Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(5.71234657180871979307804174412 \pm 10 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.71084109 \pm 1.7 \cdot 10^{-7} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +1.92697722 \pm 2.0 \cdot 10^{-7} \) | \(a_{5}= -1.77860173 \pm 1.3 \cdot 10^{-7} \) | \(a_{6}= -0.98775456 \pm 1.8 \cdot 10^{-7} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +1.58591072 \pm 2.0 \cdot 10^{-7} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -3.04290492 \pm 1.6 \cdot 10^{-7} \) | \(a_{11}= -0.80584133 \pm 1.3 \cdot 10^{-7} \) | \(a_{12}= -1.11254082 \pm 2.1 \cdot 10^{-7} \) |
\(a_{13}= -1.13552203 \pm 1.5 \cdot 10^{-7} \) | \(a_{14}= -0.64663715 \pm 1.8 \cdot 10^{-7} \) | \(a_{15}= +1.02687619 \pm 1.4 \cdot 10^{-7} \) |
\(a_{16}= +0.78626400 \pm 1.6 \cdot 10^{-7} \) | \(a_{17}= +0.41665562 \pm 1.5 \cdot 10^{-7} \) | \(a_{18}= +0.57028036 \pm 1.8 \cdot 10^{-7} \) |
\(a_{19}= -0.29013871 \pm 1.4 \cdot 10^{-7} \) | \(a_{20}= -3.42732503 \pm 1.9 \cdot 10^{-7} \) | \(a_{21}= +0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= -1.37866646 \pm 1.7 \cdot 10^{-7} \) | \(a_{23}= +1.48468768 \pm 1.4 \cdot 10^{-7} \) | \(a_{24}= -0.91562598 \pm 2.1 \cdot 10^{-7} \) |
\(a_{25}= +2.16342412 \pm 1.3 \cdot 10^{-7} \) | \(a_{26}= -1.94269775 \pm 1.6 \cdot 10^{-7} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.72832893 \pm 2.1 \cdot 10^{-7} \) | \(a_{29}= -0.34538544 \pm 1.5 \cdot 10^{-7} \) | \(a_{30}= +1.75682198 \pm 3.2 \cdot 10^{-7} \) |
\(a_{31}= -0.23212634 \pm 1.6 \cdot 10^{-7} \) | \(a_{32}= -0.24073797 \pm 1.5 \cdot 10^{-7} \) | \(a_{33}= +0.46525271 \pm 1.4 \cdot 10^{-7} \) |
\(a_{34}= +0.71283156 \pm 1.4 \cdot 10^{-7} \) | \(a_{35}= +0.67224827 \pm 1.4 \cdot 10^{-7} \) | \(a_{36}= +0.64232574 \pm 2.1 \cdot 10^{-7} \) |
\(a_{37}= -0.50402306 \pm 1.3 \cdot 10^{-7} \) | \(a_{38}= -0.49638122 \pm 1.7 \cdot 10^{-7} \) | \(a_{39}= +0.65559395 \pm 1.6 \cdot 10^{-7} \) |
\(a_{40}= -2.82070356 \pm 1.8 \cdot 10^{-7} \) | \(a_{41}= +1.11855956 \pm 1.1 \cdot 10^{-7} \) | \(a_{42}= +0.37333613 \pm 1.8 \cdot 10^{-7} \) |
\(a_{43}= -1.50555094 \pm 1.5 \cdot 10^{-7} \) | \(a_{44}= -1.55283790 \pm 2.0 \cdot 10^{-7} \) | \(a_{45}= -0.59286724 \pm 1.4 \cdot 10^{-7} \) |
\(a_{46}= +2.54006468 \pm 1.7 \cdot 10^{-7} \) | \(a_{47}= -0.27375732 \pm 1.4 \cdot 10^{-7} \) | \(a_{48}= -0.45394973 \pm 1.7 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +3.70127488 \pm 1.3 \cdot 10^{-7} \) | \(a_{51}= -0.24055624 \pm 1.6 \cdot 10^{-7} \) |
\(a_{52}= -2.18812509 \pm 1.9 \cdot 10^{-7} \) | \(a_{53}= -0.51957259 \pm 1.5 \cdot 10^{-7} \) | \(a_{54}= -0.32925152 \pm 1.8 \cdot 10^{-7} \) |
\(a_{55}= +1.43327079 \pm 1.2 \cdot 10^{-7} \) | \(a_{56}= -0.59941791 \pm 2.1 \cdot 10^{-7} \) | \(a_{57}= +0.16751166 \pm 1.5 \cdot 10^{-7} \) |
\(a_{58}= -0.59089960 \pm 1.4 \cdot 10^{-7} \) | \(a_{59}= -1.78362849 \pm 1.0 \cdot 10^{-7} \) | \(a_{60}= +1.97876703 \pm 3.5 \cdot 10^{-7} \) |
\(a_{61}= +0.01020141 \pm 1.4 \cdot 10^{-7} \) | \(a_{62}= -0.39713127 \pm 1.8 \cdot 10^{-7} \) | \(a_{63}= -0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= -1.19812840 \pm 1.3 \cdot 10^{-7} \) | \(a_{65}= +2.01964145 \pm 1.4 \cdot 10^{-7} \) | \(a_{66}= +0.79597345 \pm 3.1 \cdot 10^{-7} \) |
\(a_{67}= -0.44318819 \pm 1.5 \cdot 10^{-7} \) | \(a_{68}= +0.80288590 \pm 1.3 \cdot 10^{-7} \) | \(a_{69}= -0.85718483 \pm 1.5 \cdot 10^{-7} \) |
\(a_{70}= +1.15010996 \pm 3.2 \cdot 10^{-7} \) | \(a_{71}= +0.42073871 \pm 1.8 \cdot 10^{-7} \) | \(a_{72}= +0.52863691 \pm 2.1 \cdot 10^{-7} \) |
\(a_{73}= -0.91237501 \pm 1.3 \cdot 10^{-7} \) | \(a_{74}= -0.86230336 \pm 1.5 \cdot 10^{-7} \) | \(a_{75}= -1.24905350 \pm 1.5 \cdot 10^{-7} \) |
\(a_{76}= -0.55909068 \pm 1.7 \cdot 10^{-7} \) | \(a_{77}= +0.30457939 \pm 1.4 \cdot 10^{-7} \) | \(a_{78}= +1.12161707 \pm 3.4 \cdot 10^{-7} \) |
\(a_{79}= -0.51483231 \pm 9.7 \cdot 10^{-8} \) | \(a_{80}= -1.39845051 \pm 1.7 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +1.91367765 \pm 1.2 \cdot 10^{-7} \) | \(a_{83}= +0.78902377 \pm 1.3 \cdot 10^{-7} \) | \(a_{84}= +0.42050090 \pm 2.1 \cdot 10^{-7} \) |
\(a_{85}= -0.74106442 \pm 1.0 \cdot 10^{-7} \) | \(a_{86}= -2.57575840 \pm 2.0 \cdot 10^{-7} \) | \(a_{87}= +0.19940838 \pm 1.6 \cdot 10^{-7} \) |
\(a_{88}= -1.27799241 \pm 1.9 \cdot 10^{-7} \) | \(a_{89}= -1.05012923 \pm 1.2 \cdot 10^{-7} \) | \(a_{90}= -1.01430164 \pm 3.2 \cdot 10^{-7} \) |
\(a_{91}= +0.42918699 \pm 1.6 \cdot 10^{-7} \) | \(a_{92}= +2.86095934 \pm 2.1 \cdot 10^{-7} \) | \(a_{93}= +0.13401820 \pm 1.7 \cdot 10^{-7} \) |
\(a_{94}= -0.46835527 \pm 1.7 \cdot 10^{-7} \) | \(a_{95}= +0.51604121 \pm 1.0 \cdot 10^{-7} \) | \(a_{96}= +0.13899013 \pm 1.6 \cdot 10^{-7} \) |
\(a_{97}= +0.81311644 \pm 9.2 \cdot 10^{-8} \) | \(a_{98}= +0.24440587 \pm 1.8 \cdot 10^{-7} \) | \(a_{99}= -0.26861378 \pm 1.4 \cdot 10^{-7} \) |
\(a_{100}= +4.16886902 \pm 1.4 \cdot 10^{-7} \) | \(a_{101}= +1.16644407 \pm 1.6 \cdot 10^{-7} \) | \(a_{102}= -0.41155349 \pm 3.3 \cdot 10^{-7} \) |
\(a_{103}= -1.07643556 \pm 1.2 \cdot 10^{-7} \) | \(a_{104}= -1.80083657 \pm 1.9 \cdot 10^{-7} \) | \(a_{105}= -0.38812272 \pm 1.4 \cdot 10^{-7} \) |
\(a_{106}= -0.88890614 \pm 2.0 \cdot 10^{-7} \) | \(a_{107}= +0.22571428 \pm 1.6 \cdot 10^{-7} \) | \(a_{108}= -0.37084694 \pm 2.1 \cdot 10^{-7} \) |
\(a_{109}= -0.13013193 \pm 1.5 \cdot 10^{-7} \) | \(a_{110}= +2.45209856 \pm 1.4 \cdot 10^{-7} \) | \(a_{111}= +0.29099785 \pm 1.4 \cdot 10^{-7} \) |
\(a_{112}= -0.29717986 \pm 1.7 \cdot 10^{-7} \) | \(a_{113}= +0.92183106 \pm 1.0 \cdot 10^{-7} \) | \(a_{114}= +0.28658583 \pm 3.3 \cdot 10^{-7} \) |
\(a_{115}= -2.64066808 \pm 1.4 \cdot 10^{-7} \) | \(a_{116}= -0.66554987 \pm 1.8 \cdot 10^{-7} \) | \(a_{117}= -0.37850734 \pm 1.6 \cdot 10^{-7} \) |
\(a_{118}= -3.05150491 \pm 1.3 \cdot 10^{-7} \) | \(a_{119}= -0.15748102 \pm 1.6 \cdot 10^{-7} \) | \(a_{120}= +1.62853396 \pm 3.4 \cdot 10^{-7} \) |
\(a_{121}= -0.35061975 \pm 1.2 \cdot 10^{-7} \) | \(a_{122}= +0.01745299 \pm 1.5 \cdot 10^{-7} \) | \(a_{123}= -0.64580066 \pm 1.2 \cdot 10^{-7} \) |
\(a_{124}= -0.44730216 \pm 2.0 \cdot 10^{-7} \) | \(a_{125}= -2.06926816 \pm 1.2 \cdot 10^{-7} \) | \(a_{126}= -0.21554572 \pm 1.8 \cdot 10^{-7} \) |
