Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(4.6046719045231397441513613654 \pm 9 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.64850787 \pm 2.3 \cdot 10^{-7} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +1.71757821 \pm 2.7 \cdot 10^{-7} \) | \(a_{5}= -0.16160013 \pm 1.8 \cdot 10^{-7} \) | \(a_{6}= -0.95176646 \pm 2.4 \cdot 10^{-7} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -1.18293333 \pm 2.6 \cdot 10^{-7} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.26639909 \pm 2.2 \cdot 10^{-7} \) | \(a_{11}= -1.17046880 \pm 1.7 \cdot 10^{-7} \) | \(a_{12}= +0.99164424 \pm 2.8 \cdot 10^{-7} \) |
\(a_{13}= +0.02700853 \pm 2.0 \cdot 10^{-7} \) | \(a_{14}= -0.62307741 \pm 2.4 \cdot 10^{-7} \) | \(a_{15}= -0.09329988 \pm 1.9 \cdot 10^{-7} \) |
\(a_{16}= +0.23249669 \pm 2.2 \cdot 10^{-7} \) | \(a_{17}= -1.77300275 \pm 2.0 \cdot 10^{-7} \) | \(a_{18}= -0.54950262 \pm 2.4 \cdot 10^{-7} \) |
\(a_{19}= +1.07147196 \pm 1.9 \cdot 10^{-7} \) | \(a_{20}= -0.27756087 \pm 2.6 \cdot 10^{-7} \) | \(a_{21}= +0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +1.92952704 \pm 2.3 \cdot 10^{-7} \) | \(a_{23}= -1.01202874 \pm 1.9 \cdot 10^{-7} \) | \(a_{24}= -0.68296687 \pm 2.8 \cdot 10^{-7} \) |
\(a_{25}= -0.97388540 \pm 1.8 \cdot 10^{-7} \) | \(a_{26}= -0.04452377 \pm 2.2 \cdot 10^{-7} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.64918354 \pm 2.8 \cdot 10^{-7} \) | \(a_{29}= +0.36953769 \pm 2.0 \cdot 10^{-7} \) | \(a_{30}= +0.15380559 \pm 4.2 \cdot 10^{-7} \) |
\(a_{31}= -1.90571387 \pm 2.1 \cdot 10^{-7} \) | \(a_{32}= +0.79966070 \pm 2.0 \cdot 10^{-7} \) | \(a_{33}= -0.67577048 \pm 1.8 \cdot 10^{-7} \) |
\(a_{34}= +2.92280900 \pm 1.8 \cdot 10^{-7} \) | \(a_{35}= -0.06107911 \pm 1.9 \cdot 10^{-7} \) | \(a_{36}= +0.57252607 \pm 2.8 \cdot 10^{-7} \) |
\(a_{37}= +0.74736299 \pm 1.8 \cdot 10^{-7} \) | \(a_{38}= -1.76632996 \pm 2.2 \cdot 10^{-7} \) | \(a_{39}= +0.01559338 \pm 2.1 \cdot 10^{-7} \) |
\(a_{40}= +0.19116218 \pm 2.4 \cdot 10^{-7} \) | \(a_{41}= -0.96082226 \pm 1.5 \cdot 10^{-7} \) | \(a_{42}= -0.35973391 \pm 2.4 \cdot 10^{-7} \) |
\(a_{43}= -1.12942737 \pm 2.0 \cdot 10^{-7} \) | \(a_{44}= -2.01037171 \pm 2.6 \cdot 10^{-7} \) | \(a_{45}= -0.05386671 \pm 1.9 \cdot 10^{-7} \) |
\(a_{46}= +1.66833734 \pm 2.2 \cdot 10^{-7} \) | \(a_{47}= -0.07092855 \pm 1.8 \cdot 10^{-7} \) | \(a_{48}= +0.13423203 \pm 2.3 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +1.60545774 \pm 1.7 \cdot 10^{-7} \) | \(a_{51}= -1.02364362 \pm 2.1 \cdot 10^{-7} \) |
