Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(5.32460189801827366376576396356 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.60913961 \pm 2.8 \cdot 10^{-7} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.62894894 \pm 3.3 \cdot 10^{-7} \) | \(a_{5}= -1.05109118 \pm 2.2 \cdot 10^{-7} \) | \(a_{6}= -0.35168692 \pm 2.9 \cdot 10^{-7} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.99225732 \pm 3.3 \cdot 10^{-7} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.64026127 \pm 2.8 \cdot 10^{-7} \) | \(a_{11}= -0.13565069 \pm 2.2 \cdot 10^{-7} \) | \(a_{12}= -0.36312384 \pm 3.4 \cdot 10^{-7} \) |
\(a_{13}= +1.52101849 \pm 2.5 \cdot 10^{-7} \) | \(a_{14}= +0.23023313 \pm 2.9 \cdot 10^{-7} \) | \(a_{15}= -0.60684777 \pm 2.3 \cdot 10^{-7} \) |
\(a_{16}= +0.02452570 \pm 2.7 \cdot 10^{-7} \) | \(a_{17}= +1.11446775 \pm 2.5 \cdot 10^{-7} \) | \(a_{18}= -0.20304654 \pm 2.9 \cdot 10^{-7} \) |
\(a_{19}= -0.45705995 \pm 2.4 \cdot 10^{-7} \) | \(a_{20}= +0.66108268 \pm 3.2 \cdot 10^{-7} \) | \(a_{21}= -0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +0.08263021 \pm 2.9 \cdot 10^{-7} \) | \(a_{23}= +0.87935696 \pm 2.4 \cdot 10^{-7} \) | \(a_{24}= +0.57288003 \pm 3.4 \cdot 10^{-7} \) |
\(a_{25}= +0.10479266 \pm 2.3 \cdot 10^{-7} \) | \(a_{26}= -0.92651261 \pm 2.8 \cdot 10^{-7} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.23772035 \pm 3.4 \cdot 10^{-7} \) | \(a_{29}= +1.25621853 \pm 2.5 \cdot 10^{-7} \) | \(a_{30}= +0.36965501 \pm 5.2 \cdot 10^{-7} \) |
\(a_{31}= -1.61977743 \pm 2.6 \cdot 10^{-7} \) | \(a_{32}= -1.00719690 \pm 2.5 \cdot 10^{-7} \) | \(a_{33}= -0.07831796 \pm 2.3 \cdot 10^{-7} \) |
\(a_{34}= -0.67886645 \pm 2.3 \cdot 10^{-7} \) | \(a_{35}= +0.39727512 \pm 2.3 \cdot 10^{-7} \) | \(a_{36}= -0.20964965 \pm 3.4 \cdot 10^{-7} \) |
\(a_{37}= +0.36694118 \pm 2.2 \cdot 10^{-7} \) | \(a_{38}= +0.27841332 \pm 2.8 \cdot 10^{-7} \) | \(a_{39}= +0.87816043 \pm 2.6 \cdot 10^{-7} \) |
\(a_{40}= -1.04295291 \pm 3.0 \cdot 10^{-7} \) | \(a_{41}= +0.83374417 \pm 1.9 \cdot 10^{-7} \) | \(a_{42}= +0.13292516 \pm 2.9 \cdot 10^{-7} \) |
\(a_{43}= +0.11065944 \pm 2.5 \cdot 10^{-7} \) | \(a_{44}= +0.08531736 \pm 3.3 \cdot 10^{-7} \) | \(a_{45}= -0.35036373 \pm 2.3 \cdot 10^{-7} \) |
\(a_{46}= -0.53565115 \pm 2.8 \cdot 10^{-7} \) | \(a_{47}= +1.62775627 \pm 2.3 \cdot 10^{-7} \) | \(a_{48}= +0.01415992 \pm 2.8 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.06383336 \pm 2.2 \cdot 10^{-7} \) | \(a_{51}= +0.64343826 \pm 2.6 \cdot 10^{-7} \) |
\(a_{52}= -0.95664296 \pm 3.1 \cdot 10^{-7} \) | \(a_{53}= +0.28852237 \pm 2.6 \cdot 10^{-7} \) | \(a_{54}= -0.11722897 \pm 2.9 \cdot 10^{-7} \) |
\(a_{55}= +0.14258124 \pm 2.0 \cdot 10^{-7} \) | \(a_{56}= -0.37503801 \pm 3.4 \cdot 10^{-7} \) | \(a_{57}= -0.26388369 \pm 2.5 \cdot 10^{-7} \) |
\(a_{58}= -0.76521246 \pm 2.4 \cdot 10^{-7} \) | \(a_{59}= -0.68132027 \pm 1.7 \cdot 10^{-7} \) | \(a_{60}= +0.38167626 \pm 5.7 \cdot 10^{-7} \) |
\(a_{61}= -1.67770420 \pm 2.3 \cdot 10^{-7} \) | \(a_{62}= +0.98667059 \pm 3.0 \cdot 10^{-7} \) | \(a_{63}= -0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= +0.58899782 \pm 2.2 \cdot 10^{-7} \) | \(a_{65}= -1.59872911 \pm 2.3 \cdot 10^{-7} \) | \(a_{66}= +0.04770657 \pm 5.2 \cdot 10^{-7} \) |
\(a_{67}= +1.56278799 \pm 2.4 \cdot 10^{-7} \) | \(a_{68}= -0.70094331 \pm 2.3 \cdot 10^{-7} \) | \(a_{69}= +0.50769698 \pm 2.5 \cdot 10^{-7} \) |
\(a_{70}= -0.24199601 \pm 5.2 \cdot 10^{-7} \) | \(a_{71}= +0.71789105 \pm 3.1 \cdot 10^{-7} \) | \(a_{72}= +0.33075244 \pm 3.4 \cdot 10^{-7} \) |
\(a_{73}= +1.78247745 \pm 2.2 \cdot 10^{-7} \) | \(a_{74}= -0.22351841 \pm 2.5 \cdot 10^{-7} \) | \(a_{75}= +0.06050207 \pm 2.4 \cdot 10^{-7} \) |
\(a_{76}= +0.28746737 \pm 2.8 \cdot 10^{-7} \) | \(a_{77}= +0.05127114 \pm 2.3 \cdot 10^{-7} \) | \(a_{78}= -0.53492230 \pm 5.5 \cdot 10^{-7} \) |
\(a_{79}= -0.72096788 \pm 1.6 \cdot 10^{-7} \) | \(a_{80}= -0.02577875 \pm 2.9 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.50786660 \pm 2.1 \cdot 10^{-7} \) | \(a_{83}= +1.43550786 \pm 2.2 \cdot 10^{-7} \) | \(a_{84}= +0.13724791 \pm 3.4 \cdot 10^{-7} \) |
\(a_{85}= -1.17140722 \pm 1.7 \cdot 10^{-7} \) | \(a_{86}= -0.06740705 \pm 3.3 \cdot 10^{-7} \) | \(a_{87}= +0.72527811 \pm 2.6 \cdot 10^{-7} \) |
\(a_{88}= -0.13460039 \pm 3.2 \cdot 10^{-7} \) | \(a_{89}= +0.17117950 \pm 2.1 \cdot 10^{-7} \) | \(a_{90}= +0.21342042 \pm 5.2 \cdot 10^{-7} \) |
\(a_{91}= -0.57489095 \pm 2.6 \cdot 10^{-7} \) | \(a_{92}= -0.55307063 \pm 3.5 \cdot 10^{-7} \) | \(a_{93}= -0.93517893 \pm 2.7 \cdot 10^{-7} \) |
\(a_{94}= -0.99153081 \pm 2.9 \cdot 10^{-7} \) | \(a_{95}= +0.48041168 \pm 1.7 \cdot 10^{-7} \) | \(a_{96}= -0.58150540 \pm 2.6 \cdot 10^{-7} \) |
\(a_{97}= +0.51880204 \pm 1.5 \cdot 10^{-7} \) | \(a_{98}= -0.08701994 \pm 2.9 \cdot 10^{-7} \) | \(a_{99}= -0.04521690 \pm 2.3 \cdot 10^{-7} \) |
\(a_{100}= -0.06590923 \pm 2.4 \cdot 10^{-7} \) | \(a_{101}= -0.55426228 \pm 2.6 \cdot 10^{-7} \) | \(a_{102}= -0.39194373 \pm 5.4 \cdot 10^{-7} \) |
\(a_{103}= +0.37499499 \pm 2.1 \cdot 10^{-7} \) | \(a_{104}= +1.50924172 \pm 3.1 \cdot 10^{-7} \) | \(a_{105}= +0.22936690 \pm 2.3 \cdot 10^{-7} \) |
\(a_{106}= -0.17575040 \pm 3.3 \cdot 10^{-7} \) | \(a_{107}= +0.16071432 \pm 2.7 \cdot 10^{-7} \) | \(a_{108}= -0.12104128 \pm 3.4 \cdot 10^{-7} \) |
\(a_{109}= +1.63792154 \pm 2.6 \cdot 10^{-7} \) | \(a_{110}= -0.08685188 \pm 2.3 \cdot 10^{-7} \) | \(a_{111}= +0.21185359 \pm 2.3 \cdot 10^{-7} \) |
\(a_{112}= -0.00926984 \pm 2.8 \cdot 10^{-7} \) | \(a_{113}= -0.78315461 \pm 1.7 \cdot 10^{-7} \) | \(a_{114}= +0.16074200 \pm 5.4 \cdot 10^{-7} \) |
\(a_{115}= -0.92428434 \pm 2.3 \cdot 10^{-7} \) | \(a_{116}= -0.79009731 \pm 2.9 \cdot 10^{-7} \) | \(a_{117}= +0.50700616 \pm 2.6 \cdot 10^{-7} \) |
\(a_{118}= +0.41501916 \pm 2.1 \cdot 10^{-7} \) | \(a_{119}= -0.42122922 \pm 2.6 \cdot 10^{-7} \) | \(a_{120}= -0.60214914 \pm 5.7 \cdot 10^{-7} \) |
\(a_{121}= -0.98159889 \pm 2.0 \cdot 10^{-7} \) | \(a_{122}= +1.02195608 \pm 2.5 \cdot 10^{-7} \) | \(a_{123}= +0.48136242 \pm 2.0 \cdot 10^{-7} \) |
\(a_{124}= +1.01875729 \pm 3.4 \cdot 10^{-7} \) | \(a_{125}= +0.94094454 \pm 2.0 \cdot 10^{-7} \) | \(a_{126}= +0.07674438 \pm 2.9 \cdot 10^{-7} \) |