\(a_{127}= +1.00409525 \pm 1.7 \cdot 10^{-7} \) | \(a_{128}= -1.80906933 \pm 1.5 \cdot 10^{-7} \) | \(a_{129}= +0.86923024 \pm 1.6 \cdot 10^{-7} \) |
\(a_{130}= +3.45528558 \pm 1.9 \cdot 10^{-7} \) | \(a_{131}= +1.23740210 \pm 1.2 \cdot 10^{-7} \) | \(a_{132}= +0.89653138 \pm 3.4 \cdot 10^{-7} \) |
\(a_{133}= +0.10966212 \pm 1.5 \cdot 10^{-7} \) | \(a_{134}= -0.75822456 \pm 1.4 \cdot 10^{-7} \) | \(a_{135}= +0.34229206 \pm 1.4 \cdot 10^{-7} \) |
\(a_{136}= +0.66077862 \pm 1.5 \cdot 10^{-7} \) | \(a_{137}= -0.06081816 \pm 1.2 \cdot 10^{-7} \) | \(a_{138}= -1.46650703 \pm 3.3 \cdot 10^{-7} \) |
\(a_{139}= +1.55775897 \pm 1.5 \cdot 10^{-7} \) | \(a_{140}= +1.29540710 \pm 3.5 \cdot 10^{-7} \) | \(a_{141}= +0.15805386 \pm 1.5 \cdot 10^{-7} \) |
\(a_{142}= +0.71981708 \pm 1.7 \cdot 10^{-7} \) | \(a_{143}= +0.91505059 \pm 1.4 \cdot 10^{-7} \) | \(a_{144}= +0.26208800 \pm 1.7 \cdot 10^{-7} \) |
\(a_{145}= +0.61430314 \pm 1.1 \cdot 10^{-7} \) | \(a_{146}= -1.56092865 \pm 1.6 \cdot 10^{-7} \) | \(a_{147}= -0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -0.97124095 \pm 1.8 \cdot 10^{-7} \) | \(a_{149}= -0.20570413 \pm 1.3 \cdot 10^{-7} \) | \(a_{150}= -2.13693205 \pm 3.2 \cdot 10^{-7} \) |
\(a_{151}= -1.98920997 \pm 1.5 \cdot 10^{-7} \) | \(a_{152}= -0.46013408 \pm 1.8 \cdot 10^{-7} \) | \(a_{153}= +0.13888521 \pm 1.6 \cdot 10^{-7} \) |
\(a_{154}= +0.52108694 \pm 3.1 \cdot 10^{-7} \) | \(a_{155}= +0.41286030 \pm 1.5 \cdot 10^{-7} \) | \(a_{156}= +1.26331461 \pm 3.6 \cdot 10^{-7} \) |
\(a_{157}= -0.56698913 \pm 1.4 \cdot 10^{-7} \) | \(a_{158}= -0.88079628 \pm 1.2 \cdot 10^{-7} \) | \(a_{159}= +0.29997537 \pm 1.6 \cdot 10^{-7} \) |
\(a_{160}= +0.42817696 \pm 1.4 \cdot 10^{-7} \) | \(a_{161}= -0.56115920 \pm 1.5 \cdot 10^{-7} \) | \(a_{162}= +0.19009345 \pm 1.8 \cdot 10^{-7} \) |
\(a_{163}= +0.51738867 \pm 1.4 \cdot 10^{-7} \) | \(a_{164}= +2.15543879 \pm 1.5 \cdot 10^{-7} \) | \(a_{165}= -0.82749928 \pm 2.8 \cdot 10^{-7} \) |
\(a_{166}= +1.34989428 \pm 1.4 \cdot 10^{-7} \) | \(a_{167}= +1.29136262 \pm 1.1 \cdot 10^{-7} \) | \(a_{168}= +0.34607409 \pm 2.1 \cdot 10^{-7} \) |
\(a_{169}= +0.28941028 \pm 1.7 \cdot 10^{-7} \) | \(a_{170}= -1.26784345 \pm 8.8 \cdot 10^{-8} \) | \(a_{171}= -0.09671290 \pm 1.5 \cdot 10^{-7} \) |
\(a_{172}= -2.90116236 \pm 2.4 \cdot 10^{-7} \) | \(a_{173}= -0.13783124 \pm 1.7 \cdot 10^{-7} \) | \(a_{174}= +0.34115604 \pm 3.3 \cdot 10^{-7} \) |
\(a_{175}= -0.81769746 \pm 1.5 \cdot 10^{-7} \) | \(a_{176}= -0.63360403 \pm 1.6 \cdot 10^{-7} \) | \(a_{177}= +1.02977839 \pm 1.1 \cdot 10^{-7} \) |
\(a_{178}= -1.79660423 \pm 1.5 \cdot 10^{-7} \) | \(a_{179}= +0.39827586 \pm 1.3 \cdot 10^{-7} \) | \(a_{180}= -1.14244168 \pm 3.5 \cdot 10^{-7} \) |
\(a_{181}= -0.94449955 \pm 1.1 \cdot 10^{-7} \) | \(a_{182}= +0.73427073 \pm 3.4 \cdot 10^{-7} \) | \(a_{183}= -0.00588978 \pm 1.5 \cdot 10^{-7} \) |
\(a_{184}= +2.35458211 \pm 2.0 \cdot 10^{-7} \) | \(a_{185}= +0.89645628 \pm 1.5 \cdot 10^{-7} \) | \(a_{186}= +0.22928385 \pm 3.4 \cdot 10^{-7} \) |
\(a_{187}= -0.33575832 \pm 1.3 \cdot 10^{-7} \) | \(a_{188}= -0.52752412 \pm 2.1 \cdot 10^{-7} \) | \(a_{189}= +0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= +0.88286450 \pm 1.0 \cdot 10^{-7} \) | \(a_{191}= -0.74427607 \pm 1.6 \cdot 10^{-7} \) | \(a_{192}= +0.69173976 \pm 1.4 \cdot 10^{-7} \) |
\(a_{193}= +0.15815581 \pm 1.6 \cdot 10^{-7} \) | \(a_{194}= +1.39111301 \pm 8.7 \cdot 10^{-8} \) | \(a_{195}= -1.16604054 \pm 3.0 \cdot 10^{-7} \) |
\(a_{196}= +0.27528246 \pm 2.1 \cdot 10^{-7} \) | \(a_{197}= -1.53719463 \pm 1.1 \cdot 10^{-7} \) | \(a_{198}= -0.45955549 \pm 3.1 \cdot 10^{-7} \) |
\(a_{199}= -1.61968702 \pm 1.0 \cdot 10^{-7} \) | \(a_{200}= +3.43099752 \pm 1.2 \cdot 10^{-7} \) | \(a_{201}= +0.25587482 \pm 1.6 \cdot 10^{-7} \) |
\(a_{202}= +1.99560045 \pm 1.6 \cdot 10^{-7} \) | \(a_{203}= +0.13054342 \pm 1.6 \cdot 10^{-7} \) | \(a_{204}= -0.46354639 \pm 3.6 \cdot 10^{-7} \) |
\(a_{205}= -1.98947197 \pm 9.7 \cdot 10^{-8} \) | \(a_{206}= -1.84161019 \pm 1.6 \cdot 10^{-7} \) | \(a_{207}= +0.49489589 \pm 1.5 \cdot 10^{-7} \) |
\(a_{208}= -0.89282009 \pm 1.4 \cdot 10^{-7} \) | \(a_{209}= +0.23380576 \pm 1.4 \cdot 10^{-7} \) | \(a_{210}= -0.66401629 \pm 3.2 \cdot 10^{-7} \) |
\(a_{211}= +1.19080904 \pm 1.4 \cdot 10^{-7} \) | \(a_{212}= -1.00120455 \pm 2.2 \cdot 10^{-7} \) | \(a_{213}= -0.24291361 \pm 1.9 \cdot 10^{-7} \) |
\(a_{214}= +0.38616126 \pm 1.9 \cdot 10^{-7} \) | \(a_{215}= +2.67777550 \pm 1.2 \cdot 10^{-7} \) | \(a_{216}= -0.30520866 \pm 2.1 \cdot 10^{-7} \) |
\(a_{217}= +0.08773551 \pm 1.7 \cdot 10^{-7} \) | \(a_{218}= -0.22263506 \pm 1.6 \cdot 10^{-7} \) | \(a_{219}= +0.52675996 \pm 1.4 \cdot 10^{-7} \) |
\(a_{220}= +2.76188017 \pm 1.6 \cdot 10^{-7} \) | \(a_{221}= -0.47312164 \pm 1.2 \cdot 10^{-7} \) | \(a_{222}= +0.49785107 \pm 3.2 \cdot 10^{-7} \) |
\(a_{223}= -0.90288796 \pm 1.7 \cdot 10^{-7} \) | \(a_{224}= +0.09099040 \pm 1.6 \cdot 10^{-7} \) | \(a_{225}= +0.72114137 \pm 1.5 \cdot 10^{-7} \) |
\(a_{226}= +1.57710645 \pm 1.5 \cdot 10^{-7} \) | \(a_{227}= +0.39858278 \pm 1.5 \cdot 10^{-7} \) | \(a_{228}= +0.32279115 \pm 3.6 \cdot 10^{-7} \) |
\(a_{229}= +0.36584591 \pm 1.9 \cdot 10^{-7} \) | \(a_{230}= -4.51776344 \pm 1.6 \cdot 10^{-7} \) | \(a_{231}= -0.17584900 \pm 1.4 \cdot 10^{-7} \) |
\(a_{232}= -0.54775047 \pm 1.6 \cdot 10^{-7} \) | \(a_{233}= -0.95214784 \pm 1.3 \cdot 10^{-7} \) | \(a_{234}= -0.64756592 \pm 3.4 \cdot 10^{-7} \) |
\(a_{235}= +0.48690524 \pm 1.3 \cdot 10^{-7} \) | \(a_{236}= -3.43701148 \pm 1.5 \cdot 10^{-7} \) | \(a_{237}= +0.29723857 \pm 1.0 \cdot 10^{-7} \) |
\(a_{238}= -0.26942501 \pm 3.3 \cdot 10^{-7} \) | \(a_{239}= +1.55123564 \pm 1.2 \cdot 10^{-7} \) | \(a_{240}= +0.80739578 \pm 3.1 \cdot 10^{-7} \) |
\(a_{241}= +0.39529040 \pm 1.4 \cdot 10^{-7} \) | \(a_{242}= -0.59985467 \pm 1.6 \cdot 10^{-7} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.01965788 \pm 1.7 \cdot 10^{-7} \) | \(a_{245}= -0.25408596 \pm 1.4 \cdot 10^{-7} \) | \(a_{246}= -1.10486231 \pm 2.9 \cdot 10^{-7} \) |
\(a_{247}= +0.32945889 \pm 1.2 \cdot 10^{-7} \) | \(a_{248}= -0.36813164 \pm 2.0 \cdot 10^{-7} \) | \(a_{249}= -0.45554309 \pm 1.4 \cdot 10^{-7} \) |
\(a_{250}= -3.54018900 \pm 1.4 \cdot 10^{-7} \) | \(a_{251}= +1.33014759 \pm 1.2 \cdot 10^{-7} \) | \(a_{252}= -0.24277631 \pm 2.1 \cdot 10^{-7} \) |