\(a_{52}= +0.04638926 \pm 2.5 \cdot 10^{-7} \) | \(a_{53}= +1.45980343 \pm 2.1 \cdot 10^{-7} \) | \(a_{54}= -0.31725549 \pm 2.4 \cdot 10^{-7} \) |
\(a_{55}= +0.18914791 \pm 1.6 \cdot 10^{-7} \) | \(a_{56}= -0.44710677 \pm 2.8 \cdot 10^{-7} \) | \(a_{57}= +0.61861462 \pm 2.0 \cdot 10^{-7} \) |
\(a_{58}= -0.60918579 \pm 1.9 \cdot 10^{-7} \) | \(a_{59}= +0.03024355 \pm 1.4 \cdot 10^{-7} \) | \(a_{60}= -0.16024984 \pm 4.6 \cdot 10^{-7} \) |
\(a_{61}= +0.22747050 \pm 1.8 \cdot 10^{-7} \) | \(a_{62}= +3.14158432 \pm 2.4 \cdot 10^{-7} \) | \(a_{63}= +0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= -1.55074365 \pm 1.7 \cdot 10^{-7} \) | \(a_{65}= -0.00436458 \pm 1.9 \cdot 10^{-7} \) | \(a_{66}= +1.11401295 \pm 4.2 \cdot 10^{-7} \) |
\(a_{67}= -0.15472635 \pm 2.0 \cdot 10^{-7} \) | \(a_{68}= -3.04527089 \pm 1.8 \cdot 10^{-7} \) | \(a_{69}= -0.58429506 \pm 2.0 \cdot 10^{-7} \) |
\(a_{70}= +0.10068939 \pm 4.2 \cdot 10^{-7} \) | \(a_{71}= +0.21251716 \pm 2.5 \cdot 10^{-7} \) | \(a_{72}= -0.39431111 \pm 2.8 \cdot 10^{-7} \) |
\(a_{73}= -0.95254264 \pm 1.8 \cdot 10^{-7} \) | \(a_{74}= -1.23203377 \pm 2.0 \cdot 10^{-7} \) | \(a_{75}= -0.56227300 \pm 1.9 \cdot 10^{-7} \) |
\(a_{76}= +1.84033689 \pm 2.2 \cdot 10^{-7} \) | \(a_{77}= -0.44239562 \pm 1.8 \cdot 10^{-7} \) | \(a_{78}= -0.02570581 \pm 4.5 \cdot 10^{-7} \) |
\(a_{79}= -0.92090499 \pm 1.3 \cdot 10^{-7} \) | \(a_{80}= -0.03757150 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +1.58392306 \pm 1.7 \cdot 10^{-7} \) | \(a_{83}= +0.41830815 \pm 1.7 \cdot 10^{-7} \) | \(a_{84}= +0.37480629 \pm 2.8 \cdot 10^{-7} \) |
\(a_{85}= +0.28651748 \pm 1.4 \cdot 10^{-7} \) | \(a_{86}= +1.86186991 \pm 2.7 \cdot 10^{-7} \) | \(a_{87}= +0.21335268 \pm 2.1 \cdot 10^{-7} \) |
\(a_{88}= +1.38458655 \pm 2.6 \cdot 10^{-7} \) | \(a_{89}= +0.17848886 \pm 1.7 \cdot 10^{-7} \) | \(a_{90}= +0.08879970 \pm 4.2 \cdot 10^{-7} \) |
\(a_{91}= +0.01020826 \pm 2.1 \cdot 10^{-7} \) | \(a_{92}= -1.73823851 \pm 2.8 \cdot 10^{-7} \) | \(a_{93}= -1.10026442 \pm 2.2 \cdot 10^{-7} \) |
\(a_{94}= +0.11692628 \pm 2.3 \cdot 10^{-7} \) | \(a_{95}= -0.17315001 \pm 1.3 \cdot 10^{-7} \) | \(a_{96}= +0.46168432 \pm 2.1 \cdot 10^{-7} \) |
\(a_{97}= -0.02836089 \pm 1.2 \cdot 10^{-7} \) | \(a_{98}= -0.23550112 \pm 2.4 \cdot 10^{-7} \) | \(a_{99}= -0.39015627 \pm 1.8 \cdot 10^{-7} \) |