\(a_{127}= -0.33228521 \pm 2.8 \cdot 10^{-7} \) | \(a_{128}= +0.64841500 \pm 2.5 \cdot 10^{-7} \) | \(a_{129}= +0.06388926 \pm 2.7 \cdot 10^{-7} \) |
\(a_{130}= +0.97384922 \pm 3.2 \cdot 10^{-7} \) | \(a_{131}= -0.97482210 \pm 2.0 \cdot 10^{-7} \) | \(a_{132}= +0.04925800 \pm 5.6 \cdot 10^{-7} \) |
\(a_{133}= +0.17275242 \pm 2.5 \cdot 10^{-7} \) | \(a_{134}= -0.95195606 \pm 2.4 \cdot 10^{-7} \) | \(a_{135}= -0.20228259 \pm 2.3 \cdot 10^{-7} \) |
\(a_{136}= +1.10583878 \pm 2.5 \cdot 10^{-7} \) | \(a_{137}= -0.58242317 \pm 2.0 \cdot 10^{-7} \) | \(a_{138}= -0.30925834 \pm 5.4 \cdot 10^{-7} \) |
\(a_{139}= -0.89136361 \pm 2.6 \cdot 10^{-7} \) | \(a_{140}= -0.24986577 \pm 5.7 \cdot 10^{-7} \) | \(a_{141}= +0.93978552 \pm 2.4 \cdot 10^{-7} \) |
\(a_{142}= -0.43729587 \pm 2.9 \cdot 10^{-7} \) | \(a_{143}= -0.20632721 \pm 2.3 \cdot 10^{-7} \) | \(a_{144}= +0.00817523 \pm 2.8 \cdot 10^{-7} \) |
\(a_{145}= -1.32040021 \pm 1.9 \cdot 10^{-7} \) | \(a_{146}= -1.08577761 \pm 2.7 \cdot 10^{-7} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -0.23078727 \pm 3.0 \cdot 10^{-7} \) | \(a_{149}= -0.23236589 \pm 2.2 \cdot 10^{-7} \) | \(a_{150}= -0.03685421 \pm 5.3 \cdot 10^{-7} \) |
\(a_{151}= -0.49730406 \pm 2.5 \cdot 10^{-7} \) | \(a_{152}= -0.45352108 \pm 3.0 \cdot 10^{-7} \) | \(a_{153}= +0.37148925 \pm 2.6 \cdot 10^{-7} \) |
\(a_{154}= -0.03123128 \pm 5.2 \cdot 10^{-7} \) | \(a_{155}= +1.70253376 \pm 2.4 \cdot 10^{-7} \) | \(a_{156}= -0.55231807 \pm 6.0 \cdot 10^{-7} \) |
\(a_{157}= +1.02372978 \pm 2.4 \cdot 10^{-7} \) | \(a_{158}= +0.43917009 \pm 2.0 \cdot 10^{-7} \) | \(a_{159}= +0.16657847 \pm 2.7 \cdot 10^{-7} \) |
\(a_{160}= +1.05865577 \pm 2.4 \cdot 10^{-7} \) | \(a_{161}= -0.33236569 \pm 2.5 \cdot 10^{-7} \) | \(a_{162}= -0.06768218 \pm 2.9 \cdot 10^{-7} \) |
\(a_{163}= -0.82602134 \pm 2.3 \cdot 10^{-7} \) | \(a_{164}= -0.52438251 \pm 2.5 \cdot 10^{-7} \) | \(a_{165}= +0.08231932 \pm 4.6 \cdot 10^{-7} \) |
\(a_{166}= -0.87442470 \pm 2.4 \cdot 10^{-7} \) | \(a_{167}= +1.58598199 \pm 1.9 \cdot 10^{-7} \) | \(a_{168}= -0.21652830 \pm 3.4 \cdot 10^{-7} \) |
\(a_{169}= +1.31349724 \pm 2.9 \cdot 10^{-7} \) | \(a_{170}= +0.71355053 \pm 1.4 \cdot 10^{-7} \) | \(a_{171}= -0.15235332 \pm 2.5 \cdot 10^{-7} \) |
\(a_{172}= -0.06959914 \pm 4.0 \cdot 10^{-7} \) | \(a_{173}= +0.89839544 \pm 2.8 \cdot 10^{-7} \) | \(a_{174}= -0.44179562 \pm 5.5 \cdot 10^{-7} \) |
\(a_{175}= -0.03960790 \pm 2.4 \cdot 10^{-7} \) | \(a_{176}= -0.00332693 \pm 2.6 \cdot 10^{-7} \) | \(a_{177}= -0.39336044 \pm 1.8 \cdot 10^{-7} \) |
\(a_{178}= -0.10427221 \pm 2.5 \cdot 10^{-7} \) | \(a_{179}= +0.46213803 \pm 2.1 \cdot 10^{-7} \) | \(a_{180}= +0.22036089 \pm 5.7 \cdot 10^{-7} \) |
\(a_{181}= +0.09692756 \pm 1.9 \cdot 10^{-7} \) | \(a_{182}= +0.35018885 \pm 5.5 \cdot 10^{-7} \) | \(a_{183}= -0.96862297 \pm 2.4 \cdot 10^{-7} \) |
\(a_{184}= +0.87254838 \pm 3.3 \cdot 10^{-7} \) | \(a_{185}= -0.38568864 \pm 2.6 \cdot 10^{-7} \) | \(a_{186}= +0.56965453 \pm 5.6 \cdot 10^{-7} \) |
\(a_{187}= -0.15117832 \pm 2.2 \cdot 10^{-7} \) | \(a_{188}= -1.02377558 \pm 3.5 \cdot 10^{-7} \) | \(a_{189}= -0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= -0.29263778 \pm 1.7 \cdot 10^{-7} \) | \(a_{191}= -0.39896043 \pm 2.6 \cdot 10^{-7} \) | \(a_{192}= +0.34005805 \pm 2.3 \cdot 10^{-7} \) |
\(a_{193}= -1.37078049 \pm 2.6 \cdot 10^{-7} \) | \(a_{194}= -0.31602287 \pm 1.4 \cdot 10^{-7} \) | \(a_{195}= -0.92302668 \pm 4.9 \cdot 10^{-7} \) |
\(a_{196}= -0.08984985 \pm 3.4 \cdot 10^{-7} \) | \(a_{197}= +0.32996882 \pm 1.9 \cdot 10^{-7} \) | \(a_{198}= +0.02754340 \pm 5.2 \cdot 10^{-7} \) |
\(a_{199}= +0.51858693 \pm 1.6 \cdot 10^{-7} \) | \(a_{200}= +0.10398128 \pm 2.0 \cdot 10^{-7} \) | \(a_{201}= +0.90227607 \pm 2.6 \cdot 10^{-7} \) |
\(a_{202}= +0.33762311 \pm 2.6 \cdot 10^{-7} \) | \(a_{203}= -0.47480598 \pm 2.6 \cdot 10^{-7} \) | \(a_{204}= -0.40468981 \pm 5.9 \cdot 10^{-7} \) |
\(a_{205}= -0.87634114 \pm 1.6 \cdot 10^{-7} \) | \(a_{206}= -0.22842430 \pm 2.7 \cdot 10^{-7} \) | \(a_{207}= +0.29311899 \pm 2.5 \cdot 10^{-7} \) |
\(a_{208}= +0.03730405 \pm 2.3 \cdot 10^{-7} \) | \(a_{209}= +0.06200050 \pm 2.4 \cdot 10^{-7} \) | \(a_{210}= -0.13971646 \pm 5.2 \cdot 10^{-7} \) |
\(a_{211}= -1.36918311 \pm 2.4 \cdot 10^{-7} \) | \(a_{212}= -0.18146584 \pm 3.7 \cdot 10^{-7} \) | \(a_{213}= +0.41447459 \pm 3.2 \cdot 10^{-7} \) |
\(a_{214}= -0.09789746 \pm 3.3 \cdot 10^{-7} \) | \(a_{215}= -0.11631316 \pm 2.0 \cdot 10^{-7} \) | \(a_{216}= +0.19096001 \pm 3.4 \cdot 10^{-7} \) |
\(a_{217}= +0.61221832 \pm 2.7 \cdot 10^{-7} \) | \(a_{218}= -0.99772289 \pm 2.7 \cdot 10^{-7} \) | \(a_{219}= +1.02911383 \pm 2.4 \cdot 10^{-7} \) |
\(a_{220}= -0.08967632 \pm 2.7 \cdot 10^{-7} \) | \(a_{221}= +1.69512605 \pm 2.0 \cdot 10^{-7} \) | \(a_{222}= -0.12904841 \pm 5.2 \cdot 10^{-7} \) |
\(a_{223}= +0.77606729 \pm 2.8 \cdot 10^{-7} \) | \(a_{224}= +0.38068464 \pm 2.6 \cdot 10^{-7} \) | \(a_{225}= +0.03493089 \pm 2.4 \cdot 10^{-7} \) |
\(a_{226}= +0.47705049 \pm 2.4 \cdot 10^{-7} \) | \(a_{227}= -1.76117124 \pm 2.5 \cdot 10^{-7} \) | \(a_{228}= +0.16596936 \pm 5.9 \cdot 10^{-7} \) |
\(a_{229}= +0.84555254 \pm 3.1 \cdot 10^{-7} \) | \(a_{230}= +0.56301820 \pm 2.7 \cdot 10^{-7} \) | \(a_{231}= +0.02960141 \pm 2.3 \cdot 10^{-7} \) |
\(a_{232}= +1.24649203 \pm 2.7 \cdot 10^{-7} \) | \(a_{233}= +0.78361782 \pm 2.2 \cdot 10^{-7} \) | \(a_{234}= -0.30883754 \pm 5.5 \cdot 10^{-7} \) |
\(a_{235}= -1.71092025 \pm 2.2 \cdot 10^{-7} \) | \(a_{236}= +0.42851566 \pm 2.5 \cdot 10^{-7} \) | \(a_{237}= -0.41625100 \pm 1.7 \cdot 10^{-7} \) |
\(a_{238}= +0.25658740 \pm 5.4 \cdot 10^{-7} \) | \(a_{239}= -1.54432981 \pm 2.1 \cdot 10^{-7} \) | \(a_{240}= -0.01488337 \pm 5.1 \cdot 10^{-7} \) |
\(a_{241}= +1.57517836 \pm 2.4 \cdot 10^{-7} \) | \(a_{242}= +0.59793076 \pm 2.7 \cdot 10^{-7} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +1.05519028 \pm 2.9 \cdot 10^{-7} \) | \(a_{245}= -0.15015588 \pm 2.3 \cdot 10^{-7} \) | \(a_{246}= -0.29321692 \pm 4.8 \cdot 10^{-7} \) |
\(a_{247}= -0.69519663 \pm 1.9 \cdot 10^{-7} \) | \(a_{248}= -1.60723601 \pm 3.4 \cdot 10^{-7} \) | \(a_{249}= +0.82879085 \pm 2.3 \cdot 10^{-7} \) |
\(a_{250}= -0.57316659 \pm 2.3 \cdot 10^{-7} \) | \(a_{251}= +0.34298790 \pm 2.0 \cdot 10^{-7} \) | \(a_{252}= +0.07924012 \pm 3.4 \cdot 10^{-7} \) |