\(a_{253}= -1.19642270 \pm 1.1 \cdot 10^{-7} \) | \(a_{254}= +1.71784741 \pm 2.3 \cdot 10^{-7} \) | \(a_{255}= +0.42785374 \pm 2.9 \cdot 10^{-7} \) |
\(a_{256}= -1.89690174 \pm 1.6 \cdot 10^{-7} \) | \(a_{257}= +1.03510564 \pm 1.3 \cdot 10^{-7} \) | \(a_{258}= +1.48711481 \pm 3.4 \cdot 10^{-7} \) |
\(a_{259}= +0.19050281 \pm 1.4 \cdot 10^{-7} \) | \(a_{260}= +3.89180308 \pm 2.0 \cdot 10^{-7} \) | \(a_{261}= -0.11512848 \pm 1.6 \cdot 10^{-7} \) |
\(a_{262}= +2.11699835 \pm 1.7 \cdot 10^{-7} \) | \(a_{263}= +0.29640246 \pm 1.4 \cdot 10^{-7} \) | \(a_{264}= +0.73784926 \pm 3.4 \cdot 10^{-7} \) |
\(a_{265}= +0.92411271 \pm 1.2 \cdot 10^{-7} \) | \(a_{266}= +0.18761447 \pm 3.3 \cdot 10^{-7} \) | \(a_{267}= +0.60629239 \pm 1.3 \cdot 10^{-7} \) |
\(a_{268}= -0.85401355 \pm 1.7 \cdot 10^{-7} \) | \(a_{269}= -1.52962198 \pm 1.3 \cdot 10^{-7} \) | \(a_{270}= +0.58560733 \pm 3.2 \cdot 10^{-7} \) |
\(a_{271}= +0.97028009 \pm 1.2 \cdot 10^{-7} \) | \(a_{272}= +0.32760132 \pm 9.8 \cdot 10^{-8} \) | \(a_{273}= -0.24779122 \pm 1.6 \cdot 10^{-7} \) |
\(a_{274}= -0.10405020 \pm 1.5 \cdot 10^{-7} \) | \(a_{275}= -1.74337658 \pm 1.2 \cdot 10^{-7} \) | \(a_{276}= -1.65177564 \pm 3.5 \cdot 10^{-7} \) |
\(a_{277}= -1.85807689 \pm 1.2 \cdot 10^{-7} \) | \(a_{278}= +2.66507805 \pm 1.8 \cdot 10^{-7} \) | \(a_{279}= -0.07737545 \pm 1.7 \cdot 10^{-7} \) |
\(a_{280}= +1.06612573 \pm 3.4 \cdot 10^{-7} \) | \(a_{281}= -1.95406056 \pm 1.7 \cdot 10^{-7} \) | \(a_{282}= +0.27040504 \pm 3.2 \cdot 10^{-7} \) |
\(a_{283}= +0.36307444 \pm 1.2 \cdot 10^{-7} \) | \(a_{284}= +0.81075392 \pm 2.2 \cdot 10^{-7} \) | \(a_{285}= -0.29793653 \pm 2.9 \cdot 10^{-7} \) |
\(a_{286}= +1.56550614 \pm 1.3 \cdot 10^{-7} \) | \(a_{287}= -0.42277577 \pm 1.2 \cdot 10^{-7} \) | \(a_{288}= -0.08024599 \pm 1.6 \cdot 10^{-7} \) |
\(a_{289}= -0.82639809 \pm 1.3 \cdot 10^{-7} \) | \(a_{290}= +1.05097505 \pm 1.4 \cdot 10^{-7} \) | \(a_{291}= -0.46945299 \pm 1.0 \cdot 10^{-7} \) |
\(a_{292}= -1.75812586 \pm 1.9 \cdot 10^{-7} \) | \(a_{293}= +0.89384509 \pm 1.3 \cdot 10^{-7} \) | \(a_{294}= -0.14110779 \pm 1.8 \cdot 10^{-7} \) |
\(a_{295}= +3.17236472 \pm 9.1 \cdot 10^{-8} \) | \(a_{296}= -0.79933557 \pm 1.7 \cdot 10^{-7} \) | \(a_{297}= +0.15508424 \pm 1.4 \cdot 10^{-7} \) |
\(a_{298}= -0.35192708 \pm 1.9 \cdot 10^{-7} \) | \(a_{299}= -1.68589557 \pm 1.6 \cdot 10^{-7} \) | \(a_{300}= -2.40689765 \pm 3.5 \cdot 10^{-7} \) |
\(a_{301}= +0.56904477 \pm 1.6 \cdot 10^{-7} \) | \(a_{302}= -3.40322215 \pm 2.0 \cdot 10^{-7} \) | \(a_{303}= -0.67344680 \pm 1.7 \cdot 10^{-7} \) |
\(a_{304}= -0.22812562 \pm 1.2 \cdot 10^{-7} \) | \(a_{305}= -0.01814424 \pm 1.0 \cdot 10^{-7} \) | \(a_{306}= +0.23761052 \pm 3.3 \cdot 10^{-7} \) |
\(a_{307}= -1.46355304 \pm 1.8 \cdot 10^{-7} \) | \(a_{308}= +0.58691756 \pm 3.4 \cdot 10^{-7} \) | \(a_{309}= +0.62148036 \pm 1.4 \cdot 10^{-7} \) |
\(a_{310}= +0.70633837 \pm 1.8 \cdot 10^{-7} \) | \(a_{311}= +0.48564064 \pm 1.7 \cdot 10^{-7} \) | \(a_{312}= +1.03971348 \pm 3.6 \cdot 10^{-7} \) |
\(a_{313}= +0.14498523 \pm 1.8 \cdot 10^{-7} \) | \(a_{314}= -0.97002830 \pm 1.5 \cdot 10^{-7} \) | \(a_{315}= +0.22408276 \pm 1.4 \cdot 10^{-7} \) |
\(a_{316}= -0.99207014 \pm 1.4 \cdot 10^{-7} \) | \(a_{317}= +1.12073889 \pm 1.7 \cdot 10^{-7} \) | \(a_{318}= +0.51321020 \pm 3.4 \cdot 10^{-7} \) |
\(a_{319}= +0.27832586 \pm 1.1 \cdot 10^{-7} \) | \(a_{320}= +2.13099326 \pm 1.1 \cdot 10^{-7} \) | \(a_{321}= -0.13031620 \pm 1.7 \cdot 10^{-7} \) |
\(a_{322}= -0.96005421 \pm 3.3 \cdot 10^{-7} \) | \(a_{323}= -0.12088792 \pm 1.8 \cdot 10^{-7} \) | \(a_{324}= +0.21410858 \pm 2.1 \cdot 10^{-7} \) |
\(a_{325}= -2.45661576 \pm 1.3 \cdot 10^{-7} \) | \(a_{326}= +0.88516979 \pm 1.1 \cdot 10^{-7} \) | \(a_{327}= +0.07513171 \pm 1.6 \cdot 10^{-7} \) |
\(a_{328}= +1.77393560 \pm 1.4 \cdot 10^{-7} \) | \(a_{329}= +0.10347054 \pm 1.5 \cdot 10^{-7} \) | \(a_{330}= -1.41571976 \pm 4.5 \cdot 10^{-7} \) |
\(a_{331}= +0.92177336 \pm 1.3 \cdot 10^{-7} \) | \(a_{332}= +1.52043083 \pm 1.5 \cdot 10^{-7} \) | \(a_{333}= -0.16800769 \pm 1.4 \cdot 10^{-7} \) |
\(a_{334}= +2.20931623 \pm 1.6 \cdot 10^{-7} \) | \(a_{335}= +0.78825528 \pm 1.5 \cdot 10^{-7} \) | \(a_{336}= +0.17157687 \pm 1.7 \cdot 10^{-7} \) |
\(a_{337}= -0.44091502 \pm 1.7 \cdot 10^{-7} \) | \(a_{338}= +0.49513500 \pm 1.6 \cdot 10^{-7} \) | \(a_{339}= -0.53221941 \pm 1.1 \cdot 10^{-7} \) |
\(a_{340}= -1.42801425 \pm 9.5 \cdot 10^{-8} \) | \(a_{341}= +0.18705700 \pm 1.2 \cdot 10^{-7} \) | \(a_{342}= -0.16546041 \pm 3.3 \cdot 10^{-7} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -2.38766937 \pm 2.4 \cdot 10^{-7} \) | \(a_{345}= +1.52459042 \pm 2.9 \cdot 10^{-7} \) |
\(a_{346}= -0.23580735 \pm 2.0 \cdot 10^{-7} \) | \(a_{347}= +0.56806012 \pm 1.5 \cdot 10^{-7} \) | \(a_{348}= +0.38425540 \pm 3.6 \cdot 10^{-7} \) |
\(a_{349}= +0.23171219 \pm 1.4 \cdot 10^{-7} \) | \(a_{350}= -1.39895041 \pm 3.2 \cdot 10^{-7} \) | \(a_{351}= +0.21853132 \pm 1.6 \cdot 10^{-7} \) |
\(a_{352}= +0.19399660 \pm 1.5 \cdot 10^{-7} \) | \(a_{353}= -1.09425223 \pm 1.1 \cdot 10^{-7} \) | \(a_{354}= +1.76178718 \pm 2.9 \cdot 10^{-7} \) |
\(a_{355}= -0.74832660 \pm 1.7 \cdot 10^{-7} \) | \(a_{356}= -2.02357510 \pm 1.5 \cdot 10^{-7} \) | \(a_{357}= +0.09092171 \pm 1.6 \cdot 10^{-7} \) |
\(a_{358}= +0.68138670 \pm 1.5 \cdot 10^{-7} \) | \(a_{359}= -0.12287810 \pm 1.0 \cdot 10^{-7} \) | \(a_{360}= -0.94023452 \pm 3.4 \cdot 10^{-7} \) |
\(a_{361}= -0.91581953 \pm 1.7 \cdot 10^{-7} \) | \(a_{362}= -1.61588864 \pm 1.5 \cdot 10^{-7} \) | \(a_{363}= +0.20243041 \pm 1.3 \cdot 10^{-7} \) |
\(a_{364}= +0.82703355 \pm 3.6 \cdot 10^{-7} \) | \(a_{365}= +1.62275177 \pm 1.4 \cdot 10^{-7} \) | \(a_{366}= -0.01007649 \pm 3.2 \cdot 10^{-7} \) |
\(a_{367}= -0.17362218 \pm 1.2 \cdot 10^{-7} \) | \(a_{368}= +1.16735647 \pm 1.6 \cdot 10^{-7} \) | \(a_{369}= +0.37285319 \pm 1.2 \cdot 10^{-7} \) |
\(a_{370}= +1.53369424 \pm 1.7 \cdot 10^{-7} \) | \(a_{371}= +0.19637998 \pm 1.6 \cdot 10^{-7} \) | \(a_{372}= +0.25825002 \pm 3.7 \cdot 10^{-7} \) |
\(a_{373}= -0.19456576 \pm 1.8 \cdot 10^{-7} \) | \(a_{374}= -0.57442914 \pm 1.6 \cdot 10^{-7} \) | \(a_{375}= +1.19469253 \pm 1.3 \cdot 10^{-7} \) |
\(a_{376}= -0.43415467 \pm 2.3 \cdot 10^{-7} \) | \(a_{377}= +0.39219277 \pm 1.1 \cdot 10^{-7} \) | \(a_{378}= +0.12444538 \pm 1.8 \cdot 10^{-7} \) |