\(a_{100}= -1.67272434 \pm 1.9 \cdot 10^{-7} \) | \(a_{101}= -1.22759116 \pm 2.1 \cdot 10^{-7} \) | \(a_{102}= +1.68748456 \pm 4.4 \cdot 10^{-7} \) |
\(a_{103}= +1.59795020 \pm 1.7 \cdot 10^{-7} \) | \(a_{104}= -0.03194929 \pm 2.5 \cdot 10^{-7} \) | \(a_{105}= -0.03526404 \pm 1.9 \cdot 10^{-7} \) |
\(a_{106}= -2.40649744 \pm 2.6 \cdot 10^{-7} \) | \(a_{107}= +0.93637932 \pm 2.2 \cdot 10^{-7} \) | \(a_{108}= +0.33054808 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= -0.04689343 \pm 2.1 \cdot 10^{-7} \) | \(a_{110}= -0.31181183 \pm 1.9 \cdot 10^{-7} \) | \(a_{111}= +0.43149022 \pm 1.9 \cdot 10^{-7} \) |
\(a_{112}= +0.08787549 \pm 2.3 \cdot 10^{-7} \) | \(a_{113}= +1.83942168 \pm 1.3 \cdot 10^{-7} \) | \(a_{114}= -1.01979108 \pm 4.3 \cdot 10^{-7} \) |
\(a_{115}= +0.16354398 \pm 1.9 \cdot 10^{-7} \) | \(a_{116}= +0.63470988 \pm 2.4 \cdot 10^{-7} \) | \(a_{117}= +0.00900284 \pm 2.1 \cdot 10^{-7} \) |
\(a_{118}= -0.04985672 \pm 1.7 \cdot 10^{-7} \) | \(a_{119}= -0.67013205 \pm 2.1 \cdot 10^{-7} \) | \(a_{120}= +0.11036754 \pm 4.6 \cdot 10^{-7} \) |
\(a_{121}= +0.36999722 \pm 1.6 \cdot 10^{-7} \) | \(a_{122}= -0.37498692 \pm 2.0 \cdot 10^{-7} \) | \(a_{123}= -0.55473099 \pm 1.6 \cdot 10^{-7} \) |
\(a_{124}= -3.27321261 \pm 2.7 \cdot 10^{-7} \) | \(a_{125}= +0.31898014 \pm 1.6 \cdot 10^{-7} \) | \(a_{126}= -0.20769247 \pm 2.4 \cdot 10^{-7} \) |
\(a_{127}= +0.98051639 \pm 2.3 \cdot 10^{-7} \) | \(a_{128}= +1.75675242 \pm 2.0 \cdot 10^{-7} \) | \(a_{129}= -0.65207520 \pm 2.2 \cdot 10^{-7} \) |
\(a_{130}= +0.00719505 \pm 2.5 \cdot 10^{-7} \) | \(a_{131}= -0.29928004 \pm 1.6 \cdot 10^{-7} \) | \(a_{132}= -1.16068865 \pm 4.6 \cdot 10^{-7} \) |
\(a_{133}= +0.40497833 \pm 2.0 \cdot 10^{-7} \) | \(a_{134}= +0.25506761 \pm 1.9 \cdot 10^{-7} \) | \(a_{135}= -0.03109996 \pm 1.9 \cdot 10^{-7} \) |
\(a_{136}= +2.09734405 \pm 2.0 \cdot 10^{-7} \) | \(a_{137}= -1.28614499 \pm 1.6 \cdot 10^{-7} \) | \(a_{138}= +0.96321501 \pm 4.3 \cdot 10^{-7} \) |
\(a_{139}= +0.76531545 \pm 2.1 \cdot 10^{-7} \) | \(a_{140}= -0.10490815 \pm 4.6 \cdot 10^{-7} \) | \(a_{141}= -0.04095062 \pm 2.0 \cdot 10^{-7} \) |
\(a_{142}= -0.35033622 \pm 2.3 \cdot 10^{-7} \) | \(a_{143}= -0.03161264 \pm 1.8 \cdot 10^{-7} \) | \(a_{144}= +0.07749890 \pm 2.3 \cdot 10^{-7} \) |