\(a_{253}= -0.11928538 \pm 1.9 \cdot 10^{-7} \) | \(a_{254}= +0.20240808 \pm 3.8 \cdot 10^{-7} \) | \(a_{255}= -0.67631227 \pm 4.8 \cdot 10^{-7} \) |
\(a_{256}= -0.98397307 \pm 2.6 \cdot 10^{-7} \) | \(a_{257}= -0.95326471 \pm 2.2 \cdot 10^{-7} \) | \(a_{258}= -0.03891748 \pm 5.5 \cdot 10^{-7} \) |
\(a_{259}= -0.13869073 \pm 2.3 \cdot 10^{-7} \) | \(a_{260}= +1.00551898 \pm 3.4 \cdot 10^{-7} \) | \(a_{261}= +0.41873951 \pm 2.6 \cdot 10^{-7} \) |
\(a_{262}= +0.59380275 \pm 2.9 \cdot 10^{-7} \) | \(a_{263}= -0.97053608 \pm 2.4 \cdot 10^{-7} \) | \(a_{264}= -0.07771157 \pm 5.6 \cdot 10^{-7} \) |
\(a_{265}= -0.30326331 \pm 2.0 \cdot 10^{-7} \) | \(a_{266}= -0.10523034 \pm 5.4 \cdot 10^{-7} \) | \(a_{267}= +0.09883053 \pm 2.2 \cdot 10^{-7} \) |
\(a_{268}= -0.98291385 \pm 2.8 \cdot 10^{-7} \) | \(a_{269}= +1.75113391 \pm 2.2 \cdot 10^{-7} \) | \(a_{270}= +0.12321834 \pm 5.2 \cdot 10^{-7} \) |
\(a_{271}= +0.40181224 \pm 2.1 \cdot 10^{-7} \) | \(a_{272}= +0.02733311 \pm 1.6 \cdot 10^{-7} \) | \(a_{273}= -0.33191345 \pm 2.6 \cdot 10^{-7} \) |
\(a_{274}= +0.35477702 \pm 2.6 \cdot 10^{-7} \) | \(a_{275}= -0.01421520 \pm 2.1 \cdot 10^{-7} \) | \(a_{276}= -0.31931548 \pm 5.8 \cdot 10^{-7} \) |
\(a_{277}= -1.05898760 \pm 2.0 \cdot 10^{-7} \) | \(a_{278}= +0.54296488 \pm 3.0 \cdot 10^{-7} \) | \(a_{279}= -0.53992581 \pm 2.7 \cdot 10^{-7} \) |
\(a_{280}= +0.39419915 \pm 5.7 \cdot 10^{-7} \) | \(a_{281}= +0.29754675 \pm 2.9 \cdot 10^{-7} \) | \(a_{282}= -0.57246058 \pm 5.3 \cdot 10^{-7} \) |
\(a_{283}= -0.34196439 \pm 2.0 \cdot 10^{-7} \) | \(a_{284}= -0.45151681 \pm 3.7 \cdot 10^{-7} \) | \(a_{285}= +0.27736581 \pm 4.8 \cdot 10^{-7} \) |
\(a_{286}= +0.12568208 \pm 2.3 \cdot 10^{-7} \) | \(a_{287}= -0.31512568 \pm 2.0 \cdot 10^{-7} \) | \(a_{288}= -0.33573230 \pm 2.6 \cdot 10^{-7} \) |
\(a_{289}= +0.24203836 \pm 2.3 \cdot 10^{-7} \) | \(a_{290}= +0.80430807 \pm 2.3 \cdot 10^{-7} \) | \(a_{291}= +0.29953050 \pm 1.6 \cdot 10^{-7} \) |
\(a_{292}= -1.12108730 \pm 3.2 \cdot 10^{-7} \) | \(a_{293}= -1.28265385 \pm 2.1 \cdot 10^{-7} \) | \(a_{294}= -0.05024099 \pm 2.9 \cdot 10^{-7} \) |
\(a_{295}= +0.71612972 \pm 1.5 \cdot 10^{-7} \) | \(a_{296}= +0.36410007 \pm 2.8 \cdot 10^{-7} \) | \(a_{297}= -0.02610599 \pm 2.3 \cdot 10^{-7} \) |
\(a_{298}= +0.14154327 \pm 3.1 \cdot 10^{-7} \) | \(a_{299}= +1.33751820 \pm 2.7 \cdot 10^{-7} \) | \(a_{300}= -0.03805271 \pm 5.7 \cdot 10^{-7} \) |
\(a_{301}= -0.04182534 \pm 2.7 \cdot 10^{-7} \) | \(a_{302}= +0.30292760 \pm 3.3 \cdot 10^{-7} \) | \(a_{303}= -0.32000348 \pm 2.7 \cdot 10^{-7} \) |
\(a_{304}= -0.01120972 \pm 2.0 \cdot 10^{-7} \) | \(a_{305}= +1.76342008 \pm 1.7 \cdot 10^{-7} \) | \(a_{306}= -0.22628882 \pm 5.4 \cdot 10^{-7} \) |
\(a_{307}= +1.07934696 \pm 3.1 \cdot 10^{-7} \) | \(a_{308}= -0.03224693 \pm 5.6 \cdot 10^{-7} \) | \(a_{309}= +0.21650346 \pm 2.2 \cdot 10^{-7} \) |
\(a_{310}= -1.03708075 \pm 3.0 \cdot 10^{-7} \) | \(a_{311}= +0.98228013 \pm 2.8 \cdot 10^{-7} \) | \(a_{312}= +0.87136112 \pm 6.0 \cdot 10^{-7} \) |
\(a_{313}= -1.47521287 \pm 3.0 \cdot 10^{-7} \) | \(a_{314}= -0.62359436 \pm 2.6 \cdot 10^{-7} \) | \(a_{315}= +0.13242504 \pm 2.3 \cdot 10^{-7} \) |
\(a_{316}= +0.45345198 \pm 2.3 \cdot 10^{-7} \) | \(a_{317}= +0.53743693 \pm 2.8 \cdot 10^{-7} \) | \(a_{318}= -0.10146954 \pm 5.5 \cdot 10^{-7} \) |
\(a_{319}= -0.17040691 \pm 1.8 \cdot 10^{-7} \) | \(a_{320}= -0.61909041 \pm 1.8 \cdot 10^{-7} \) | \(a_{321}= +0.09278845 \pm 2.8 \cdot 10^{-7} \) |
\(a_{322}= +0.20245711 \pm 5.4 \cdot 10^{-7} \) | \(a_{323}= -0.50937857 \pm 3.1 \cdot 10^{-7} \) | \(a_{324}= -0.06988322 \pm 3.4 \cdot 10^{-7} \) |
\(a_{325}= +0.15939157 \pm 2.2 \cdot 10^{-7} \) | \(a_{326}= +0.50316232 \pm 1.9 \cdot 10^{-7} \) | \(a_{327}= +0.94565444 \pm 2.7 \cdot 10^{-7} \) |
\(a_{328}= +0.82728876 \pm 2.4 \cdot 10^{-7} \) | \(a_{329}= -0.61523404 \pm 2.4 \cdot 10^{-7} \) | \(a_{330}= -0.05014396 \pm 7.4 \cdot 10^{-7} \) |
\(a_{331}= +0.70894654 \pm 2.1 \cdot 10^{-7} \) | \(a_{332}= -0.90286115 \pm 2.5 \cdot 10^{-7} \) | \(a_{333}= +0.12231373 \pm 2.3 \cdot 10^{-7} \) |
\(a_{334}= -0.96608445 \pm 2.7 \cdot 10^{-7} \) | \(a_{335}= -1.64263266 \pm 2.5 \cdot 10^{-7} \) | \(a_{336}= -0.00535195 \pm 2.8 \cdot 10^{-7} \) |
\(a_{337}= +1.68854801 \pm 2.8 \cdot 10^{-7} \) | \(a_{338}= -0.80010319 \pm 2.7 \cdot 10^{-7} \) | \(a_{339}= -0.45215452 \pm 1.8 \cdot 10^{-7} \) |
\(a_{340}= +0.73675533 \pm 1.5 \cdot 10^{-7} \) | \(a_{341}= +0.21972393 \pm 2.0 \cdot 10^{-7} \) | \(a_{342}= +0.09280444 \pm 5.4 \cdot 10^{-7} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.10980264 \pm 4.0 \cdot 10^{-7} \) | \(a_{345}= -0.53363581 \pm 4.8 \cdot 10^{-7} \) |
\(a_{346}= -0.54724824 \pm 3.4 \cdot 10^{-7} \) | \(a_{347}= -1.32513444 \pm 2.5 \cdot 10^{-7} \) | \(a_{348}= -0.45616290 \pm 6.0 \cdot 10^{-7} \) |
\(a_{349}= -0.99921014 \pm 2.3 \cdot 10^{-7} \) | \(a_{350}= +0.02412674 \pm 5.3 \cdot 10^{-7} \) | \(a_{351}= +0.29272014 \pm 2.6 \cdot 10^{-7} \) |
\(a_{352}= +0.13662696 \pm 2.5 \cdot 10^{-7} \) | \(a_{353}= -0.29321394 \pm 1.9 \cdot 10^{-7} \) | \(a_{354}= +0.23961142 \pm 4.7 \cdot 10^{-7} \) |
\(a_{355}= -0.75456894 \pm 2.9 \cdot 10^{-7} \) | \(a_{356}= -0.10766316 \pm 2.4 \cdot 10^{-7} \) | \(a_{357}= -0.24319680 \pm 2.6 \cdot 10^{-7} \) |
\(a_{358}= -0.28150658 \pm 2.5 \cdot 10^{-7} \) | \(a_{359}= +1.02839080 \pm 1.6 \cdot 10^{-7} \) | \(a_{360}= -0.34765097 \pm 5.7 \cdot 10^{-7} \) |
\(a_{361}= -0.79109620 \pm 2.8 \cdot 10^{-7} \) | \(a_{362}= -0.05904242 \pm 2.4 \cdot 10^{-7} \) | \(a_{363}= -0.56672638 \pm 2.1 \cdot 10^{-7} \) |
\(a_{364}= +0.36157705 \pm 6.0 \cdot 10^{-7} \) | \(a_{365}= -1.87354631 \pm 2.3 \cdot 10^{-7} \) | \(a_{366}= +0.59002662 \pm 5.3 \cdot 10^{-7} \) |
\(a_{367}= +1.87268201 \pm 1.9 \cdot 10^{-7} \) | \(a_{368}= +0.02156685 \pm 2.8 \cdot 10^{-7} \) | \(a_{369}= +0.27791472 \pm 2.0 \cdot 10^{-7} \) |
\(a_{370}= +0.23493823 \pm 2.8 \cdot 10^{-7} \) | \(a_{371}= -0.10905120 \pm 2.7 \cdot 10^{-7} \) | \(a_{372}= +0.58817980 \pm 6.1 \cdot 10^{-7} \) |
\(a_{373}= +0.54641455 \pm 3.1 \cdot 10^{-7} \) | \(a_{374}= +0.09208870 \pm 2.7 \cdot 10^{-7} \) | \(a_{375}= +0.54325458 \pm 2.1 \cdot 10^{-7} \) |
\(a_{376}= +1.61515307 \pm 3.8 \cdot 10^{-7} \) | \(a_{377}= +1.91073161 \pm 1.8 \cdot 10^{-7} \) | \(a_{378}= +0.04430839 \pm 2.9 \cdot 10^{-7} \) |