\(a_{379}= +0.27481196 \pm 1.3 \cdot 10^{-7} \) | \(a_{380}= +0.99439965 \pm 1.3 \cdot 10^{-7} \) | \(a_{381}= -0.57971466 \pm 1.8 \cdot 10^{-7} \) |
\(a_{382}= -1.27333809 \pm 2.1 \cdot 10^{-7} \) | \(a_{383}= -1.43694598 \pm 1.8 \cdot 10^{-7} \) | \(a_{384}= +1.04446667 \pm 1.6 \cdot 10^{-7} \) |
\(a_{385}= -0.54172544 \pm 2.8 \cdot 10^{-7} \) | \(a_{386}= +0.27057946 \pm 1.7 \cdot 10^{-7} \) | \(a_{387}= -0.50185031 \pm 1.6 \cdot 10^{-7} \) |
\(a_{388}= +1.56685686 \pm 1.1 \cdot 10^{-7} \) | \(a_{389}= +0.94244110 \pm 1.2 \cdot 10^{-7} \) | \(a_{390}= -1.99491006 \pm 4.7 \cdot 10^{-7} \) |
\(a_{391}= +0.61860347 \pm 1.0 \cdot 10^{-7} \) | \(a_{392}= +0.22655867 \pm 2.1 \cdot 10^{-7} \) | \(a_{393}= -0.71441443 \pm 1.3 \cdot 10^{-7} \) |
\(a_{394}= -2.62989573 \pm 1.2 \cdot 10^{-7} \) | \(a_{395}= +0.91568165 \pm 9.9 \cdot 10^{-8} \) | \(a_{396}= -0.51761263 \pm 3.4 \cdot 10^{-7} \) |
\(a_{397}= +1.40684696 \pm 1.2 \cdot 10^{-7} \) | \(a_{398}= -2.77102711 \pm 1.3 \cdot 10^{-7} \) | \(a_{399}= -0.06331346 \pm 1.5 \cdot 10^{-7} \) |
\(a_{400}= +1.70102251 \pm 1.1 \cdot 10^{-7} \) | \(a_{401}= -1.40568354 \pm 1.4 \cdot 10^{-7} \) | \(a_{402}= +0.43776116 \pm 3.3 \cdot 10^{-7} \) |
\(a_{403}= +0.26358457 \pm 1.3 \cdot 10^{-7} \) | \(a_{404}= +2.24771116 \pm 2.0 \cdot 10^{-7} \) | \(a_{405}= -0.19762241 \pm 1.4 \cdot 10^{-7} \) |
\(a_{406}= +0.22333906 \pm 3.3 \cdot 10^{-7} \) | \(a_{407}= +0.40616261 \pm 1.2 \cdot 10^{-7} \) | \(a_{408}= -0.38150072 \pm 3.6 \cdot 10^{-7} \) |
\(a_{409}= -0.41284058 \pm 1.2 \cdot 10^{-7} \) | \(a_{410}= -3.40367038 \pm 1.2 \cdot 10^{-7} \) | \(a_{411}= +0.03511338 \pm 1.3 \cdot 10^{-7} \) |
\(a_{412}= -2.07426681 \pm 1.8 \cdot 10^{-7} \) | \(a_{413}= +0.67414820 \pm 1.1 \cdot 10^{-7} \) | \(a_{414}= +0.84668823 \pm 3.3 \cdot 10^{-7} \) |
\(a_{415}= -1.40335904 \pm 1.3 \cdot 10^{-7} \) | \(a_{416}= +0.27336326 \pm 1.4 \cdot 10^{-7} \) | \(a_{417}= -0.89937256 \pm 1.7 \cdot 10^{-7} \) |
\(a_{418}= +0.40000450 \pm 2.0 \cdot 10^{-7} \) | \(a_{419}= +0.64647513 \pm 1.5 \cdot 10^{-7} \) | \(a_{420}= -0.74790364 \pm 3.5 \cdot 10^{-7} \) |
\(a_{421}= +0.07452377 \pm 1.3 \cdot 10^{-7} \) | \(a_{422}= +2.03728504 \pm 1.5 \cdot 10^{-7} \) | \(a_{423}= -0.09125244 \pm 1.5 \cdot 10^{-7} \) |
\(a_{424}= -0.82399574 \pm 2.3 \cdot 10^{-7} \) | \(a_{425}= +0.90140283 \pm 1.3 \cdot 10^{-7} \) | \(a_{426}= -0.41558658 \pm 3.7 \cdot 10^{-7} \) |
\(a_{427}= -0.00385577 \pm 1.5 \cdot 10^{-7} \) | \(a_{428}= +0.43494628 \pm 2.4 \cdot 10^{-7} \) | \(a_{429}= -0.52830470 \pm 3.0 \cdot 10^{-7} \) |
\(a_{430}= +4.58124835 \pm 1.9 \cdot 10^{-7} \) | \(a_{431}= -0.95161078 \pm 1.4 \cdot 10^{-7} \) | \(a_{432}= -0.15131658 \pm 1.7 \cdot 10^{-7} \) |
\(a_{433}= +1.29203493 \pm 1.0 \cdot 10^{-7} \) | \(a_{434}= +0.15010151 \pm 3.4 \cdot 10^{-7} \) | \(a_{435}= -0.35466808 \pm 3.0 \cdot 10^{-7} \) |
\(a_{436}= -0.25076127 \pm 1.7 \cdot 10^{-7} \) | \(a_{437}= -0.43076536 \pm 1.2 \cdot 10^{-7} \) | \(a_{438}= +0.90120258 \pm 3.2 \cdot 10^{-7} \) |
\(a_{439}= -1.63918323 \pm 1.4 \cdot 10^{-7} \) | \(a_{440}= +2.27303952 \pm 1.5 \cdot 10^{-7} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= -0.80943594 \pm 1.0 \cdot 10^{-7} \) | \(a_{443}= +0.18017153 \pm 1.4 \cdot 10^{-7} \) | \(a_{444}= +0.56074623 \pm 3.5 \cdot 10^{-7} \) |
\(a_{445}= +1.86776166 \pm 1.4 \cdot 10^{-7} \) | \(a_{446}= -1.54469783 \pm 1.7 \cdot 10^{-7} \) | \(a_{447}= +0.11876334 \pm 1.4 \cdot 10^{-7} \) |
\(a_{448}= +0.45284997 \pm 1.4 \cdot 10^{-7} \) | \(a_{449}= -0.03327532 \pm 1.3 \cdot 10^{-7} \) | \(a_{450}= +1.23375829 \pm 3.2 \cdot 10^{-7} \) |
\(a_{451}= -0.90138152 \pm 9.5 \cdot 10^{-8} \) | \(a_{452}= +1.77634746 \pm 1.7 \cdot 10^{-7} \) | \(a_{453}= +1.14847091 \pm 1.6 \cdot 10^{-7} \) |
\(a_{454}= +0.68191180 \pm 1.4 \cdot 10^{-7} \) | \(a_{455}= -0.76335272 \pm 3.0 \cdot 10^{-7} \) | \(a_{456}= +0.26565854 \pm 3.5 \cdot 10^{-7} \) |
\(a_{457}= +0.16080357 \pm 1.6 \cdot 10^{-7} \) | \(a_{458}= +0.62590422 \pm 1.7 \cdot 10^{-7} \) | \(a_{459}= -0.08018541 \pm 1.6 \cdot 10^{-7} \) |
\(a_{460}= -5.08850724 \pm 2.2 \cdot 10^{-7} \) | \(a_{461}= -1.65628147 \pm 1.8 \cdot 10^{-7} \) | \(a_{462}= -0.30084969 \pm 3.1 \cdot 10^{-7} \) |
\(a_{463}= +1.17500603 \pm 1.3 \cdot 10^{-7} \) | \(a_{464}= -0.27156414 \pm 1.4 \cdot 10^{-7} \) | \(a_{465}= -0.23836501 \pm 3.0 \cdot 10^{-7} \) |
\(a_{466}= -1.62897365 \pm 1.4 \cdot 10^{-7} \) | \(a_{467}= +0.96900187 \pm 1.5 \cdot 10^{-7} \) | \(a_{468}= -0.72937503 \pm 3.6 \cdot 10^{-7} \) |
\(a_{469}= +0.16750939 \pm 1.6 \cdot 10^{-7} \) | \(a_{470}= +0.83301750 \pm 1.9 \cdot 10^{-7} \) | \(a_{471}= +0.32735133 \pm 1.5 \cdot 10^{-7} \) |
\(a_{472}= -2.82867555 \pm 1.5 \cdot 10^{-7} \) | \(a_{473}= +1.21323517 \pm 1.3 \cdot 10^{-7} \) | \(a_{474}= +0.50852797 \pm 2.8 \cdot 10^{-7} \) |
\(a_{475}= -0.62769308 \pm 1.3 \cdot 10^{-7} \) | \(a_{476}= -0.30346235 \pm 3.6 \cdot 10^{-7} \) | \(a_{477}= -0.17319086 \pm 1.6 \cdot 10^{-7} \) |
\(a_{478}= +2.65391767 \pm 1.5 \cdot 10^{-7} \) | \(a_{479}= +0.24396075 \pm 1.5 \cdot 10^{-7} \) | \(a_{480}= -0.24720809 \pm 3.0 \cdot 10^{-7} \) |
\(a_{481}= +0.57232929 \pm 1.4 \cdot 10^{-7} \) | \(a_{482}= +0.67627905 \pm 1.4 \cdot 10^{-7} \) | \(a_{483}= +0.32398541 \pm 1.5 \cdot 10^{-7} \) |
\(a_{484}= -0.67563627 \pm 1.8 \cdot 10^{-7} \) | \(a_{485}= -1.44621030 \pm 8.5 \cdot 10^{-8} \) | \(a_{486}= -0.10975051 \pm 1.8 \cdot 10^{-7} \) |
\(a_{487}= -0.78216018 \pm 1.3 \cdot 10^{-7} \) | \(a_{488}= +0.01617852 \pm 1.6 \cdot 10^{-7} \) | \(a_{489}= -0.29871449 \pm 1.5 \cdot 10^{-7} \) |
\(a_{490}= -0.43470070 \pm 3.2 \cdot 10^{-7} \) | \(a_{491}= +1.61256686 \pm 1.1 \cdot 10^{-7} \) | \(a_{492}= -1.24444317 \pm 3.2 \cdot 10^{-7} \) |
\(a_{493}= -0.14390679 \pm 1.6 \cdot 10^{-7} \) | \(a_{494}= +0.56365181 \pm 1.4 \cdot 10^{-7} \) | \(a_{495}= +0.47775693 \pm 2.8 \cdot 10^{-7} \) |
\(a_{496}= -0.18251258 \pm 1.6 \cdot 10^{-7} \) | \(a_{497}= -0.15902429 \pm 1.9 \cdot 10^{-7} \) | \(a_{498}= -0.77936183 \pm 3.1 \cdot 10^{-7} \) |
\(a_{499}= +0.48559546 \pm 1.4 \cdot 10^{-7} \) | \(a_{500}= -3.98743263 \pm 1.7 \cdot 10^{-7} \) | \(a_{501}= -0.74556856 \pm 1.2 \cdot 10^{-7} \) |