\(a_{145}= -0.05971734 \pm 1.5 \cdot 10^{-7} \) | \(a_{146}= +1.57027404 \pm 2.2 \cdot 10^{-7} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= +1.28365438 \pm 2.4 \cdot 10^{-7} \) | \(a_{149}= -1.80104353 \pm 1.7 \cdot 10^{-7} \) | \(a_{150}= +0.92691146 \pm 4.2 \cdot 10^{-7} \) |
\(a_{151}= -0.85161077 \pm 2.0 \cdot 10^{-7} \) | \(a_{152}= -1.26747989 \pm 2.4 \cdot 10^{-7} \) | \(a_{153}= -0.59100092 \pm 2.1 \cdot 10^{-7} \) |
\(a_{154}= +0.72929267 \pm 4.2 \cdot 10^{-7} \) | \(a_{155}= +0.30796362 \pm 2.0 \cdot 10^{-7} \) | \(a_{156}= +0.02678285 \pm 4.8 \cdot 10^{-7} \) |
\(a_{157}= +1.18139081 \pm 1.9 \cdot 10^{-7} \) | \(a_{158}= +1.51811912 \pm 1.6 \cdot 10^{-7} \) | \(a_{159}= +0.84281790 \pm 2.2 \cdot 10^{-7} \) |
\(a_{160}= -0.12922528 \pm 1.9 \cdot 10^{-7} \) | \(a_{161}= -0.38251091 \pm 2.0 \cdot 10^{-7} \) | \(a_{162}= -0.18316754 \pm 2.4 \cdot 10^{-7} \) |
\(a_{163}= -1.46853157 \pm 1.9 \cdot 10^{-7} \) | \(a_{164}= -1.65028738 \pm 2.0 \cdot 10^{-7} \) | \(a_{165}= +0.10920460 \pm 3.7 \cdot 10^{-7} \) |
\(a_{166}= -0.68958428 \pm 1.9 \cdot 10^{-7} \) | \(a_{167}= -0.09776327 \pm 1.5 \cdot 10^{-7} \) | \(a_{168}= -0.25813721 \pm 2.8 \cdot 10^{-7} \) |
\(a_{169}= -0.99927054 \pm 2.3 \cdot 10^{-7} \) | \(a_{170}= -0.47232632 \pm 1.1 \cdot 10^{-7} \) | \(a_{171}= +0.35715732 \pm 2.0 \cdot 10^{-7} \) |
\(a_{172}= -1.93987984 \pm 3.2 \cdot 10^{-7} \) | \(a_{173}= +0.58844318 \pm 2.2 \cdot 10^{-7} \) | \(a_{174}= -0.35171358 \pm 4.4 \cdot 10^{-7} \) |
\(a_{175}= -0.36809408 \pm 1.9 \cdot 10^{-7} \) | \(a_{176}= -0.27213013 \pm 2.1 \cdot 10^{-7} \) | \(a_{177}= +0.01746112 \pm 1.5 \cdot 10^{-7} \) |
\(a_{178}= -0.29424029 \pm 2.0 \cdot 10^{-7} \) | \(a_{179}= +0.64444655 \pm 1.7 \cdot 10^{-7} \) | \(a_{180}= -0.09252029 \pm 4.6 \cdot 10^{-7} \) |
\(a_{181}= -0.46923726 \pm 1.5 \cdot 10^{-7} \) | \(a_{182}= -0.01682840 \pm 4.5 \cdot 10^{-7} \) | \(a_{183}= +0.13133016 \pm 2.0 \cdot 10^{-7} \) |
\(a_{184}= +1.19716252 \pm 2.7 \cdot 10^{-7} \) | \(a_{185}= -0.12077396 \pm 2.1 \cdot 10^{-7} \) | \(a_{186}= +1.81379455 \pm 4.5 \cdot 10^{-7} \) |
\(a_{187}= +2.07524441 \pm 1.8 \cdot 10^{-7} \) | \(a_{188}= -0.12182534 \pm 2.8 \cdot 10^{-7} \) | \(a_{189}= +0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= +0.28543916 \pm 1.4 \cdot 10^{-7} \) | \(a_{191}= +1.50004543 \pm 2.1 \cdot 10^{-7} \) | \(a_{192}= -0.89532226 \pm 1.9 \cdot 10^{-7} \) |