\(a_{379}= -1.96494026 \pm 2.1 \cdot 10^{-7} \) | \(a_{380}= -0.30215442 \pm 2.2 \cdot 10^{-7} \) | \(a_{381}= -0.19184496 \pm 2.9 \cdot 10^{-7} \) |
\(a_{382}= +0.24302260 \pm 3.5 \cdot 10^{-7} \) | \(a_{383}= +0.41451533 \pm 3.0 \cdot 10^{-7} \) | \(a_{384}= +0.37436257 \pm 2.6 \cdot 10^{-7} \) |
\(a_{385}= -0.05389065 \pm 4.6 \cdot 10^{-7} \) | \(a_{386}= +0.83499669 \pm 2.8 \cdot 10^{-7} \) | \(a_{387}= +0.03688648 \pm 2.7 \cdot 10^{-7} \) |
\(a_{388}= -0.32629999 \pm 1.9 \cdot 10^{-7} \) | \(a_{389}= -0.12916410 \pm 2.0 \cdot 10^{-7} \) | \(a_{390}= +0.56225211 \pm 7.8 \cdot 10^{-7} \) |
\(a_{391}= +0.98001497 \pm 1.7 \cdot 10^{-7} \) | \(a_{392}= +0.14175105 \pm 3.4 \cdot 10^{-7} \) | \(a_{393}= -0.56281380 \pm 2.1 \cdot 10^{-7} \) |
\(a_{394}= -0.20099708 \pm 2.0 \cdot 10^{-7} \) | \(a_{395}= +0.75780297 \pm 1.6 \cdot 10^{-7} \) | \(a_{396}= +0.02843912 \pm 5.6 \cdot 10^{-7} \) |
\(a_{397}= +0.55011219 \pm 1.9 \cdot 10^{-7} \) | \(a_{398}= -0.31589184 \pm 2.2 \cdot 10^{-7} \) | \(a_{399}= +0.09973866 \pm 2.5 \cdot 10^{-7} \) |
\(a_{400}= +0.00257011 \pm 1.9 \cdot 10^{-7} \) | \(a_{401}= -0.65677301 \pm 2.3 \cdot 10^{-7} \) | \(a_{402}= -0.54961209 \pm 5.4 \cdot 10^{-7} \) |
\(a_{403}= -2.46371141 \pm 2.2 \cdot 10^{-7} \) | \(a_{404}= +0.34860267 \pm 3.4 \cdot 10^{-7} \) | \(a_{405}= -0.11678791 \pm 2.3 \cdot 10^{-7} \) |
\(a_{406}= +0.28922313 \pm 5.5 \cdot 10^{-7} \) | \(a_{407}= -0.04977582 \pm 2.0 \cdot 10^{-7} \) | \(a_{408}= +0.63845632 \pm 5.9 \cdot 10^{-7} \) |
\(a_{409}= -0.01310831 \pm 2.1 \cdot 10^{-7} \) | \(a_{410}= +0.53381410 \pm 2.0 \cdot 10^{-7} \) | \(a_{411}= -0.33626217 \pm 2.1 \cdot 10^{-7} \) |
\(a_{412}= -0.23585270 \pm 3.0 \cdot 10^{-7} \) | \(a_{413}= +0.25751486 \pm 1.8 \cdot 10^{-7} \) | \(a_{414}= -0.17855038 \pm 5.4 \cdot 10^{-7} \) |
\(a_{415}= -1.50884965 \pm 2.2 \cdot 10^{-7} \) | \(a_{416}= -1.53196510 \pm 2.3 \cdot 10^{-7} \) | \(a_{417}= -0.51462902 \pm 2.7 \cdot 10^{-7} \) |
\(a_{418}= -0.03776696 \pm 3.4 \cdot 10^{-7} \) | \(a_{419}= +0.98969867 \pm 2.5 \cdot 10^{-7} \) | \(a_{420}= -0.14426007 \pm 5.7 \cdot 10^{-7} \) |
\(a_{421}= +1.28606862 \pm 2.1 \cdot 10^{-7} \) | \(a_{422}= +0.83402366 \pm 2.5 \cdot 10^{-7} \) | \(a_{423}= +0.54258542 \pm 2.4 \cdot 10^{-7} \) |
\(a_{424}= +0.28628843 \pm 3.9 \cdot 10^{-7} \) | \(a_{425}= +0.11678804 \pm 2.2 \cdot 10^{-7} \) | \(a_{426}= -0.25247289 \pm 6.1 \cdot 10^{-7} \) |
\(a_{427}= +0.63411258 \pm 2.4 \cdot 10^{-7} \) | \(a_{428}= -0.10108110 \pm 4.1 \cdot 10^{-7} \) | \(a_{429}= -0.11912307 \pm 4.9 \cdot 10^{-7} \) |
\(a_{430}= +0.07085096 \pm 3.2 \cdot 10^{-7} \) | \(a_{431}= +0.82733737 \pm 2.4 \cdot 10^{-7} \) | \(a_{432}= +0.00471997 \pm 2.8 \cdot 10^{-7} \) |
\(a_{433}= -0.14528949 \pm 1.7 \cdot 10^{-7} \) | \(a_{434}= -0.37292643 \pm 5.6 \cdot 10^{-7} \) | \(a_{435}= -0.76233342 \pm 4.9 \cdot 10^{-7} \) |
\(a_{436}= -1.03016902 \pm 2.9 \cdot 10^{-7} \) | \(a_{437}= -0.40191885 \pm 2.1 \cdot 10^{-7} \) | \(a_{438}= -0.62687400 \pm 5.2 \cdot 10^{-7} \) |
\(a_{439}= -0.86654349 \pm 2.4 \cdot 10^{-7} \) | \(a_{440}= +0.14147728 \pm 2.6 \cdot 10^{-7} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= -1.03256842 \pm 1.7 \cdot 10^{-7} \) | \(a_{443}= +0.25354200 \pm 2.4 \cdot 10^{-7} \) | \(a_{444}= -0.13324509 \pm 5.7 \cdot 10^{-7} \) |
\(a_{445}= -0.17992526 \pm 2.4 \cdot 10^{-7} \) | \(a_{446}= -0.47273333 \pm 2.8 \cdot 10^{-7} \) | \(a_{447}= -0.13415651 \pm 2.3 \cdot 10^{-7} \) |
\(a_{448}= -0.22262025 \pm 2.3 \cdot 10^{-7} \) | \(a_{449}= -0.71335298 \pm 2.1 \cdot 10^{-7} \) | \(a_{450}= -0.02127779 \pm 5.3 \cdot 10^{-7} \) |
\(a_{451}= -0.11309797 \pm 1.5 \cdot 10^{-7} \) | \(a_{452}= +0.49256426 \pm 2.8 \cdot 10^{-7} \) | \(a_{453}= -0.28711863 \pm 2.6 \cdot 10^{-7} \) |
\(a_{454}= +1.07279916 \pm 2.3 \cdot 10^{-7} \) | \(a_{455}= +0.60426281 \pm 4.9 \cdot 10^{-7} \) | \(a_{456}= -0.26184052 \pm 5.8 \cdot 10^{-7} \) |
\(a_{457}= +1.80657033 \pm 2.6 \cdot 10^{-7} \) | \(a_{458}= -0.51505955 \pm 2.9 \cdot 10^{-7} \) | \(a_{459}= +0.21447942 \pm 2.6 \cdot 10^{-7} \) |
\(a_{460}= +0.58132766 \pm 3.7 \cdot 10^{-7} \) | \(a_{461}= -0.18686867 \pm 3.0 \cdot 10^{-7} \) | \(a_{462}= -0.01803139 \pm 5.2 \cdot 10^{-7} \) |
\(a_{463}= -0.36977529 \pm 2.2 \cdot 10^{-7} \) | \(a_{464}= +0.03080964 \pm 2.3 \cdot 10^{-7} \) | \(a_{465}= +0.98295833 \pm 5.0 \cdot 10^{-7} \) |
\(a_{466}= -0.47733265 \pm 2.4 \cdot 10^{-7} \) | \(a_{467}= +0.64025537 \pm 2.6 \cdot 10^{-7} \) | \(a_{468}= -0.31888099 \pm 6.0 \cdot 10^{-7} \) |
\(a_{469}= -0.59067834 \pm 2.6 \cdot 10^{-7} \) | \(a_{470}= +1.04218929 \pm 3.1 \cdot 10^{-7} \) | \(a_{471}= +0.59105066 \pm 2.5 \cdot 10^{-7} \) |
\(a_{472}= -0.67604502 \pm 2.5 \cdot 10^{-7} \) | \(a_{473}= -0.01501103 \pm 2.1 \cdot 10^{-7} \) | \(a_{474}= +0.25355497 \pm 4.6 \cdot 10^{-7} \) |
\(a_{475}= -0.04789653 \pm 2.2 \cdot 10^{-7} \) | \(a_{476}= +0.26493167 \pm 5.9 \cdot 10^{-7} \) | \(a_{477}= +0.09617412 \pm 2.7 \cdot 10^{-7} \) |
\(a_{478}= +0.94071246 \pm 2.6 \cdot 10^{-7} \) | \(a_{479}= +0.34707908 \pm 2.5 \cdot 10^{-7} \) | \(a_{480}= +0.61121519 \pm 4.9 \cdot 10^{-7} \) |
\(a_{481}= +0.55812432 \pm 2.3 \cdot 10^{-7} \) | \(a_{482}= -0.95950353 \pm 2.3 \cdot 10^{-7} \) | \(a_{483}= -0.19189142 \pm 2.5 \cdot 10^{-7} \) |
\(a_{484}= +0.61737558 \pm 3.1 \cdot 10^{-7} \) | \(a_{485}= -0.54530824 \pm 1.4 \cdot 10^{-7} \) | \(a_{486}= -0.03907632 \pm 2.9 \cdot 10^{-7} \) |
\(a_{487}= -0.16083319 \pm 2.1 \cdot 10^{-7} \) | \(a_{488}= -1.66471427 \pm 2.7 \cdot 10^{-7} \) | \(a_{489}= -0.47690364 \pm 2.4 \cdot 10^{-7} \) |
\(a_{490}= +0.09146590 \pm 5.2 \cdot 10^{-7} \) | \(a_{491}= +0.14438908 \pm 1.9 \cdot 10^{-7} \) | \(a_{492}= -0.30275238 \pm 5.3 \cdot 10^{-7} \) |
\(a_{493}= +1.40001504 \pm 2.7 \cdot 10^{-7} \) | \(a_{494}= +0.42347180 \pm 2.3 \cdot 10^{-7} \) | \(a_{495}= +0.04752708 \pm 4.6 \cdot 10^{-7} \) |
\(a_{496}= -0.03972618 \pm 2.8 \cdot 10^{-7} \) | \(a_{497}= -0.27133731 \pm 3.2 \cdot 10^{-7} \) | \(a_{498}= -0.50484933 \pm 5.2 \cdot 10^{-7} \) |
\(a_{499}= +0.26841840 \pm 2.3 \cdot 10^{-7} \) | \(a_{500}= -0.59180607 \pm 2.9 \cdot 10^{-7} \) | \(a_{501}= +0.91566713 \pm 2.0 \cdot 10^{-7} \) |
