \pm 1.9 \cdot 10^{-6} \) | \(a_{921}= -0.27494914 \pm 1.8 \cdot 10^{-6} \) |
\(a_{922}= +1.12137719 \pm 1.7 \cdot 10^{-6} \) | \(a_{923}= -1.77705986 \pm 1.5 \cdot 10^{-6} \) | \(a_{924}= +0.00935876 \pm 3.3 \cdot 10^{-6} \) |
\(a_{925}= -0.76745352 \pm 1.4 \cdot 10^{-6} \) | \(a_{926}= +1.03657415 \pm 1.4 \cdot 10^{-6} \) | \(a_{927}= +0.33783730 \pm 1.2 \cdot 10^{-6} \) |
\(a_{928}= +0.19445301 \pm 1.5 \cdot 10^{-6} \) | \(a_{929}= +0.28980161 \pm 1.8 \cdot 10^{-6} \) | \(a_{930}= -0.70831148 \pm 4.6 \cdot 10^{-6} \) |
\(a_{931}= -0.07134195 \pm 1.4 \cdot 10^{-6} \) | \(a_{932}= -0.60241586 \pm 1.5 \cdot 10^{-6} \) | \(a_{933}= +0.30433969 \pm 1.6 \cdot 10^{-6} \) |
\(a_{934}= -0.39705387 \pm 1.3 \cdot 10^{-6} \) | \(a_{935}= -0.04490900 \pm 9.6 \cdot 10^{-7} \) | \(a_{936}= +0.27800898 \pm 3.5 \cdot 10^{-6} \) |
\(a_{937}= +0.46912781 \pm 1.4 \cdot 10^{-6} \) | \(a_{938}= -0.41768815 \pm 3.1 \cdot 10^{-6} \) | \(a_{939}= +0.60301329 \pm 1.8 \cdot 10^{-6} \) |
\(a_{940}= -0.16811879 \pm 2.0 \cdot 10^{-6} \) | \(a_{941}= -0.94697858 \pm 1.5 \cdot 10^{-6} \) | \(a_{942}= -0.36239375 \pm 3.1 \cdot 10^{-6} \) |
\(a_{943}= +0.45625199 \pm 1.5 \cdot 10^{-6} \) | \(a_{944}= +0.95454302 \pm 1.2 \cdot 10^{-6} \) | \(a_{945}= +0.05267669 \pm 1.3 \cdot 10^{-6} \) |
\(a_{946}= +0.05512357 \pm 1.7 \cdot 10^{-6} \) | \(a_{947}= -1.39754609 \pm 1.3 \cdot 10^{-6} \) | \(a_{948}= +0.22246271 \pm 2.9 \cdot 10^{-6} \) |
\(a_{949}= +2.24221117 \pm 1.5 \cdot 10^{-6} \) | \(a_{950}= +0.28678313 \pm 1.3 \cdot 10^{-6} \) | \(a_{951}= +1.12141492 \pm 1.6 \cdot 10^{-6} \) |
\(a_{952}= -0.16383616 \pm 3.4 \cdot 10^{-6} \) | \(a_{953}= +0.16670537 \pm 1.6 \cdot 10^{-6} \) | \(a_{954}= +0.40236402 \pm 3.2 \cdot 10^{-6} \) |
\(a_{955}= -0.30783275 \pm 1.7 \cdot 10^{-6} \) | \(a_{956}= +0.25807975 \pm 1.6 \cdot 10^{-6} \) | \(a_{957}= +0.01231785 \pm 2.8 \cdot 10^{-6} \) |
\(a_{958}= -0.49280969 \pm 1.6 \cdot 10^{-6} \) | \(a_{959}= -0.63514582 \pm 1.2 \cdot 10^{-6} \) | \(a_{960}= -0.09119062 \pm 2.6 \cdot 10^{-6} \) |
\(a_{961}= +0.96813031 \pm 1.1 \cdot 10^{-6} \) | \(a_{962}= -2.48422722 \pm 1.5 \cdot 10^{-6} \) | \(a_{963}= +0.49430658 \pm 1.6 \cdot 10^{-6} \) |
\(a_{964}= -0.77697746 \pm 1.7 \cdot 10^{-6} \) | \(a_{965}= -1.44144527 \pm 1.3 \cdot 10^{-6} \) | \(a_{966}= -0.41475710 \pm 3.1 \cdot 10^{-6} \) |
\(a_{967}= -0.54636033 \pm 1.1 \cdot 10^{-6} \) | \(a_{968}= +0.64852372 \pm 1.6 \cdot 10^{-6} \) | \(a_{969}= -0.19102656 \pm 2.9 \cdot 10^{-6} \) |
\(a_{970}= +1.01417058 \pm 9.2 \cdot 10^{-7} \) | \(a_{971}= +0.73930739 \pm 1.0 \cdot 10^{-6} \) | \(a_{972}= -0.02939356 \pm 1.9 \cdot 10^{-6} \) |
\(a_{973}= +0.38753970 \pm 1.5 \cdot 10^{-6} \) | \(a_{974}= +0.22965236 \pm 1.3 \cdot 10^{-6} \) | \(a_{975}= -0.35000483 \pm 2.9 \cdot 10^{-6} \) |
\(a_{976}= +1.59975309 \pm 1.1 \cdot 10^{-6} \) | \(a_{977}= +1.26795033 \pm 1.3 \cdot 10^{-6} \) | \(a_{978}= -0.74308659 \pm 3.1 \cdot 10^{-6} \) |
\(a_{979}= -0.14303665 \pm 1.0 \cdot 10^{-6} \) | \(a_{980}= +0.04740309 \pm 3.3 \cdot 10^{-6} \) | \(a_{981}= -0.48581332 \pm 1.5 \cdot 10^{-6} \) |
\(a_{982}= -1.92165941 \pm 1.1 \cdot 10^{-6} \) | \(a_{983}= +0.50559193 \pm 1.4 \cdot 10^{-6} \) | \(a_{984}= -0.10949560 \pm 3.1 \cdot 10^{-6} \) |
\(a_{985}= +0.10718784 \pm 1.0 \cdot 10^{-6} \) | \(a_{986}= +0.18236554 \pm 1.1 \cdot 10^{-6} \) | \(a_{987}= -0.11056099 \pm 1.4 \cdot 10^{-6} \) |
\(a_{988}= +0.29169633 \pm 1.4 \cdot 10^{-6} \) | \(a_{989}= -0.76762831 \pm 1.8 \cdot 10^{-6} \) | \(a_{990}= +0.02728408 \pm 4.3 \cdot 10^{-6} \) |
\(a_{991}= -1.22202209 \pm 1.5 \cdot 10^{-6} \) | \(a_{992}= -1.19679225 \pm 1.4 \cdot 10^{-6} \) | \(a_{993}= -0.24740336 \pm 1.3 \cdot 10^{-6} \) |
\(a_{994}= -0.63625169 \pm 3.5 \cdot 10^{-6} \) | \(a_{995}= -0.89666204 \pm 1.0 \cdot 10^{-6} \) | \(a_{996}= +0.14398807 \pm 3.3 \cdot 10^{-6} \) |
\(a_{997}= -0.90464200 \pm 1.5 \cdot 10^{-6} \) | \(a_{998}= +0.09225978 \pm 1.6 \cdot 10^{-6} \) | \(a_{999}= -0.31057622 \pm 1.3 \cdot 10^{-6} \) |
\(a_{1000}= +0.69912144 \pm 1.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000