\(a_{502}= +2.27567115 \pm 1.4 \cdot 10^{-7} \) | \(a_{503}= -1.48684910 \pm 1.5 \cdot 10^{-7} \) | \(a_{504}= -0.19980597 \pm 2.1 \cdot 10^{-7} \) |
\(a_{505}= -2.07463945 \pm 1.0 \cdot 10^{-7} \) | \(a_{506}= -2.04688911 \pm 1.4 \cdot 10^{-7} \) | \(a_{507}= -0.16709110 \pm 1.8 \cdot 10^{-7} \) |
\(a_{508}= +1.93486868 \pm 2.8 \cdot 10^{-7} \) | \(a_{509}= -1.20987795 \pm 1.5 \cdot 10^{-7} \) | \(a_{510}= +0.73198976 \pm 4.7 \cdot 10^{-7} \) |
\(a_{511}= +0.34484534 \pm 1.4 \cdot 10^{-7} \) | \(a_{512}= -1.43622811 \pm 1.8 \cdot 10^{-7} \) | \(a_{513}= +0.05583722 \pm 1.5 \cdot 10^{-7} \) |
\(a_{514}= +1.77090125 \pm 1.3 \cdot 10^{-7} \) | \(a_{515}= +1.91455016 \pm 1.3 \cdot 10^{-7} \) | \(a_{516}= +1.67498687 \pm 3.6 \cdot 10^{-7} \) |
\(a_{517}= +0.22060496 \pm 1.1 \cdot 10^{-7} \) | \(a_{518}= +0.32592003 \pm 3.2 \cdot 10^{-7} \) | \(a_{519}= +0.07957691 \pm 1.8 \cdot 10^{-7} \) |
\(a_{520}= +3.20297104 \pm 1.9 \cdot 10^{-7} \) | \(a_{521}= -0.59674134 \pm 1.6 \cdot 10^{-7} \) | \(a_{522}= -0.19696653 \pm 3.3 \cdot 10^{-7} \) |
\(a_{523}= +0.80939723 \pm 1.4 \cdot 10^{-7} \) | \(a_{524}= +2.38444566 \pm 2.1 \cdot 10^{-7} \) | \(a_{525}= +0.47209785 \pm 1.5 \cdot 10^{-7} \) |
\(a_{526}= +0.50709751 \pm 1.6 \cdot 10^{-7} \) | \(a_{527}= -0.09671674 \pm 1.7 \cdot 10^{-7} \) | \(a_{528}= +0.36581146 \pm 3.1 \cdot 10^{-7} \) |
\(a_{529}= +1.20429750 \pm 1.4 \cdot 10^{-7} \) | \(a_{530}= +1.58100999 \pm 1.7 \cdot 10^{-7} \) | \(a_{531}= -0.59454283 \pm 1.1 \cdot 10^{-7} \) |
\(a_{532}= +0.21131641 \pm 3.6 \cdot 10^{-7} \) | \(a_{533}= -1.27014902 \pm 1.5 \cdot 10^{-7} \) | \(a_{534}= +1.03726993 \pm 3.1 \cdot 10^{-7} \) |
\(a_{535}= -0.40145581 \pm 1.3 \cdot 10^{-7} \) | \(a_{536}= -0.70285690 \pm 1.8 \cdot 10^{-7} \) | \(a_{537}= -0.22994467 \pm 1.4 \cdot 10^{-7} \) |
\(a_{538}= -2.61694012 \pm 1.4 \cdot 10^{-7} \) | \(a_{539}= -0.11512019 \pm 1.4 \cdot 10^{-7} \) | \(a_{540}= +0.65958901 \pm 3.5 \cdot 10^{-7} \) |
\(a_{541}= +0.45414502 \pm 1.4 \cdot 10^{-7} \) | \(a_{542}= +1.65999504 \pm 1.6 \cdot 10^{-7} \) | \(a_{543}= +0.54530707 \pm 1.2 \cdot 10^{-7} \) |
\(a_{544}= -0.10030483 \pm 1.1 \cdot 10^{-7} \) | \(a_{545}= +0.23145288 \pm 1.1 \cdot 10^{-7} \) | \(a_{546}= -0.42393140 \pm 3.4 \cdot 10^{-7} \) |
\(a_{547}= -0.88859914 \pm 1.1 \cdot 10^{-7} \) | \(a_{548}= -0.11719521 \pm 1.7 \cdot 10^{-7} \) | \(a_{549}= +0.00340047 \pm 1.5 \cdot 10^{-7} \) |
\(a_{550}= -2.98264028 \pm 1.5 \cdot 10^{-7} \) | \(a_{551}= +0.10020968 \pm 1.2 \cdot 10^{-7} \) | \(a_{552}= -1.35941861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{553}= +0.19458832 \pm 1.0 \cdot 10^{-7} \) | \(a_{554}= -3.17887428 \pm 1.5 \cdot 10^{-7} \) | \(a_{555}= -0.51756928 \pm 2.8 \cdot 10^{-7} \) |
\(a_{556}= +3.00176605 \pm 2.1 \cdot 10^{-7} \) | \(a_{557}= +0.31291938 \pm 1.4 \cdot 10^{-7} \) | \(a_{558}= -0.13237709 \pm 3.4 \cdot 10^{-7} \) |
\(a_{559}= +1.70958626 \pm 1.7 \cdot 10^{-7} \) | \(a_{560}= +0.52856461 \pm 3.1 \cdot 10^{-7} \) | \(a_{561}= +0.19385016 \pm 2.9 \cdot 10^{-7} \) |
\(a_{562}= -3.34308710 \pm 1.9 \cdot 10^{-7} \) | \(a_{563}= -0.40717010 \pm 1.0 \cdot 10^{-7} \) | \(a_{564}= +0.30456619 \pm 3.5 \cdot 10^{-7} \) |
\(a_{565}= -1.63957032 \pm 9.4 \cdot 10^{-8} \) | \(a_{566}= +0.62116268 \pm 1.4 \cdot 10^{-7} \) | \(a_{567}= -0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= +0.66725404 \pm 2.1 \cdot 10^{-7} \) | \(a_{569}= -1.97181895 \pm 1.3 \cdot 10^{-7} \) | \(a_{570}= -0.50972205 \pm 4.6 \cdot 10^{-7} \) |
\(a_{571}= -0.86874439 \pm 1.4 \cdot 10^{-7} \) | \(a_{572}= +1.76328164 \pm 1.4 \cdot 10^{-7} \) | \(a_{573}= +0.42970799 \pm 1.7 \cdot 10^{-7} \) |
\(a_{574}= -0.72330216 \pm 2.9 \cdot 10^{-7} \) | \(a_{575}= +3.21200914 \pm 1.5 \cdot 10^{-7} \) | \(a_{576}= -0.39937613 \pm 1.4 \cdot 10^{-7} \) |
\(a_{577}= -0.13883123 \pm 1.7 \cdot 10^{-7} \) | \(a_{578}= -1.41383581 \pm 1.7 \cdot 10^{-7} \) | \(a_{579}= -0.09131130 \pm 1.7 \cdot 10^{-7} \) |
\(a_{580}= +1.18374816 \pm 1.4 \cdot 10^{-7} \) | \(a_{581}= -0.29822295 \pm 1.4 \cdot 10^{-7} \) | \(a_{582}= -0.80315947 \pm 2.7 \cdot 10^{-7} \) |
\(a_{583}= +0.41869307 \pm 1.6 \cdot 10^{-7} \) | \(a_{584}= -1.44694531 \pm 1.9 \cdot 10^{-7} \) | \(a_{585}= +0.67321382 \pm 3.0 \cdot 10^{-7} \) |
\(a_{586}= +1.52922690 \pm 1.6 \cdot 10^{-7} \) | \(a_{587}= +0.36441593 \pm 1.8 \cdot 10^{-7} \) | \(a_{588}= -0.15893440 \pm 2.1 \cdot 10^{-7} \) |
\(a_{589}= +0.06734883 \pm 1.5 \cdot 10^{-7} \) | \(a_{590}= +5.42741191 \pm 1.3 \cdot 10^{-7} \) | \(a_{591}= +0.88749973 \pm 1.2 \cdot 10^{-7} \) |
\(a_{592}= -0.39629519 \pm 1.6 \cdot 10^{-7} \) | \(a_{593}= -0.37043604 \pm 1.0 \cdot 10^{-7} \) | \(a_{594}= +0.26532448 \pm 3.1 \cdot 10^{-7} \) |
\(a_{595}= +0.28009602 \pm 2.9 \cdot 10^{-7} \) | \(a_{596}= -0.39638718 \pm 2.2 \cdot 10^{-7} \) | \(a_{597}= +0.93512674 \pm 1.1 \cdot 10^{-7} \) |
\(a_{598}= -2.88429940 \pm 1.5 \cdot 10^{-7} \) | \(a_{599}= -1.22751056 \pm 1.7 \cdot 10^{-7} \) | \(a_{600}= -1.98088734 \pm 3.5 \cdot 10^{-7} \) |
\(a_{601}= +0.44033170 \pm 1.6 \cdot 10^{-7} \) | \(a_{602}= +0.97354517 \pm 3.4 \cdot 10^{-7} \) | \(a_{603}= -0.14772940 \pm 1.6 \cdot 10^{-7} \) |
\(a_{604}= -3.83316231 \pm 2.3 \cdot 10^{-7} \) | \(a_{605}= +0.62361289 \pm 8.2 \cdot 10^{-8} \) | \(a_{606}= -1.15216046 \pm 3.4 \cdot 10^{-7} \) |
\(a_{607}= +0.31931852 \pm 1.6 \cdot 10^{-7} \) | \(a_{608}= +0.06984740 \pm 1.0 \cdot 10^{-7} \) | \(a_{609}= -0.07536928 \pm 1.6 \cdot 10^{-7} \) |
\(a_{610}= -0.03104191 \pm 1.3 \cdot 10^{-7} \) | \(a_{611}= +0.31085747 \pm 1.2 \cdot 10^{-7} \) | \(a_{612}= +0.26762863 \pm 3.6 \cdot 10^{-7} \) |
\(a_{613}= -0.30198124 \pm 1.3 \cdot 10^{-7} \) | \(a_{614}= -2.50390668 \pm 2.0 \cdot 10^{-7} \) | \(a_{615}= +1.14862218 \pm 2.6 \cdot 10^{-7} \) |
\(a_{616}= +0.48303573 \pm 3.4 \cdot 10^{-7} \) | \(a_{617}= +1.15534729 \pm 1.4 \cdot 10^{-7} \) | \(a_{618}= +1.06325414 \pm 3.1 \cdot 10^{-7} \) |
\(a_{619}= -1.64396973 \pm 1.2 \cdot 10^{-7} \) | \(a_{620}= +0.79557240 \pm 2.0 \cdot 10^{-7} \) | \(a_{621}= -0.28572828 \pm 1.5 \cdot 10^{-7} \) |
\(a_{622}= +0.83085396 \pm 1.6 \cdot 10^{-7} \) | \(a_{623}= +0.39691154 \pm 1.3 \cdot 10^{-7} \) | \(a_{624}= +0.51546992 \pm 3.3 \cdot 10^{-7} \) |
\(a_{625}= +1.51697982 \pm 1.2 \cdot 10^{-7} \) | \(a_{626}= +0.24804668 \pm 2.0 \cdot 10^{-7} \) | \(a_{627}= -0.13498782 \pm 2.9 \cdot 10^{-7} \) |