\(a_{502}= -0.20892751 \pm 2.4 \cdot 10^{-7} \) | \(a_{503}= -0.38549337 \pm 2.6 \cdot 10^{-7} \) | \(a_{504}= -0.12501267 \pm 3.4 \cdot 10^{-7} \) |
\(a_{505}= +0.58258020 \pm 1.7 \cdot 10^{-7} \) | \(a_{506}= +0.07266145 \pm 2.3 \cdot 10^{-7} \) | \(a_{507}= +0.75834798 \pm 3.0 \cdot 10^{-7} \) |
\(a_{508}= +0.20899043 \pm 4.7 \cdot 10^{-7} \) | \(a_{509}= +0.37875060 \pm 2.4 \cdot 10^{-7} \) | \(a_{510}= +0.41196859 \pm 7.7 \cdot 10^{-7} \) |
\(a_{511}= -0.67371315 \pm 2.4 \cdot 10^{-7} \) | \(a_{512}= -0.04903802 \pm 3.0 \cdot 10^{-7} \) | \(a_{513}= -0.08796123 \pm 2.5 \cdot 10^{-7} \) |
\(a_{514}= +0.58067129 \pm 2.2 \cdot 10^{-7} \) | \(a_{515}= -0.39415392 \pm 2.2 \cdot 10^{-7} \) | \(a_{516}= -0.04018308 \pm 6.0 \cdot 10^{-7} \) |
\(a_{517}= -0.22080626 \pm 1.9 \cdot 10^{-7} \) | \(a_{518}= +0.08448202 \pm 5.2 \cdot 10^{-7} \) | \(a_{519}= +0.51868885 \pm 2.9 \cdot 10^{-7} \) |
\(a_{520}= -1.58635066 \pm 3.2 \cdot 10^{-7} \) | \(a_{521}= -0.67513648 \pm 2.7 \cdot 10^{-7} \) | \(a_{522}= -0.25507082 \pm 5.5 \cdot 10^{-7} \) |
\(a_{523}= -0.44460666 \pm 2.4 \cdot 10^{-7} \) | \(a_{524}= +0.61311332 \pm 3.4 \cdot 10^{-7} \) | \(a_{525}= -0.02286763 \pm 2.4 \cdot 10^{-7} \) |
\(a_{526}= +0.59119196 \pm 2.6 \cdot 10^{-7} \) | \(a_{527}= -1.80518971 \pm 2.9 \cdot 10^{-7} \) | \(a_{528}= -0.00192080 \pm 5.1 \cdot 10^{-7} \) |
\(a_{529}= -0.22673133 \pm 2.3 \cdot 10^{-7} \) | \(a_{530}= +0.18472970 \pm 2.8 \cdot 10^{-7} \) | \(a_{531}= -0.22710676 \pm 1.8 \cdot 10^{-7} \) |
\(a_{532}= -0.10865245 \pm 5.9 \cdot 10^{-7} \) | \(a_{533}= +1.26814030 \pm 2.6 \cdot 10^{-7} \) | \(a_{534}= -0.06020159 \pm 5.0 \cdot 10^{-7} \) |
\(a_{535}= -0.16892540 \pm 2.1 \cdot 10^{-7} \) | \(a_{536}= +1.55068782 \pm 3.0 \cdot 10^{-7} \) | \(a_{537}= +0.26681551 \pm 2.2 \cdot 10^{-7} \) |
\(a_{538}= -1.06668502 \pm 2.4 \cdot 10^{-7} \) | \(a_{539}= -0.01937867 \pm 2.3 \cdot 10^{-7} \) | \(a_{540}= +0.12722542 \pm 5.7 \cdot 10^{-7} \) |
\(a_{541}= +0.21853084 \pm 2.3 \cdot 10^{-7} \) | \(a_{542}= -0.24475975 \pm 2.6 \cdot 10^{-7} \) | \(a_{543}= +0.05596116 \pm 2.0 \cdot 10^{-7} \) |
\(a_{544}= -1.12248846 \pm 1.9 \cdot 10^{-7} \) | \(a_{545}= -1.72160488 \pm 1.9 \cdot 10^{-7} \) | \(a_{546}= +0.20218163 \pm 5.5 \cdot 10^{-7} \) |
\(a_{547}= -0.66465871 \pm 1.9 \cdot 10^{-7} \) | \(a_{548}= +0.36631443 \pm 2.9 \cdot 10^{-7} \) | \(a_{549}= -0.55923473 \pm 2.4 \cdot 10^{-7} \) |
\(a_{550}= +0.00865904 \pm 2.5 \cdot 10^{-7} \) | \(a_{551}= -0.57416718 \pm 2.1 \cdot 10^{-7} \) | \(a_{552}= +0.50376604 \pm 5.8 \cdot 10^{-7} \) |
\(a_{553}= +0.27250024 \pm 1.7 \cdot 10^{-7} \) | \(a_{554}= +0.64507129 \pm 2.5 \cdot 10^{-7} \) | \(a_{555}= -0.22267744 \pm 4.6 \cdot 10^{-7} \) |
\(a_{556}= +0.56062219 \pm 3.5 \cdot 10^{-7} \) | \(a_{557}= -0.47265735 \pm 2.4 \cdot 10^{-7} \) | \(a_{558}= +0.32889020 \pm 5.6 \cdot 10^{-7} \) |
\(a_{559}= +0.16831506 \pm 2.8 \cdot 10^{-7} \) | \(a_{560}= +0.00974345 \pm 5.1 \cdot 10^{-7} \) | \(a_{561}= -0.08728284 \pm 4.8 \cdot 10^{-7} \) |
\(a_{562}= -0.18124751 \pm 3.2 \cdot 10^{-7} \) | \(a_{563}= -0.90329330 \pm 1.7 \cdot 10^{-7} \) | \(a_{564}= -0.59107710 \pm 5.8 \cdot 10^{-7} \) |
\(a_{565}= +0.82316690 \pm 1.5 \cdot 10^{-7} \) | \(a_{566}= +0.20830405 \pm 2.3 \cdot 10^{-7} \) | \(a_{567}= -0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= +0.71233264 \pm 3.5 \cdot 10^{-7} \) | \(a_{569}= +0.27761908 \pm 2.2 \cdot 10^{-7} \) | \(a_{570}= -0.16895450 \pm 7.6 \cdot 10^{-7} \) |
\(a_{571}= -0.31633853 \pm 2.3 \cdot 10^{-7} \) | \(a_{572}= +0.12976928 \pm 2.4 \cdot 10^{-7} \) | \(a_{573}= -0.23033991 \pm 2.7 \cdot 10^{-7} \) |
\(a_{574}= +0.19195553 \pm 4.8 \cdot 10^{-7} \) | \(a_{575}= +0.09215015 \pm 2.5 \cdot 10^{-7} \) | \(a_{576}= +0.19633261 \pm 2.3 \cdot 10^{-7} \) |
\(a_{577}= +0.41550491 \pm 2.8 \cdot 10^{-7} \) | \(a_{578}= -0.14743515 \pm 2.8 \cdot 10^{-7} \) | \(a_{579}= -0.79142049 \pm 2.7 \cdot 10^{-7} \) |
\(a_{580}= +0.83046431 \pm 2.4 \cdot 10^{-7} \) | \(a_{581}= -0.54257097 \pm 2.3 \cdot 10^{-7} \) | \(a_{582}= -0.18245589 \pm 4.5 \cdot 10^{-7} \) |
\(a_{583}= -0.03913826 \pm 2.7 \cdot 10^{-7} \) | \(a_{584}= +1.76867629 \pm 3.3 \cdot 10^{-7} \) | \(a_{585}= -0.53290970 \pm 4.9 \cdot 10^{-7} \) |
\(a_{586}= +0.78131526 \pm 2.8 \cdot 10^{-7} \) | \(a_{587}= +1.29062510 \pm 3.0 \cdot 10^{-7} \) | \(a_{588}= -0.05187483 \pm 3.4 \cdot 10^{-7} \) |
\(a_{589}= +0.74033539 \pm 2.5 \cdot 10^{-7} \) | \(a_{590}= -0.43622298 \pm 2.2 \cdot 10^{-7} \) | \(a_{591}= +0.19050759 \pm 2.0 \cdot 10^{-7} \) |
\(a_{592}= +0.00899949 \pm 2.7 \cdot 10^{-7} \) | \(a_{593}= +0.75879674 \pm 1.7 \cdot 10^{-7} \) | \(a_{594}= +0.01590219 \pm 5.2 \cdot 10^{-7} \) |
\(a_{595}= +0.44275031 \pm 4.8 \cdot 10^{-7} \) | \(a_{596}= +0.14614628 \pm 3.6 \cdot 10^{-7} \) | \(a_{597}= +0.29940631 \pm 1.7 \cdot 10^{-7} \) |
\(a_{598}= -0.81473531 \pm 2.6 \cdot 10^{-7} \) | \(a_{599}= -0.01970687 \pm 2.8 \cdot 10^{-7} \) | \(a_{600}= +0.06003362 \pm 5.7 \cdot 10^{-7} \) |
\(a_{601}= +0.24989295 \pm 2.6 \cdot 10^{-7} \) | \(a_{602}= +0.02547747 \pm 5.5 \cdot 10^{-7} \) | \(a_{603}= +0.52092933 \pm 2.6 \cdot 10^{-7} \) |
\(a_{604}= +0.31277886 \pm 3.9 \cdot 10^{-7} \) | \(a_{605}= +1.03174993 \pm 1.3 \cdot 10^{-7} \) | \(a_{606}= +0.19492679 \pm 5.6 \cdot 10^{-7} \) |
\(a_{607}= -1.74721127 \pm 2.8 \cdot 10^{-7} \) | \(a_{608}= +0.46034936 \pm 1.7 \cdot 10^{-7} \) | \(a_{609}= -0.27412936 \pm 2.6 \cdot 10^{-7} \) |
\(a_{610}= -1.07416902 \pm 2.2 \cdot 10^{-7} \) | \(a_{611}= +2.47584737 \pm 2.0 \cdot 10^{-7} \) | \(a_{612}= -0.23364777 \pm 5.9 \cdot 10^{-7} \) |
\(a_{613}= +0.69564679 \pm 2.2 \cdot 10^{-7} \) | \(a_{614}= -0.65747298 \pm 3.4 \cdot 10^{-7} \) | \(a_{615}= -0.50595579 \pm 4.2 \cdot 10^{-7} \) |
\(a_{616}= +0.05087417 \pm 5.6 \cdot 10^{-7} \) | \(a_{617}= -1.57334642 \pm 2.4 \cdot 10^{-7} \) | \(a_{618}= -0.13188083 \pm 5.1 \cdot 10^{-7} \) |
\(a_{619}= +0.65467723 \pm 2.0 \cdot 10^{-7} \) | \(a_{620}= -1.07080680 \pm 3.3 \cdot 10^{-7} \) | \(a_{621}= +0.16923233 \pm 2.5 \cdot 10^{-7} \) |
\(a_{622}= -0.59834573 \pm 2.7 \cdot 10^{-7} \) | \(a_{623}= -0.06469977 \pm 2.2 \cdot 10^{-7} \) | \(a_{624}= +0.02153750 \pm 5.4 \cdot 10^{-7} \) |
\(a_{625}= -1.09381116 \pm 2.1 \cdot 10^{-7} \) | \(a_{626}= +0.89861059 \pm 3.3 \cdot 10^{-7} \) | \(a_{627}= +0.03579600 \pm 4.7 \cdot 10^{-7} \) |