\(a_{193}= +0.11140542 \pm 2.1 \cdot 10^{-7} \) | \(a_{194}= +0.04675314 \pm 1.1 \cdot 10^{-7} \) | \(a_{195}= -0.00251989 \pm 4.0 \cdot 10^{-7} \) |
\(a_{196}= +0.24536832 \pm 2.8 \cdot 10^{-7} \) | \(a_{197}= -0.85939333 \pm 1.5 \cdot 10^{-7} \) | \(a_{198}= +0.64317568 \pm 4.2 \cdot 10^{-7} \) |
\(a_{199}= +0.15932071 \pm 1.3 \cdot 10^{-7} \) | \(a_{200}= +1.15204149 \pm 1.6 \cdot 10^{-7} \) | \(a_{201}= -0.08933130 \pm 2.1 \cdot 10^{-7} \) |
\(a_{202}= +2.02369370 \pm 2.1 \cdot 10^{-7} \) | \(a_{203}= +0.13967212 \pm 2.1 \cdot 10^{-7} \) | \(a_{204}= -1.75818797 \pm 4.8 \cdot 10^{-7} \) |
\(a_{205}= +0.15526901 \pm 1.3 \cdot 10^{-7} \) | \(a_{206}= -2.63423349 \pm 2.2 \cdot 10^{-7} \) | \(a_{207}= -0.33734291 \pm 2.0 \cdot 10^{-7} \) |
\(a_{208}= +0.00627939 \pm 1.8 \cdot 10^{-7} \) | \(a_{209}= -1.25412450 \pm 2.0 \cdot 10^{-7} \) | \(a_{210}= +0.05813305 \pm 4.2 \cdot 10^{-7} \) |
\(a_{211}= -0.07172686 \pm 2.0 \cdot 10^{-7} \) | \(a_{212}= +2.50732655 \pm 3.0 \cdot 10^{-7} \) | \(a_{213}= +0.12269684 \pm 2.6 \cdot 10^{-7} \) |
\(a_{214}= -1.54362868 \pm 2.6 \cdot 10^{-7} \) | \(a_{215}= +0.18251561 \pm 1.6 \cdot 10^{-7} \) | \(a_{216}= -0.22765562 \pm 2.8 \cdot 10^{-7} \) |
\(a_{217}= -0.72029214 \pm 2.2 \cdot 10^{-7} \) | \(a_{218}= +0.07730419 \pm 2.2 \cdot 10^{-7} \) | \(a_{219}= -0.54995075 \pm 1.9 \cdot 10^{-7} \) |
\(a_{220}= +0.32487634 \pm 2.1 \cdot 10^{-7} \) | \(a_{221}= -0.04788619 \pm 1.6 \cdot 10^{-7} \) | \(a_{222}= -0.71131503 \pm 4.2 \cdot 10^{-7} \) |
\(a_{223}= +1.11445170 \pm 2.3 \cdot 10^{-7} \) | \(a_{224}= +0.30224333 \pm 2.1 \cdot 10^{-7} \) | \(a_{225}= -0.32462847 \pm 1.9 \cdot 10^{-7} \) |
\(a_{226}= -3.03230113 \pm 2.0 \cdot 10^{-7} \) | \(a_{227}= +1.44389846 \pm 2.0 \cdot 10^{-7} \) | \(a_{228}= +1.06251900 \pm 4.7 \cdot 10^{-7} \) |
\(a_{229}= -0.22154966 \pm 2.5 \cdot 10^{-7} \) | \(a_{230}= -0.26960354 \pm 2.2 \cdot 10^{-7} \) | \(a_{231}= -0.25541723 \pm 1.8 \cdot 10^{-7} \) |
\(a_{232}= -0.43713845 \pm 2.2 \cdot 10^{-7} \) | \(a_{233}= -0.01136193 \pm 1.8 \cdot 10^{-7} \) | \(a_{234}= -0.01484126 \pm 4.5 \cdot 10^{-7} \) |
\(a_{235}= +0.01146206 \pm 1.8 \cdot 10^{-7} \) | \(a_{236}= +0.05194566 \pm 2.0 \cdot 10^{-7} \) | \(a_{237}= -0.53168474 \pm 1.4 \cdot 10^{-7} \) |
\(a_{238}= +1.10471796 \pm 4.4 \cdot 10^{-7} \) | \(a_{239}= -0.36205037 \pm 1.7 \cdot 10^{-7} \) | \(a_{240}= -0.02169191 \pm 4.1 \cdot 10^{-7} \) |