\(a_{628}= -1.09257514 \pm 1.7 \cdot 10^{-7} \) | \(a_{629}= -0.21000404 \pm 1.1 \cdot 10^{-7} \) | \(a_{630}= +0.38336999 \pm 3.2 \cdot 10^{-7} \) |
\(a_{631}= +0.40580288 \pm 1.5 \cdot 10^{-7} \) | \(a_{632}= -0.81647809 \pm 1.3 \cdot 10^{-7} \) | \(a_{633}= -0.68751392 \pm 1.6 \cdot 10^{-7} \) |
\(a_{634}= +1.91740614 \pm 2.0 \cdot 10^{-7} \) | \(a_{635}= -1.78588555 \pm 1.4 \cdot 10^{-7} \) | \(a_{636}= +0.57804572 \pm 3.7 \cdot 10^{-7} \) |
\(a_{637}= -0.16221743 \pm 1.6 \cdot 10^{-7} \) | \(a_{638}= +0.47617132 \pm 1.6 \cdot 10^{-7} \) | \(a_{639}= +0.14024624 \pm 1.9 \cdot 10^{-7} \) |
\(a_{640}= +3.21761385 \pm 1.3 \cdot 10^{-7} \) | \(a_{641}= -0.49644361 \pm 1.4 \cdot 10^{-7} \) | \(a_{642}= -0.22295031 \pm 3.5 \cdot 10^{-7} \) |
\(a_{643}= -0.71533068 \pm 1.4 \cdot 10^{-7} \) | \(a_{644}= -1.08134099 \pm 3.5 \cdot 10^{-7} \) | \(a_{645}= -1.54601441 \pm 3.0 \cdot 10^{-7} \) |
\(a_{646}= -0.20682003 \pm 1.8 \cdot 10^{-7} \) | \(a_{647}= +0.77574869 \pm 1.9 \cdot 10^{-7} \) | \(a_{648}= +0.17621230 \pm 2.1 \cdot 10^{-7} \) |
\(a_{649}= +1.43732156 \pm 1.0 \cdot 10^{-7} \) | \(a_{650}= -4.20287917 \pm 1.4 \cdot 10^{-7} \) | \(a_{651}= -0.05065412 \pm 1.7 \cdot 10^{-7} \) |
\(a_{652}= +0.99699618 \pm 1.3 \cdot 10^{-7} \) | \(a_{653}= +1.76372081 \pm 1.4 \cdot 10^{-7} \) | \(a_{654}= +0.12853841 \pm 3.4 \cdot 10^{-7} \) |
\(a_{655}= -2.20084551 \pm 1.0 \cdot 10^{-7} \) | \(a_{656}= +0.87948311 \pm 1.1 \cdot 10^{-7} \) | \(a_{657}= -0.30412500 \pm 1.4 \cdot 10^{-7} \) |
\(a_{658}= +0.17702165 \pm 3.2 \cdot 10^{-7} \) | \(a_{659}= +1.25952966 \pm 1.7 \cdot 10^{-7} \) | \(a_{660}= -1.59457226 \pm 4.8 \cdot 10^{-7} \) |
\(a_{661}= -0.80799903 \pm 1.4 \cdot 10^{-7} \) | \(a_{662}= +1.57700775 \pm 1.4 \cdot 10^{-7} \) | \(a_{663}= +0.27315691 \pm 3.1 \cdot 10^{-7} \) |
\(a_{664}= +1.25132126 \pm 1.4 \cdot 10^{-7} \) | \(a_{665}= -0.19504524 \pm 2.9 \cdot 10^{-7} \) | \(a_{666}= -0.28743445 \pm 3.2 \cdot 10^{-7} \) |
\(a_{667}= -0.51278950 \pm 9.1 \cdot 10^{-8} \) | \(a_{668}= +2.48842636 \pm 2.0 \cdot 10^{-7} \) | \(a_{669}= +0.52128261 \pm 1.8 \cdot 10^{-7} \) |
\(a_{670}= +1.34857952 \pm 1.5 \cdot 10^{-7} \) | \(a_{671}= -0.00822072 \pm 1.2 \cdot 10^{-7} \) | \(a_{672}= -0.05253333 \pm 1.6 \cdot 10^{-7} \) |
\(a_{673}= +1.13875104 \pm 1.2 \cdot 10^{-7} \) | \(a_{674}= -0.75433554 \pm 1.9 \cdot 10^{-7} \) | \(a_{675}= -0.41635117 \pm 1.5 \cdot 10^{-7} \) |
\(a_{676}= +0.55768702 \pm 2.1 \cdot 10^{-7} \) | \(a_{677}= +0.75956016 \pm 1.8 \cdot 10^{-7} \) | \(a_{678}= -0.91054283 \pm 2.8 \cdot 10^{-7} \) |
\(a_{679}= -0.30732913 \pm 1.0 \cdot 10^{-7} \) | \(a_{680}= -1.17526200 \pm 8.7 \cdot 10^{-8} \) | \(a_{681}= -0.23012188 \pm 1.6 \cdot 10^{-7} \) |
\(a_{682}= +0.32002479 \pm 1.5 \cdot 10^{-7} \) | \(a_{683}= -0.56101267 \pm 1.2 \cdot 10^{-7} \) | \(a_{684}= -0.18636356 \pm 3.6 \cdot 10^{-7} \) |
\(a_{685}= +0.10817128 \pm 7.7 \cdot 10^{-8} \) | \(a_{686}= -0.09237674 \pm 1.8 \cdot 10^{-7} \) | \(a_{687}= -0.21122124 \pm 2.0 \cdot 10^{-7} \) |
\(a_{688}= -1.18376050 \pm 1.8 \cdot 10^{-7} \) | \(a_{689}= +0.58998612 \pm 1.7 \cdot 10^{-7} \) | \(a_{690}= +2.60833194 \pm 4.6 \cdot 10^{-7} \) |
\(a_{691}= +0.69330291 \pm 1.8 \cdot 10^{-7} \) | \(a_{692}= -0.26559767 \pm 2.3 \cdot 10^{-7} \) | \(a_{693}= +0.10152646 \pm 1.4 \cdot 10^{-7} \) |
\(a_{694}= +0.97186060 \pm 1.5 \cdot 10^{-7} \) | \(a_{695}= -2.77063280 \pm 1.6 \cdot 10^{-7} \) | \(a_{696}= +0.31624388 \pm 3.6 \cdot 10^{-7} \) |
\(a_{697}= +0.46605413 \pm 7.2 \cdot 10^{-8} \) | \(a_{698}= +0.39642273 \pm 1.5 \cdot 10^{-7} \) | \(a_{699}= +0.54972281 \pm 1.4 \cdot 10^{-7} \) |
\(a_{700}= -1.57568438 \pm 3.5 \cdot 10^{-7} \) | \(a_{701}= -1.56686459 \pm 1.4 \cdot 10^{-7} \) | \(a_{702}= +0.37387236 \pm 3.4 \cdot 10^{-7} \) |
\(a_{703}= +0.14623660 \pm 1.0 \cdot 10^{-7} \) | \(a_{704}= +0.96550139 \pm 1.5 \cdot 10^{-7} \) | \(a_{705}= -0.28111487 \pm 2.8 \cdot 10^{-7} \) |
\(a_{706}= -1.87209168 \pm 1.2 \cdot 10^{-7} \) | \(a_{707}= -0.44087442 \pm 1.7 \cdot 10^{-7} \) | \(a_{708}= +1.98435950 \pm 3.1 \cdot 10^{-7} \) |
\(a_{709}= +0.09161236 \pm 1.4 \cdot 10^{-7} \) | \(a_{710}= -1.28026790 \pm 1.8 \cdot 10^{-7} \) | \(a_{711}= -0.17161077 \pm 1.0 \cdot 10^{-7} \) |
\(a_{712}= -1.66541120 \pm 1.4 \cdot 10^{-7} \) | \(a_{713}= -0.34463511 \pm 1.4 \cdot 10^{-7} \) | \(a_{714}= +0.15555260 \pm 3.3 \cdot 10^{-7} \) |
\(a_{715}= -1.62751056 \pm 1.3 \cdot 10^{-7} \) | \(a_{716}= +0.76746851 \pm 1.7 \cdot 10^{-7} \) | \(a_{717}= -0.89560632 \pm 1.3 \cdot 10^{-7} \) |
\(a_{718}= -0.21022490 \pm 1.4 \cdot 10^{-7} \) | \(a_{719}= -0.61112855 \pm 1.2 \cdot 10^{-7} \) | \(a_{720}= -0.46615017 \pm 3.1 \cdot 10^{-7} \) |
\(a_{721}= +0.40685440 \pm 1.4 \cdot 10^{-7} \) | \(a_{722}= -1.56682168 \pm 1.9 \cdot 10^{-7} \) | \(a_{723}= -0.22822102 \pm 1.6 \cdot 10^{-7} \) |
\(a_{724}= -1.82002912 \pm 1.8 \cdot 10^{-7} \) | \(a_{725}= -0.74721519 \pm 1.1 \cdot 10^{-7} \) | \(a_{726}= +0.34632625 \pm 3.1 \cdot 10^{-7} \) |
\(a_{727}= -0.91283669 \pm 1.7 \cdot 10^{-7} \) | \(a_{728}= +0.68065224 \pm 3.6 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +2.77627041 \pm 1.7 \cdot 10^{-7} \) | \(a_{731}= -0.62729626 \pm 1.4 \cdot 10^{-7} \) | \(a_{732}= -0.01134948 \pm 3.5 \cdot 10^{-7} \) |
\(a_{733}= -1.08627910 \pm 1.3 \cdot 10^{-7} \) | \(a_{734}= -0.29703995 \pm 1.4 \cdot 10^{-7} \) | \(a_{735}= +0.14669660 \pm 1.4 \cdot 10^{-7} \) |
\(a_{736}= -0.35742069 \pm 1.4 \cdot 10^{-7} \) | \(a_{737}= +0.35713936 \pm 1.2 \cdot 10^{-7} \) | \(a_{738}= +0.63789255 \pm 2.9 \cdot 10^{-7} \) |
\(a_{739}= +1.17318584 \pm 1.6 \cdot 10^{-7} \) | \(a_{740}= +1.72745084 \pm 1.9 \cdot 10^{-7} \) | \(a_{741}= -0.19021318 \pm 3.1 \cdot 10^{-7} \) |
\(a_{742}= +0.33597494 \pm 3.4 \cdot 10^{-7} \) | \(a_{743}= +0.97061197 \pm 1.4 \cdot 10^{-7} \) | \(a_{744}= +0.21254090 \pm 3.7 \cdot 10^{-7} \) |
\(a_{745}= +0.36586572 \pm 1.3 \cdot 10^{-7} \) | \(a_{746}= -0.33287110 \pm 2.3 \cdot 10^{-7} \) | \(a_{747}= +0.26300792 \pm 1.4 \cdot 10^{-7} \) |
\(a_{748}= -0.64699864 \pm 1.6 \cdot 10^{-7} \) | \(a_{749}= -0.08531198 \pm 1.7 \cdot 10^{-7} \) | \(a_{750}= +2.04392907 \pm 3.0 \cdot 10^{-7} \) |