\(a_{628}= -0.64387376 \pm 2.9 \cdot 10^{-7} \) | \(a_{629}= +0.40894411 \pm 1.9 \cdot 10^{-7} \) | \(a_{630}= -0.08066534 \pm 5.2 \cdot 10^{-7} \) |
\(a_{631}= -0.92611113 \pm 2.5 \cdot 10^{-7} \) | \(a_{632}= -0.71538565 \pm 2.2 \cdot 10^{-7} \) | \(a_{633}= -0.79049824 \pm 2.5 \cdot 10^{-7} \) |
\(a_{634}= -0.32737412 \pm 3.3 \cdot 10^{-7} \) | \(a_{635}= +0.34926205 \pm 2.4 \cdot 10^{-7} \) | \(a_{636}= -0.10476935 \pm 6.0 \cdot 10^{-7} \) |
\(a_{637}= +0.21728836 \pm 2.6 \cdot 10^{-7} \) | \(a_{638}= +0.10380160 \pm 2.7 \cdot 10^{-7} \) | \(a_{639}= +0.23929702 \pm 3.2 \cdot 10^{-7} \) |
\(a_{640}= -0.68154328 \pm 2.1 \cdot 10^{-7} \) | \(a_{641}= -0.52984105 \pm 2.3 \cdot 10^{-7} \) | \(a_{642}= -0.05652112 \pm 5.7 \cdot 10^{-7} \) |
\(a_{643}= -1.24964548 \pm 2.3 \cdot 10^{-7} \) | \(a_{644}= +0.20904105 \pm 5.8 \cdot 10^{-7} \) | \(a_{645}= -0.06715344 \pm 4.9 \cdot 10^{-7} \) |
\(a_{646}= +0.31028266 \pm 3.1 \cdot 10^{-7} \) | \(a_{647}= -0.61249972 \pm 3.2 \cdot 10^{-7} \) | \(a_{648}= +0.11025081 \pm 3.4 \cdot 10^{-7} \) |
\(a_{649}= +0.09242157 \pm 1.7 \cdot 10^{-7} \) | \(a_{650}= -0.09709172 \pm 2.3 \cdot 10^{-7} \) | \(a_{651}= +0.35346441 \pm 2.7 \cdot 10^{-7} \) |
\(a_{652}= +0.51952524 \pm 2.1 \cdot 10^{-7} \) | \(a_{653}= +0.33734477 \pm 2.4 \cdot 10^{-7} \) | \(a_{654}= -0.57603558 \pm 5.6 \cdot 10^{-7} \) |
\(a_{655}= +1.02462690 \pm 1.7 \cdot 10^{-7} \) | \(a_{656}= +0.02044816 \pm 1.9 \cdot 10^{-7} \) | \(a_{657}= +0.59415915 \pm 2.4 \cdot 10^{-7} \) |
\(a_{658}= +0.37476342 \pm 5.3 \cdot 10^{-7} \) | \(a_{659}= -1.46712791 \pm 2.8 \cdot 10^{-7} \) | \(a_{660}= -0.05177465 \pm 7.9 \cdot 10^{-7} \) |
\(a_{661}= -1.12161409 \pm 2.4 \cdot 10^{-7} \) | \(a_{662}= -0.43184742 \pm 2.3 \cdot 10^{-7} \) | \(a_{663}= +0.97868148 \pm 5.2 \cdot 10^{-7} \) |
\(a_{664}= +1.42439318 \pm 2.4 \cdot 10^{-7} \) | \(a_{665}= -0.18157855 \pm 4.8 \cdot 10^{-7} \) | \(a_{666}= -0.07450614 \pm 5.2 \cdot 10^{-7} \) |
\(a_{667}= +1.10466451 \pm 1.5 \cdot 10^{-7} \) | \(a_{668}= -0.99750169 \pm 3.4 \cdot 10^{-7} \) | \(a_{669}= +0.44806266 \pm 2.9 \cdot 10^{-7} \) |
\(a_{670}= +1.00059262 \pm 2.5 \cdot 10^{-7} \) | \(a_{671}= +0.22758174 \pm 2.1 \cdot 10^{-7} \) | \(a_{672}= +0.21978838 \pm 2.6 \cdot 10^{-7} \) |
\(a_{673}= -0.84522612 \pm 2.0 \cdot 10^{-7} \) | \(a_{674}= -1.02856148 \pm 3.1 \cdot 10^{-7} \) | \(a_{675}= +0.02016736 \pm 2.4 \cdot 10^{-7} \) |
\(a_{676}= -0.82612269 \pm 3.5 \cdot 10^{-7} \) | \(a_{677}= +1.67415817 \pm 3.0 \cdot 10^{-7} \) | \(a_{678}= +0.27542523 \pm 4.6 \cdot 10^{-7} \) |
\(a_{679}= -0.19608874 \pm 1.6 \cdot 10^{-7} \) | \(a_{680}= -1.16233738 \pm 1.4 \cdot 10^{-7} \) | \(a_{681}= -1.01681269 \pm 2.6 \cdot 10^{-7} \) |
\(a_{682}= -0.13384255 \pm 2.5 \cdot 10^{-7} \) | \(a_{683}= +0.77063069 \pm 2.0 \cdot 10^{-7} \) | \(a_{684}= +0.09582246 \pm 5.9 \cdot 10^{-7} \) |
\(a_{685}= +0.61217985 \pm 1.2 \cdot 10^{-7} \) | \(a_{686}= +0.03289045 \pm 2.9 \cdot 10^{-7} \) | \(a_{687}= +0.48817999 \pm 3.2 \cdot 10^{-7} \) |
\(a_{688}= +0.00271400 \pm 3.1 \cdot 10^{-7} \) | \(a_{689}= +0.43884785 \pm 2.8 \cdot 10^{-7} \) | \(a_{690}= +0.32505871 \pm 7.6 \cdot 10^{-7} \) |
\(a_{691}= +0.17649692 \pm 3.0 \cdot 10^{-7} \) | \(a_{692}= -0.56504486 \pm 3.8 \cdot 10^{-7} \) | \(a_{693}= +0.01709038 \pm 2.3 \cdot 10^{-7} \) |
\(a_{694}= +0.80719187 \pm 2.5 \cdot 10^{-7} \) | \(a_{695}= +0.93690442 \pm 2.7 \cdot 10^{-7} \) | \(a_{696}= +0.71966251 \pm 6.0 \cdot 10^{-7} \) |
\(a_{697}= +0.92918099 \pm 1.2 \cdot 10^{-7} \) | \(a_{698}= +0.60865848 \pm 2.5 \cdot 10^{-7} \) | \(a_{699}= +0.45242196 \pm 2.3 \cdot 10^{-7} \) |
\(a_{700}= +0.02491135 \pm 5.7 \cdot 10^{-7} \) | \(a_{701}= -0.50395805 \pm 2.4 \cdot 10^{-7} \) | \(a_{702}= -0.17830743 \pm 5.5 \cdot 10^{-7} \) |
\(a_{703}= -0.16771412 \pm 1.6 \cdot 10^{-7} \) | \(a_{704}= -0.07989796 \pm 2.4 \cdot 10^{-7} \) | \(a_{705}= -0.98780027 \pm 4.7 \cdot 10^{-7} \) |
\(a_{706}= +0.17860823 \pm 2.0 \cdot 10^{-7} \) | \(a_{707}= +0.20949145 \pm 2.7 \cdot 10^{-7} \) | \(a_{708}= +0.24740363 \pm 5.2 \cdot 10^{-7} \) |
\(a_{709}= -0.25448152 \pm 2.3 \cdot 10^{-7} \) | \(a_{710}= +0.45963783 \pm 3.0 \cdot 10^{-7} \) | \(a_{711}= -0.24032263 \pm 1.7 \cdot 10^{-7} \) |
\(a_{712}= +0.16985411 \pm 2.4 \cdot 10^{-7} \) | \(a_{713}= -1.42436256 \pm 2.3 \cdot 10^{-7} \) | \(a_{714}= +0.14814080 \pm 5.4 \cdot 10^{-7} \) |
\(a_{715}= +0.21686871 \pm 2.2 \cdot 10^{-7} \) | \(a_{716}= -0.29066122 \pm 2.8 \cdot 10^{-7} \) | \(a_{717}= -0.89161923 \pm 2.2 \cdot 10^{-7} \) |
\(a_{718}= -0.62643357 \pm 2.3 \cdot 10^{-7} \) | \(a_{719}= -0.55857581 \pm 2.0 \cdot 10^{-7} \) | \(a_{720}= -0.00859292 \pm 5.1 \cdot 10^{-7} \) |
\(a_{721}= -0.14173478 \pm 2.2 \cdot 10^{-7} \) | \(a_{722}= +0.48188803 \pm 3.1 \cdot 10^{-7} \) | \(a_{723}= +0.90942965 \pm 2.5 \cdot 10^{-7} \) |
\(a_{724}= -0.06096249 \pm 3.0 \cdot 10^{-7} \) | \(a_{725}= +0.13164248 \pm 1.9 \cdot 10^{-7} \) | \(a_{726}= +0.34521549 \pm 5.0 \cdot 10^{-7} \) |
\(a_{727}= +0.67688016 \pm 2.8 \cdot 10^{-7} \) | \(a_{728}= -0.57043975 \pm 6.0 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +1.14125127 \pm 2.8 \cdot 10^{-7} \) | \(a_{731}= +0.12332638 \pm 2.3 \cdot 10^{-7} \) | \(a_{732}= +0.60921439 \pm 5.8 \cdot 10^{-7} \) |
\(a_{733}= +0.99580894 \pm 2.2 \cdot 10^{-7} \) | \(a_{734}= -1.14072479 \pm 2.4 \cdot 10^{-7} \) | \(a_{735}= -0.08669254 \pm 2.3 \cdot 10^{-7} \) |
\(a_{736}= -0.88568560 \pm 2.4 \cdot 10^{-7} \) | \(a_{737}= -0.21199327 \pm 2.1 \cdot 10^{-7} \) | \(a_{738}= -0.16928887 \pm 4.8 \cdot 10^{-7} \) |
\(a_{739}= -0.75914821 \pm 2.6 \cdot 10^{-7} \) | \(a_{740}= +0.24257846 \pm 3.3 \cdot 10^{-7} \) | \(a_{741}= -0.40137196 \pm 5.1 \cdot 10^{-7} \) |
\(a_{742}= +0.06642741 \pm 5.5 \cdot 10^{-7} \) | \(a_{743}= +0.55663435 \pm 2.3 \cdot 10^{-7} \) | \(a_{744}= -0.92793814 \pm 6.1 \cdot 10^{-7} \) |
\(a_{745}= +0.24423774 \pm 2.1 \cdot 10^{-7} \) | \(a_{746}= -0.33284275 \pm 3.8 \cdot 10^{-7} \) | \(a_{747}= +0.47850262 \pm 2.3 \cdot 10^{-7} \) |
\(a_{748}= +0.09508344 \pm 2.8 \cdot 10^{-7} \) | \(a_{749}= -0.06074430 \pm 2.8 \cdot 10^{-7} \) | \(a_{750}= -0.33091788 \pm 5.0 \cdot 10^{-7} \) |
\(a_{751}= -0.71105786 \pm 2.6 \cdot 10^{-7} \) | \(a_{752}= +0.03992187 \pm 3.6 \cdot 10^{-7} \) | \(a_{753}= +0.19802416 \pm 2.1 \cdot 10^{-7} \) |
\(a_{754}= -1.16390230 \pm 2.4 \cdot 10^{-7} \) | \(a_{755}= +0.52271191 \pm 2.6 \cdot 10^{-7} \) | \(a_{756}= +0.04574930 \pm 3.4 \cdot 10^{-7} \) |
\(a_{757}= +0.20274180 \pm 2.3 \cdot 10^{-7} \) | \(a_{758}= +1.19692294 \pm 2.1 \cdot 10^{-7} \) | \(a_{759}= -0.06886945 \pm 4.7 \cdot 10^{-7} \) |
\(a_{760}= +0.47669201 \pm 2.0 \cdot 10^{-7} \) | \(a_{761}= -0.58681456 \pm 2.8 \cdot 10^{-7} \) | \(a_{762}= +0.11686036 \pm 5.8 \cdot 10^{-7} \) |
\(a_{763}= -0.61907615 \pm 2.7 \cdot 10^{-7} \) | \(a_{764}= +0.25092574 \pm 4.4 \cdot 10^{-7} \) | \(a_{765}= -0.39046907 \pm 4.8 \cdot 10^{-7} \) |
\(a_{766}= -0.25249770 \pm 3.5 \cdot 10^{-7} \) | \(a_{767}= -1.03630072 \pm 2.2 \cdot 10^{-7} \) | \(a_{768}= -0.56809712 \pm 2.7 \cdot 10^{-7} \) |
\(a_{769}= +0.25004807 \pm 2.8 \cdot 10^{-7} \) | \(a_{770}= +0.03282693 \pm 7.4 \cdot 10^{-7} \) | \(a_{771}= -0.55036764 \pm 2.3 \cdot 10^{-7} \) |
\(a_{772}= +0.86215094 \pm 3.5 \cdot 10^{-7} \) | \(a_{773}= +1.36196234 \pm 2.2 \cdot 10^{-7} \) | \(a_{774}= -0.02246902 \pm 5.5 \cdot 10^{-7} \) |
\(a_{775}= -0.16974079 \pm 2.3 \cdot 10^{-7} \) | \(a_{776}= +0.51478512 \pm 1.9 \cdot 10^{-7} \) | \(a_{777}= -0.08007313 \pm 2.3 \cdot 10^{-7} \) |
\(a_{778}= +0.07867897 \pm 2.4 \cdot 10^{-7} \) | \(a_{779}= -0.38107107 \pm 1.5 \cdot 10^{-7} \) | \(a_{780}= +0.58053665 \pm 8.3 \cdot 10^{-7} \) |
\(a_{781}= -0.09738242 \pm 2.0 \cdot 10^{-7} \) | \(a_{782}= -0.59696594 \pm 1.8 \cdot 10^{-7} \) | \(a_{783}= +0.24175937 \pm 2.6 \cdot 10^{-7} \) |
\(a_{784}= +0.00350367 \pm 2.8 \cdot 10^{-7} \) | \(a_{785}= -1.07603334 \pm 2.7 \cdot 10^{-7} \) | \(a_{786}= +0.34283218 \pm 5.0 \cdot 10^{-7} \) |
\(a_{787}= -0.55690045 \pm 1.9 \cdot 10^{-7} \) | \(a_{788}= -0.20753354 \pm 2.1 \cdot 10^{-7} \) | \(a_{789}= -0.56033926 \pm 2.5 \cdot 10^{-7} \) |
\(a_{790}= -0.46160781 \pm 2.0 \cdot 10^{-7} \) | \(a_{791}= +0.29600462 \pm 1.8 \cdot 10^{-7} \) | \(a_{792}= -0.04486680 \pm 5.6 \cdot 10^{-7} \) |
\(a_{793}= -2.55181911 \pm 2.6 \cdot 10^{-7} \) | \(a_{794}= -0.33509512 \pm 3.2 \cdot 10^{-7} \) | \(a_{795}= -0.17508916 \pm 4.9 \cdot 10^{-7} \) |
\(a_{796}= -0.32616470 \pm 2.8 \cdot 10^{-7} \) | \(a_{797}= +0.35936890 \pm 2.1 \cdot 10^{-7} \) | \(a_{798}= -0.06075477 \pm 5.4 \cdot 10^{-7} \) |
\(a_{799}= +1.81408186 \pm 2.1 \cdot 10^{-7} \) | \(a_{800}= -0.10554684 \pm 1.9 \cdot 10^{-7} \) | \(a_{801}= +0.05705983 \pm 2.2 \cdot 10^{-7} \) |
\(a_{802}= +0.40006646 \pm 2.8 \cdot 10^{-7} \) | \(a_{803}= -0.24179430 \pm 1.8 \cdot 10^{-7} \) | \(a_{804}= -0.56748557 \pm 5.9 \cdot 10^{-7} \) |
\(a_{805}= +0.34934664 \pm 4.8 \cdot 10^{-7} \) | \(a_{806}= +1.50074421 \pm 2.8 \cdot 10^{-7} \) | \(a_{807}= +1.01101763 \pm 2.3 \cdot 10^{-7} \) |
\(a_{808}= -0.54997081 \pm 3.2 \cdot 10^{-7} \) | \(a_{809}= +0.66387095 \pm 2.5 \cdot 10^{-7} \) | \(a_{810}= +0.07114014 \pm 5.2 \cdot 10^{-7} \) |
\(a_{811}= -1.75059724 \pm 2.4 \cdot 10^{-7} \) | \(a_{812}= +0.29862871 \pm 6.0 \cdot 10^{-7} \) | \(a_{813}= +0.23198641 \pm 2.2 \cdot 10^{-7} \) |
\(a_{814}= +0.03032043 \pm 2.3 \cdot 10^{-7} \) | \(a_{815}= +0.86822374 \pm 1.9 \cdot 10^{-7} \) | \(a_{816}= +0.01578078 \pm 5.3 \cdot 10^{-7} \) |
\(a_{817}= -0.05057800 \pm 2.6 \cdot 10^{-7} \) | \(a_{818}= +0.00798479 \pm 2.0 \cdot 10^{-7} \) | \(a_{819}= -0.19163032 \pm 2.6 \cdot 10^{-7} \) |
\(a_{820}= +0.55117383 \pm 2.4 \cdot 10^{-7} \) | \(a_{821}= +1.73781317 \pm 2.0 \cdot 10^{-7} \) | \(a_{822}= +0.20483061 \pm 5.0 \cdot 10^{-7} \) |
\(a_{823}= -0.59729316 \pm 1.9 \cdot 10^{-7} \) | \(a_{824}= +0.37209152 \pm 3.1 \cdot 10^{-7} \) | \(a_{825}= -0.00820715 \pm 4.6 \cdot 10^{-7} \) |
\(a_{826}= -0.15686250 \pm 4.7 \cdot 10^{-7} \) | \(a_{827}= +1.45713297 \pm 2.8 \cdot 10^{-7} \) | \(a_{828}= -0.18435688 \pm 5.8 \cdot 10^{-7} \) |
\(a_{829}= +1.49348116 \pm 1.9 \cdot 10^{-7} \) | \(a_{830}= +0.91910008 \pm 2.8 \cdot 10^{-7} \) | \(a_{831}= -0.61140678 \pm 2.1 \cdot 10^{-7} \) |
\(a_{832}= +0.89587657 \pm 1.5 \cdot 10^{-7} \) | \(a_{833}= +0.15920968 \pm 2.6 \cdot 10^{-7} \) | \(a_{834}= +0.31348092 \pm 5.6 \cdot 10^{-7} \) |
\(a_{835}= -1.66701167 \pm 1.7 \cdot 10^{-7} \) | \(a_{836}= -0.03899515 \pm 3.7 \cdot 10^{-7} \) | \(a_{837}= -0.31172631 \pm 2.7 \cdot 10^{-7} \) |
\(a_{838}= -0.60286466 \pm 2.7 \cdot 10^{-7} \) | \(a_{839}= +0.16870372 \pm 2.6 \cdot 10^{-7} \) | \(a_{840}= +0.22759098 \pm 5.7 \cdot 10^{-7} \) |
\(a_{841}= +0.57808500 \pm 3.0 \cdot 10^{-7} \) | \(a_{842}= -0.78339534 \pm 2.2 \cdot 10^{-7} \) | \(a_{843}= +0.17178870 \pm 3.0 \cdot 10^{-7} \) |
\(a_{844}= +0.86114626 \pm 2.8 \cdot 10^{-7} \) | \(a_{845}= -1.38060536 \pm 2.4 \cdot 10^{-7} \) | \(a_{846}= -0.33051027 \pm 5.3 \cdot 10^{-7} \) |
\(a_{847}= +0.37100951 \pm 2.1 \cdot 10^{-7} \) | \(a_{848}= +0.00707621 \pm 3.4 \cdot 10^{-7} \) | \(a_{849}= -0.19743323 \pm 2.1 \cdot 10^{-7} \) |
\(a_{850}= -0.07114022 \pm 2.1 \cdot 10^{-7} \) | \(a_{851}= +0.32267228 \pm 2.3 \cdot 10^{-7} \) | \(a_{852}= -0.26068335 \pm 6.5 \cdot 10^{-7} \) |
\(a_{853}= -0.46027808 \pm 2.6 \cdot 10^{-7} \) | \(a_{854}= -0.38626309 \pm 5.3 \cdot 10^{-7} \) | \(a_{855}= +0.16013723 \pm 4.8 \cdot 10^{-7} \) |
\(a_{856}= +0.15946996 \pm 3.9 \cdot 10^{-7} \) | \(a_{857}= -1.37149459 \pm 2.2 \cdot 10^{-7} \) | \(a_{858}= +0.07256258 \pm 7.7 \cdot 10^{-7} \) |
\(a_{859}= +1.45824373 \pm 2.4 \cdot 10^{-7} \) | \(a_{860}= +0.07315504 \pm 3.9 \cdot 10^{-7} \) | \(a_{861}= -0.18193789 \pm 2.0 \cdot 10^{-7} \) |
\(a_{862}= -0.50396396 \pm 2.6 \cdot 10^{-7} \) | \(a_{863}= -1.43628401 \pm 2.6 \cdot 10^{-7} \) | \(a_{864}= -0.19383513 \pm 2.6 \cdot 10^{-7} \) |
\(a_{865}= -0.94429552 \pm 2.7 \cdot 10^{-7} \) | \(a_{866}= +0.08850158 \pm 2.2 \cdot 10^{-7} \) | \(a_{867}= +0.13974092 \pm 2.4 \cdot 10^{-7} \) |
\(a_{868}= -0.38505406 \pm 6.1 \cdot 10^{-7} \) | \(a_{869}= +0.09779979 \pm 1.5 \cdot 10^{-7} \) | \(a_{870}= +0.46436748 \pm 7.8 \cdot 10^{-7} \) |
\(a_{871}= +2.37702942 \pm 2.8 \cdot 10^{-7} \) | \(a_{872}= +1.62523964 \pm 3.5 \cdot 10^{-7} \) | \(a_{873}= +0.17293401 \pm 1.6 \cdot 10^{-7} \) |
\(a_{874}= +0.24482469 \pm 2.4 \cdot 10^{-7} \) | \(a_{875}= -0.35564361 \pm 2.1 \cdot 10^{-7} \) | \(a_{876}= -0.64726005 \pm 5.7 \cdot 10^{-7} \) |