\(a_{751}= +0.30267217 \pm 1.5 \cdot 10^{-7} \) | \(a_{752}= -0.21524553 \pm 2.2 \cdot 10^{-7} \) | \(a_{753}= -0.76796107 \pm 1.3 \cdot 10^{-7} \) |
\(a_{754}= +0.67097951 \pm 1.4 \cdot 10^{-7} \) | \(a_{755}= +3.53801230 \pm 1.5 \cdot 10^{-7} \) | \(a_{756}= +0.14016697 \pm 2.1 \cdot 10^{-7} \) |
\(a_{757}= +1.73008660 \pm 1.4 \cdot 10^{-7} \) | \(a_{758}= +0.47015959 \pm 1.2 \cdot 10^{-7} \) | \(a_{759}= +0.69075497 \pm 2.9 \cdot 10^{-7} \) |
\(a_{760}= +0.81839528 \pm 1.2 \cdot 10^{-7} \) | \(a_{761}= -1.24977743 \pm 1.7 \cdot 10^{-7} \) | \(a_{762}= -0.99179967 \pm 3.5 \cdot 10^{-7} \) |
\(a_{763}= +0.04918525 \pm 1.6 \cdot 10^{-7} \) | \(a_{764}= -1.43420304 \pm 2.6 \cdot 10^{-7} \) | \(a_{765}= -0.24702147 \pm 2.9 \cdot 10^{-7} \) |
\(a_{766}= -2.45838623 \pm 2.1 \cdot 10^{-7} \) | \(a_{767}= +2.02534945 \pm 1.3 \cdot 10^{-7} \) | \(a_{768}= +1.09517673 \pm 1.7 \cdot 10^{-7} \) |
\(a_{769}= +1.50702026 \pm 1.6 \cdot 10^{-7} \) | \(a_{770}= -0.92680614 \pm 4.5 \cdot 10^{-7} \) | \(a_{771}= -0.59761852 \pm 1.4 \cdot 10^{-7} \) |
\(a_{772}= +0.30476264 \pm 2.1 \cdot 10^{-7} \) | \(a_{773}= +0.69308138 \pm 1.3 \cdot 10^{-7} \) | \(a_{774}= -0.85858613 \pm 3.4 \cdot 10^{-7} \) |
\(a_{775}= -0.50218771 \pm 1.4 \cdot 10^{-7} \) | \(a_{776}= +1.28953008 \pm 1.1 \cdot 10^{-7} \) | \(a_{777}= -0.10998685 \pm 1.4 \cdot 10^{-7} \) |
\(a_{778}= +1.61236696 \pm 1.4 \cdot 10^{-7} \) | \(a_{779}= -0.32453742 \pm 9.5 \cdot 10^{-8} \) | \(a_{780}= -2.24693356 \pm 5.0 \cdot 10^{-7} \) |
\(a_{781}= -0.33904865 \pm 1.2 \cdot 10^{-7} \) | \(a_{782}= +1.05833223 \pm 1.1 \cdot 10^{-7} \) | \(a_{783}= +0.06646946 \pm 1.6 \cdot 10^{-7} \) |
\(a_{784}= +0.11232343 \pm 1.7 \cdot 10^{-7} \) | \(a_{785}= +1.00844784 \pm 1.6 \cdot 10^{-7} \) | \(a_{786}= -1.22224956 \pm 3.0 \cdot 10^{-7} \) |
\(a_{787}= +0.69863665 \pm 1.1 \cdot 10^{-7} \) | \(a_{788}= -2.96213904 \pm 1.2 \cdot 10^{-7} \) | \(a_{789}= -0.17112804 \pm 1.5 \cdot 10^{-7} \) |
\(a_{790}= +1.56658578 \pm 1.2 \cdot 10^{-7} \) | \(a_{791}= -0.34841939 \pm 1.1 \cdot 10^{-7} \) | \(a_{792}= -0.42599747 \pm 3.4 \cdot 10^{-7} \) |
\(a_{793}= -0.01158392 \pm 1.6 \cdot 10^{-7} \) | \(a_{794}= +2.40689157 \pm 1.9 \cdot 10^{-7} \) | \(a_{795}= -0.53353672 \pm 3.0 \cdot 10^{-7} \) |
\(a_{796}= -3.12110000 \pm 1.6 \cdot 10^{-7} \) | \(a_{797}= -1.45253298 \pm 1.2 \cdot 10^{-7} \) | \(a_{798}= -0.10831926 \pm 3.3 \cdot 10^{-7} \) |
\(a_{799}= -0.11406253 \pm 1.3 \cdot 10^{-7} \) | \(a_{800}= -0.52081832 \pm 1.1 \cdot 10^{-7} \) | \(a_{801}= -0.35004308 \pm 1.3 \cdot 10^{-7} \) |
\(a_{802}= -2.40490115 \pm 1.6 \cdot 10^{-7} \) | \(a_{803}= +0.73522949 \pm 1.1 \cdot 10^{-7} \) | \(a_{804}= +0.49306495 \pm 3.6 \cdot 10^{-7} \) |
\(a_{805}= +0.99807872 \pm 2.9 \cdot 10^{-7} \) | \(a_{806}= +0.45095131 \pm 1.7 \cdot 10^{-7} \) | \(a_{807}= +0.88312766 \pm 1.4 \cdot 10^{-7} \) |
\(a_{808}= +1.84987616 \pm 1.9 \cdot 10^{-7} \) | \(a_{809}= +1.84955264 \pm 1.5 \cdot 10^{-7} \) | \(a_{810}= -0.33810055 \pm 3.2 \cdot 10^{-7} \) |
\(a_{811}= -1.21269326 \pm 1.4 \cdot 10^{-7} \) | \(a_{812}= +0.25155421 \pm 3.6 \cdot 10^{-7} \) | \(a_{813}= -0.56019147 \pm 1.3 \cdot 10^{-7} \) |
\(a_{814}= +0.69487969 \pm 1.4 \cdot 10^{-7} \) | \(a_{815}= -0.92022838 \pm 1.1 \cdot 10^{-7} \) | \(a_{816}= -0.18914071 \pm 3.2 \cdot 10^{-7} \) |
\(a_{817}= +0.43681860 \pm 1.5 \cdot 10^{-7} \) | \(a_{818}= -0.70630463 \pm 1.2 \cdot 10^{-7} \) | \(a_{819}= +0.14306233 \pm 1.6 \cdot 10^{-7} \) |
\(a_{820}= -3.83366717 \pm 1.4 \cdot 10^{-7} \) | \(a_{821}= +1.13661068 \pm 1.2 \cdot 10^{-7} \) | \(a_{822}= +0.06007341 \pm 3.0 \cdot 10^{-7} \) |
\(a_{823}= +0.09521372 \pm 1.1 \cdot 10^{-7} \) | \(a_{824}= -1.70713070 \pm 1.8 \cdot 10^{-7} \) | \(a_{825}= +1.00653894 \pm 2.8 \cdot 10^{-7} \) |
\(a_{826}= +1.15336044 \pm 2.9 \cdot 10^{-7} \) | \(a_{827}= -0.70669094 \pm 1.7 \cdot 10^{-7} \) | \(a_{828}= +0.95365311 \pm 3.5 \cdot 10^{-7} \) |
\(a_{829}= +0.20209174 \pm 1.1 \cdot 10^{-7} \) | \(a_{830}= -2.40092431 \pm 1.6 \cdot 10^{-7} \) | \(a_{831}= +1.07276119 \pm 1.3 \cdot 10^{-7} \) |
\(a_{832}= +1.36050120 \pm 9.6 \cdot 10^{-8} \) | \(a_{833}= +0.05952223 \pm 1.6 \cdot 10^{-7} \) | \(a_{834}= -1.53868353 \pm 3.4 \cdot 10^{-7} \) |
\(a_{835}= -2.29681980 \pm 1.0 \cdot 10^{-7} \) | \(a_{836}= +0.45053838 \pm 2.2 \cdot 10^{-7} \) | \(a_{837}= +0.04467273 \pm 1.7 \cdot 10^{-7} \) |
\(a_{838}= +1.10601622 \pm 1.6 \cdot 10^{-7} \) | \(a_{839}= -1.31725749 \pm 1.6 \cdot 10^{-7} \) | \(a_{840}= -0.61552798 \pm 3.4 \cdot 10^{-7} \) |
\(a_{841}= -0.88070890 \pm 1.8 \cdot 10^{-7} \) | \(a_{842}= +0.12749832 \pm 1.3 \cdot 10^{-7} \) | \(a_{843}= +1.12817739 \pm 1.8 \cdot 10^{-7} \) |
\(a_{844}= +2.29466191 \pm 1.7 \cdot 10^{-7} \) | \(a_{845}= -0.51474563 \pm 1.4 \cdot 10^{-7} \) | \(a_{846}= -0.15611842 \pm 3.2 \cdot 10^{-7} \) |
\(a_{847}= +0.13252181 \pm 1.3 \cdot 10^{-7} \) | \(a_{848}= -0.40852122 \pm 2.0 \cdot 10^{-7} \) | \(a_{849}= -0.20962113 \pm 1.3 \cdot 10^{-7} \) |
\(a_{850}= +1.54215700 \pm 1.3 \cdot 10^{-7} \) | \(a_{851}= -0.74831682 \pm 1.4 \cdot 10^{-7} \) | \(a_{852}= -0.46808899 \pm 4.0 \cdot 10^{-7} \) |
\(a_{853}= -1.29621169 \pm 1.5 \cdot 10^{-7} \) | \(a_{854}= -0.00659661 \pm 3.2 \cdot 10^{-7} \) | \(a_{855}= +0.17201374 \pm 2.9 \cdot 10^{-7} \) |
\(a_{856}= +0.35796270 \pm 2.3 \cdot 10^{-7} \) | \(a_{857}= +1.07470874 \pm 1.3 \cdot 10^{-7} \) | \(a_{858}= -0.90384539 \pm 4.7 \cdot 10^{-7} \) |
\(a_{859}= +0.00202306 \pm 1.4 \cdot 10^{-7} \) | \(a_{860}= +5.16001241 \pm 2.3 \cdot 10^{-7} \) | \(a_{861}= +0.24408971 \pm 1.2 \cdot 10^{-7} \) |
\(a_{862}= -1.62805481 \pm 1.5 \cdot 10^{-7} \) | \(a_{863}= -1.44620120 \pm 1.5 \cdot 10^{-7} \) | \(a_{864}= +0.04633004 \pm 1.6 \cdot 10^{-7} \) |
\(a_{865}= +0.24514689 \pm 1.6 \cdot 10^{-7} \) | \(a_{866}= +2.21046645 \pm 1.3 \cdot 10^{-7} \) | \(a_{867}= +0.47712116 \pm 1.5 \cdot 10^{-7} \) |
\(a_{868}= +0.16906433 \pm 3.7 \cdot 10^{-7} \) | \(a_{869}= +0.41487316 \pm 9.2 \cdot 10^{-8} \) | \(a_{870}= -0.60678073 \pm 4.7 \cdot 10^{-7} \) |
\(a_{871}= +0.50324995 \pm 1.7 \cdot 10^{-7} \) | \(a_{872}= -0.20637763 \pm 2.1 \cdot 10^{-7} \) | \(a_{873}= +0.27103881 \pm 1.0 \cdot 10^{-7} \) |
\(a_{874}= -0.73697108 \pm 1.5 \cdot 10^{-7} \) | \(a_{875}= +0.78210985 \pm 1.3 \cdot 10^{-7} \) | \(a_{876}= +1.01505444 \pm 3.5 \cdot 10^{-7} \) |
\(a_{877}= -0.04635039 \pm 1.5 \cdot 10^{-7} \) | \(a_{878}= -2.80438201 \pm 2.0 \cdot 10^{-7} \) | \(a_{879}= -0.51606170 \pm 1.4 \cdot 10^{-7} \) |
\(a_{880}= +1.12692923 \pm 1.6 \cdot 10^{-7} \) | \(a_{881}= -1.68968223 \pm 1.3 \cdot 10^{-7} \) | \(a_{882}= +0.08146862 \pm 1.8 \cdot 10^{-7} \) |
\(a_{883}= +0.22752607 \pm 1.5 \cdot 10^{-7} \) | \(a_{884}= -0.91169463 \pm 8.8 \cdot 10^{-8} \) | \(a_{885}= -1.83156563 \pm 2.5 \cdot 10^{-7} \) |
\(a_{886}= +0.30824485 \pm 1.9 \cdot 10^{-7} \) | \(a_{887}= +0.83450480 \pm 1.2 \cdot 10^{-7} \) | \(a_{888}= +0.46149661 \pm 3.5 \cdot 10^{-7} \) |
\(a_{889}= -0.37951233 \pm 1.8 \cdot 10^{-7} \) | \(a_{890}= +3.19544339 \pm 1.9 \cdot 10^{-7} \) | \(a_{891}= -0.08953793 \pm 1.4 \cdot 10^{-7} \) |
\(a_{892}= -1.73984454 \pm 2.1 \cdot 10^{-7} \) | \(a_{893}= +0.07942759 \pm 1.0 \cdot 10^{-7} \) | \(a_{894}= +0.20318519 \pm 3.1 \cdot 10^{-7} \) |
\(a_{895}= -0.70837413 \pm 1.0 \cdot 10^{-7} \) | \(a_{896}= +0.68376394 \pm 1.6 \cdot 10^{-7} \) | \(a_{897}= +0.97335226 \pm 3.1 \cdot 10^{-7} \) |
\(a_{898}= -0.05692878 \pm 1.5 \cdot 10^{-7} \) | \(a_{899}= +0.08017306 \pm 1.7 \cdot 10^{-7} \) | \(a_{900}= +1.38962301 \pm 3.5 \cdot 10^{-7} \) |
\(a_{901}= -0.21648284 \pm 1.5 \cdot 10^{-7} \) | \(a_{902}= -1.54212055 \pm 1.1 \cdot 10^{-7} \) | \(a_{903}= -0.32853815 \pm 1.6 \cdot 10^{-7} \) |
\(a_{904}= +1.46194176 \pm 1.6 \cdot 10^{-7} \) | \(a_{905}= +1.67988853 \pm 9.5 \cdot 10^{-8} \) | \(a_{906}= +1.96485122 \pm 3.3 \cdot 10^{-7} \) |
\(a_{907}= -0.72833577 \pm 1.2 \cdot 10^{-7} \) | \(a_{908}= +0.76805994 \pm 1.7 \cdot 10^{-7} \) | \(a_{909}= +0.38881469 \pm 1.7 \cdot 10^{-7} \) |
\(a_{910}= -1.30597519 \pm 4.7 \cdot 10^{-7} \) | \(a_{911}= -0.42497874 \pm 1.1 \cdot 10^{-7} \) | \(a_{912}= +0.13170839 \pm 3.2 \cdot 10^{-7} \) |
\(a_{913}= -0.63582797 \pm 1.3 \cdot 10^{-7} \) | \(a_{914}= +0.27510936 \pm 2.1 \cdot 10^{-7} \) | \(a_{915}= +0.01047558 \pm 2.8 \cdot 10^{-7} \) |
\(a_{916}= +0.70497675 \pm 2.3 \cdot 10^{-7} \) | \(a_{917}= -0.46769403 \pm 1.3 \cdot 10^{-7} \) | \(a_{918}= -0.13718450 \pm 3.3 \cdot 10^{-7} \) |
\(a_{919}= +0.20633851 \pm 1.8 \cdot 10^{-7} \) | \(a_{920}= -4.18786382 \pm 1.9 \cdot 10^{-7} \) | \(a_{921}= +0.84498274 \pm 1.9 \cdot 10^{-7} \) |
\(a_{922}= -2.83363440 \pm 1.8 \cdot 10^{-7} \) | \(a_{923}= -0.47775808 \pm 1.5 \cdot 10^{-7} \) | \(a_{924}= -0.33885701 \pm 3.4 \cdot 10^{-7} \) |
\(a_{925}= -1.09041564 \pm 1.4 \cdot 10^{-7} \) | \(a_{926}= +2.01024860 \pm 1.5 \cdot 10^{-7} \) | \(a_{927}= -0.35881185 \pm 1.4 \cdot 10^{-7} \) |
\(a_{928}= +0.08314739 \pm 1.5 \cdot 10^{-7} \) | \(a_{929}= -0.05835563 \pm 1.8 \cdot 10^{-7} \) | \(a_{930}= -0.40780465 \pm 4.8 \cdot 10^{-7} \) |
\(a_{931}= -0.04144839 \pm 1.5 \cdot 10^{-7} \) | \(a_{932}= -1.83476721 \pm 1.5 \cdot 10^{-7} \) | \(a_{933}= -0.28038475 \pm 1.8 \cdot 10^{-7} \) |
\(a_{934}= +1.65780821 \pm 1.4 \cdot 10^{-7} \) | \(a_{935}= +0.59718034 \pm 9.8 \cdot 10^{-8} \) | \(a_{936}= -0.60027886 \pm 3.6 \cdot 10^{-7} \) |
\(a_{937}= +1.63877231 \pm 1.4 \cdot 10^{-7} \) | \(a_{938}= +0.28658195 \pm 3.3 \cdot 10^{-7} \) | \(a_{939}= -0.08370726 \pm 1.9 \cdot 10^{-7} \) |
\(a_{940}= +0.93825531 \pm 2.1 \cdot 10^{-7} \) | \(a_{941}= -1.24902647 \pm 1.5 \cdot 10^{-7} \) | \(a_{942}= +0.56004610 \pm 3.2 \cdot 10^{-7} \) |
\(a_{943}= +1.66071159 \pm 1.5 \cdot 10^{-7} \) | \(a_{944}= -1.40240287 \pm 1.2 \cdot 10^{-7} \) | \(a_{945}= -0.12937424 \pm 1.4 \cdot 10^{-7} \) |
\(a_{946}= +2.07565258 \pm 1.8 \cdot 10^{-7} \) | \(a_{947}= +0.42806287 \pm 1.3 \cdot 10^{-7} \) | \(a_{948}= +0.57277196 \pm 3.1 \cdot 10^{-7} \) |
\(a_{949}= +1.03602192 \pm 1.5 \cdot 10^{-7} \) | \(a_{950}= -1.07388310 \pm 1.4 \cdot 10^{-7} \) | \(a_{951}= -0.64705890 \pm 1.8 \cdot 10^{-7} \) |
\(a_{952}= -0.24975084 \pm 3.6 \cdot 10^{-7} \) | \(a_{953}= -0.52938758 \pm 1.6 \cdot 10^{-7} \) | \(a_{954}= -0.29630205 \pm 3.4 \cdot 10^{-7} \) |
\(a_{955}= +1.32377072 \pm 1.7 \cdot 10^{-7} \) | \(a_{956}= +2.98919575 \pm 1.6 \cdot 10^{-7} \) | \(a_{957}= -0.16069151 \pm 2.9 \cdot 10^{-7} \) |
\(a_{958}= +0.41737808 \pm 1.6 \cdot 10^{-7} \) | \(a_{959}= +0.02298710 \pm 1.3 \cdot 10^{-7} \) | \(a_{960}= -1.23032953 \pm 2.8 \cdot 10^{-7} \) |
\(a_{961}= -0.94611736 \pm 1.1 \cdot 10^{-7} \) | \(a_{962}= +0.97916446 \pm 1.5 \cdot 10^{-7} \) | \(a_{963}= +0.07523809 \pm 1.7 \cdot 10^{-7} \) |
\(a_{964}= +0.76171559 \pm 1.8 \cdot 10^{-7} \) | \(a_{965}= -0.28129620 \pm 1.3 \cdot 10^{-7} \) | \(a_{966}= +0.55428756 \pm 3.3 \cdot 10^{-7} \) |
\(a_{967}= -0.55467847 \pm 1.1 \cdot 10^{-7} \) | \(a_{968}= -0.55605162 \pm 1.6 \cdot 10^{-7} \) | \(a_{969}= +0.06979468 \pm 3.0 \cdot 10^{-7} \) |
\(a_{970}= -2.47423601 \pm 9.4 \cdot 10^{-8} \) | \(a_{971}= -1.83190983 \pm 1.0 \cdot 10^{-7} \) | \(a_{972}= -0.12361565 \pm 2.1 \cdot 10^{-7} \) |
\(a_{973}= -0.58877755 \pm 1.7 \cdot 10^{-7} \) | \(a_{974}= -1.33815177 \pm 1.3 \cdot 10^{-7} \) | \(a_{975}= +1.41832777 \pm 3.0 \cdot 10^{-7} \) |
\(a_{976}= +0.00802100 \pm 1.1 \cdot 10^{-7} \) | \(a_{977}= -1.32840297 \pm 1.3 \cdot 10^{-7} \) | \(a_{978}= -0.51105302 \pm 3.2 \cdot 10^{-7} \) |
\(a_{979}= +0.84623754 \pm 1.0 \cdot 10^{-7} \) | \(a_{980}= -0.48961786 \pm 3.5 \cdot 10^{-7} \) | \(a_{981}= -0.04337731 \pm 1.6 \cdot 10^{-7} \) |
\(a_{982}= +2.75884564 \pm 1.1 \cdot 10^{-7} \) | \(a_{983}= -0.72184393 \pm 1.4 \cdot 10^{-7} \) | \(a_{984}= -1.02418219 \pm 3.2 \cdot 10^{-7} \) |
\(a_{985}= +2.73405703 \pm 1.0 \cdot 10^{-7} \) | \(a_{986}= -0.24620164 \pm 1.1 \cdot 10^{-7} \) | \(a_{987}= -0.05973874 \pm 1.5 \cdot 10^{-7} \) |
\(a_{988}= +0.63485978 \pm 1.4 \cdot 10^{-7} \) | \(a_{989}= -2.23527292 \pm 1.8 \cdot 10^{-7} \) | \(a_{990}= +0.81736619 \pm 4.5 \cdot 10^{-7} \) |
\(a_{991}= +1.76166472 \pm 1.5 \cdot 10^{-7} \) | \(a_{992}= +0.05588162 \pm 1.5 \cdot 10^{-7} \) | \(a_{993}= -0.53218610 \pm 1.4 \cdot 10^{-7} \) |
\(a_{994}= -0.27206528 \pm 3.7 \cdot 10^{-7} \) | \(a_{995}= +2.88077814 \pm 1.0 \cdot 10^{-7} \) | \(a_{996}= -0.87782115 \pm 3.4 \cdot 10^{-7} \) |
\(a_{997}= -1.77036459 \pm 1.5 \cdot 10^{-7} \) | \(a_{998}= +0.83077667 \pm 1.6 \cdot 10^{-7} \) | \(a_{999}= +0.09699928 \pm 1.4 \cdot 10^{-7} \) |
\(a_{1000}= -3.28167457 \pm 1.7 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000