\(a_{877}= +1.30807747 \pm 2.6 \cdot 10^{-7} \) | \(a_{878}= +0.52784596 \pm 3.3 \cdot 10^{-7} \) | \(a_{879}= -0.74054054 \pm 2.2 \cdot 10^{-7} \) |
\(a_{880}= +0.00349691 \pm 2.6 \cdot 10^{-7} \) | \(a_{881}= -0.73540817 \pm 2.2 \cdot 10^{-7} \) | \(a_{882}= -0.02900665 \pm 2.9 \cdot 10^{-7} \) |
\(a_{883}= -0.58543406 \pm 2.6 \cdot 10^{-7} \) | \(a_{884}= -1.06614773 \pm 1.4 \cdot 10^{-7} \) | \(a_{885}= +0.41345769 \pm 4.1 \cdot 10^{-7} \) |
\(a_{886}= -0.15444247 \pm 3.1 \cdot 10^{-7} \) | \(a_{887}= -0.76804912 \pm 2.0 \cdot 10^{-7} \) | \(a_{888}= +0.21021327 \pm 5.7 \cdot 10^{-7} \) |
\(a_{889}= +0.12559200 \pm 2.9 \cdot 10^{-7} \) | \(a_{890}= +0.10959960 \pm 3.2 \cdot 10^{-7} \) | \(a_{891}= -0.01507230 \pm 2.3 \cdot 10^{-7} \) |
\(a_{892}= -0.48810670 \pm 3.5 \cdot 10^{-7} \) | \(a_{893}= -0.74398220 \pm 1.7 \cdot 10^{-7} \) | \(a_{894}= +0.08172004 \pm 5.1 \cdot 10^{-7} \) |
\(a_{895}= -0.48574920 \pm 1.8 \cdot 10^{-7} \) | \(a_{896}= -0.24507783 \pm 2.6 \cdot 10^{-7} \) | \(a_{897}= +0.77221649 \pm 5.1 \cdot 10^{-7} \) |
\(a_{898}= +0.43453155 \pm 2.6 \cdot 10^{-7} \) | \(a_{899}= -2.03479442 \pm 2.8 \cdot 10^{-7} \) | \(a_{900}= -0.02196974 \pm 5.7 \cdot 10^{-7} \) |
\(a_{901}= +0.32154887 \pm 2.6 \cdot 10^{-7} \) | \(a_{902}= +0.06889246 \pm 1.8 \cdot 10^{-7} \) | \(a_{903}= -0.02414787 \pm 2.7 \cdot 10^{-7} \) |
\(a_{904}= -0.77709089 \pm 2.8 \cdot 10^{-7} \) | \(a_{905}= -0.10187971 \pm 1.5 \cdot 10^{-7} \) | \(a_{906}= +0.17489533 \pm 5.5 \cdot 10^{-7} \) |
\(a_{907}= -0.50892971 \pm 2.1 \cdot 10^{-7} \) | \(a_{908}= +1.10768678 \pm 2.8 \cdot 10^{-7} \) | \(a_{909}= -0.18475409 \pm 2.7 \cdot 10^{-7} \) |
\(a_{910}= -0.36808041 \pm 7.8 \cdot 10^{-7} \) | \(a_{911}= -0.88709658 \pm 1.9 \cdot 10^{-7} \) | \(a_{912}= -0.00647193 \pm 5.3 \cdot 10^{-7} \) |
\(a_{913}= -0.19472763 \pm 2.1 \cdot 10^{-7} \) | \(a_{914}= -1.10045354 \pm 3.5 \cdot 10^{-7} \) | \(a_{915}= +1.01811106 \pm 4.7 \cdot 10^{-7} \) |
\(a_{916}= -0.53180937 \pm 3.9 \cdot 10^{-7} \) | \(a_{917}= +0.36844812 \pm 2.1 \cdot 10^{-7} \) | \(a_{918}= -0.13064791 \pm 5.4 \cdot 10^{-7} \) |
\(a_{919}= -0.18524044 \pm 3.0 \cdot 10^{-7} \) | \(a_{920}= -0.91712790 \pm 3.3 \cdot 10^{-7} \) | \(a_{921}= +0.62316126 \pm 3.2 \cdot 10^{-7} \) |
\(a_{922}= +0.11382911 \pm 3.0 \cdot 10^{-7} \) | \(a_{923}= +1.09192555 \pm 2.6 \cdot 10^{-7} \) | \(a_{924}= -0.01861777 \pm 5.6 \cdot 10^{-7} \) |
\(a_{925}= +0.03845274 \pm 2.4 \cdot 10^{-7} \) | \(a_{926}= +0.22524478 \pm 2.5 \cdot 10^{-7} \) | \(a_{927}= +0.12499833 \pm 2.2 \cdot 10^{-7} \) |
\(a_{928}= -1.26525940 \pm 2.6 \cdot 10^{-7} \) | \(a_{929}= -0.68822934 \pm 3.0 \cdot 10^{-7} \) | \(a_{930}= -0.59875885 \pm 7.9 \cdot 10^{-7} \) |
\(a_{931}= -0.06529428 \pm 2.5 \cdot 10^{-7} \) | \(a_{932}= -0.49285560 \pm 2.5 \cdot 10^{-7} \) | \(a_{933}= +0.56711970 \pm 2.9 \cdot 10^{-7} \) |
\(a_{934}= -0.39000490 \pm 2.3 \cdot 10^{-7} \) | \(a_{935}= +0.15890220 \pm 1.6 \cdot 10^{-7} \) | \(a_{936}= +0.50308057 \pm 6.0 \cdot 10^{-7} \) |
\(a_{937}= +0.60953154 \pm 2.3 \cdot 10^{-7} \) | \(a_{938}= +0.35980557 \pm 5.4 \cdot 10^{-7} \) | \(a_{939}= -0.85171455 \pm 3.1 \cdot 10^{-7} \) |
\(a_{940}= +1.07608147 \pm 3.5 \cdot 10^{-7} \) | \(a_{941}= +0.26273058 \pm 2.5 \cdot 10^{-7} \) | \(a_{942}= -0.36003237 \pm 5.3 \cdot 10^{-7} \) |
\(a_{943}= +0.73315874 \pm 2.5 \cdot 10^{-7} \) | \(a_{944}= -0.01670986 \pm 2.0 \cdot 10^{-7} \) | \(a_{945}= +0.07645563 \pm 2.3 \cdot 10^{-7} \) |
\(a_{946}= +0.00914381 \pm 3.0 \cdot 10^{-7} \) | \(a_{947}= +0.31094212 \pm 2.2 \cdot 10^{-7} \) | \(a_{948}= +0.26180062 \pm 5.0 \cdot 10^{-7} \) |
\(a_{949}= +2.71118115 \pm 2.6 \cdot 10^{-7} \) | \(a_{950}= +0.02917567 \pm 2.3 \cdot 10^{-7} \) | \(a_{951}= +0.31028936 \pm 2.9 \cdot 10^{-7} \) |
\(a_{952}= -0.41796777 \pm 5.9 \cdot 10^{-7} \) | \(a_{953}= +1.69607065 \pm 2.7 \cdot 10^{-7} \) | \(a_{954}= -0.05858347 \pm 5.5 \cdot 10^{-7} \) |
\(a_{955}= +0.41934379 \pm 2.9 \cdot 10^{-7} \) | \(a_{956}= +0.97130460 \pm 2.7 \cdot 10^{-7} \) | \(a_{957}= -0.09838448 \pm 4.8 \cdot 10^{-7} \) |
\(a_{958}= -0.21141961 \pm 2.7 \cdot 10^{-7} \) | \(a_{959}= +0.22013526 \pm 2.1 \cdot 10^{-7} \) | \(a_{960}= -0.35743201 \pm 4.6 \cdot 10^{-7} \) |
\(a_{961}= +1.62367892 \pm 1.9 \cdot 10^{-7} \) | \(a_{962}= -0.33997563 \pm 2.5 \cdot 10^{-7} \) | \(a_{963}= +0.05357144 \pm 2.8 \cdot 10^{-7} \) |
\(a_{964}= -0.99070676 \pm 3.0 \cdot 10^{-7} \) | \(a_{965}= +1.44081528 \pm 2.2 \cdot 10^{-7} \) | \(a_{966}= +0.11688866 \pm 5.4 \cdot 10^{-7} \) |
\(a_{967}= -1.11926341 \pm 1.9 \cdot 10^{-7} \) | \(a_{968}= -0.97399868 \pm 2.7 \cdot 10^{-7} \) | \(a_{969}= -0.29408986 \pm 5.0 \cdot 10^{-7} \) |
\(a_{970}= +0.33216885 \pm 1.5 \cdot 10^{-7} \) | \(a_{971}= -0.17930654 \pm 1.7 \cdot 10^{-7} \) | \(a_{972}= -0.04034709 \pm 3.4 \cdot 10^{-7} \) |
\(a_{973}= +0.33690378 \pm 2.7 \cdot 10^{-7} \) | \(a_{974}= +0.09796987 \pm 2.3 \cdot 10^{-7} \) | \(a_{975}= +0.09202477 \pm 5.0 \cdot 10^{-7} \) |
\(a_{976}= -0.04114688 \pm 1.9 \cdot 10^{-7} \) | \(a_{977}= +0.32814505 \pm 2.2 \cdot 10^{-7} \) | \(a_{978}= +0.29050090 \pm 5.3 \cdot 10^{-7} \) |
\(a_{979}= -0.02322062 \pm 1.7 \cdot 10^{-7} \) | \(a_{980}= +0.09444038 \pm 5.7 \cdot 10^{-7} \) | \(a_{981}= +0.54597385 \pm 2.7 \cdot 10^{-7} \) |
\(a_{982}= -0.08795311 \pm 1.8 \cdot 10^{-7} \) | \(a_{983}= -0.97391104 \pm 2.4 \cdot 10^{-7} \) | \(a_{984}= +0.47763539 \pm 5.3 \cdot 10^{-7} \) |
\(a_{985}= -0.34682732 \pm 1.7 \cdot 10^{-7} \) | \(a_{986}= -0.85280461 \pm 1.9 \cdot 10^{-7} \) | \(a_{987}= -0.35520554 \pm 2.4 \cdot 10^{-7} \) |
\(a_{988}= +0.43724318 \pm 2.3 \cdot 10^{-7} \) | \(a_{989}= +0.09730915 \pm 3.0 \cdot 10^{-7} \) | \(a_{990}= -0.02895063 \pm 7.4 \cdot 10^{-7} \) |
\(a_{991}= -1.41600526 \pm 2.5 \cdot 10^{-7} \) | \(a_{992}= +1.63143480 \pm 2.5 \cdot 10^{-7} \) | \(a_{993}= +0.40931048 \pm 2.2 \cdot 10^{-7} \) |
\(a_{994}= +0.16528230 \pm 6.1 \cdot 10^{-7} \) | \(a_{995}= -0.54508215 \pm 1.8 \cdot 10^{-7} \) | \(a_{996}= -0.52126713 \pm 5.6 \cdot 10^{-7} \) |
\(a_{997}= -1.32307146 \pm 2.6 \cdot 10^{-7} \) | \(a_{998}= -0.16350428 \pm 2.7 \cdot 10^{-7} \) | \(a_{999}= +0.07061786 \pm 2.3 \cdot 10^{-7} \) |
\(a_{1000}= +0.93365910 \pm 2.9 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000