\(a_{241}= -0.63073952 \pm 2.0 \cdot 10^{-7} \) | \(a_{242}= -0.60994333 \pm 2.2 \cdot 10^{-7} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.39069838 \pm 2.3 \cdot 10^{-7} \) | \(a_{245}= -0.02308573 \pm 1.9 \cdot 10^{-7} \) | \(a_{246}= +0.91447841 \pm 3.9 \cdot 10^{-7} \) |
\(a_{247}= +0.02893888 \pm 1.6 \cdot 10^{-7} \) | \(a_{248}= +2.25433245 \pm 2.7 \cdot 10^{-7} \) | \(a_{249}= +0.24151032 \pm 1.9 \cdot 10^{-7} \) |
\(a_{250}= -0.52584128 \pm 1.9 \cdot 10^{-7} \) | \(a_{251}= +0.14828955 \pm 1.6 \cdot 10^{-7} \) | \(a_{252}= +0.21639451 \pm 2.8 \cdot 10^{-7} \) |
\(a_{253}= +1.18454807 \pm 1.5 \cdot 10^{-7} \) | \(a_{254}= -1.61638900 \pm 3.1 \cdot 10^{-7} \) | \(a_{255}= +0.16542095 \pm 3.9 \cdot 10^{-7} \) |
\(a_{256}= -1.34527654 \pm 2.1 \cdot 10^{-7} \) | \(a_{257}= +0.77030924 \pm 1.7 \cdot 10^{-7} \) | \(a_{258}= +1.07495110 \pm 4.5 \cdot 10^{-7} \) |
\(a_{259}= +0.28247666 \pm 1.9 \cdot 10^{-7} \) | \(a_{260}= -0.00749651 \pm 2.7 \cdot 10^{-7} \) | \(a_{261}= +0.12317923 \pm 2.1 \cdot 10^{-7} \) |
\(a_{262}= +0.49336551 \pm 2.3 \cdot 10^{-7} \) | \(a_{263}= -0.95318734 \pm 1.9 \cdot 10^{-7} \) | \(a_{264}= +0.79939142 \pm 4.5 \cdot 10^{-7} \) |
\(a_{265}= -0.23590443 \pm 1.6 \cdot 10^{-7} \) | \(a_{266}= -0.66760997 \pm 4.3 \cdot 10^{-7} \) | \(a_{267}= +0.10305059 \pm 1.8 \cdot 10^{-7} \) |
\(a_{268}= -0.26575461 \pm 2.2 \cdot 10^{-7} \) | \(a_{269}= -0.73755676 \pm 1.8 \cdot 10^{-7} \) | \(a_{270}= +0.05126853 \pm 4.2 \cdot 10^{-7} \) |
\(a_{271}= -0.34659878 \pm 1.7 \cdot 10^{-7} \) | \(a_{272}= -0.41221728 \pm 1.3 \cdot 10^{-7} \) | \(a_{273}= +0.00589374 \pm 2.1 \cdot 10^{-7} \) |
\(a_{274}= +2.12022015 \pm 2.1 \cdot 10^{-7} \) | \(a_{275}= +1.13990247 \pm 1.7 \cdot 10^{-7} \) | \(a_{276}= -1.00357247 \pm 4.7 \cdot 10^{-7} \) |
\(a_{277}= -1.36124192 \pm 1.6 \cdot 10^{-7} \) | \(a_{278}= -1.26162854 \pm 2.4 \cdot 10^{-7} \) | \(a_{279}= -0.63523796 \pm 2.2 \cdot 10^{-7} \) |
\(a_{280}= +0.07225251 \pm 4.6 \cdot 10^{-7} \) | \(a_{281}= -0.67219748 \pm 2.3 \cdot 10^{-7} \) | \(a_{282}= +0.06750742 \pm 4.3 \cdot 10^{-7} \) |
\(a_{283}= +1.18760895 \pm 1.6 \cdot 10^{-7} \) | \(a_{284}= +0.36501485 \pm 3.0 \cdot 10^{-7} \) | \(a_{285}= -0.09996821 \pm 3.9 \cdot 10^{-7} \) |
\(a_{286}= +0.05211368 \pm 1.8 \cdot 10^{-7} \) | \(a_{287}= -0.36315668 \pm 1.6 \cdot 10^{-7} \) | \(a_{288}= +0.26655357 \pm 2.1 \cdot 10^{-7} \) |
\(a_{289}= +2.14353877 \pm 1.8 \cdot 10^{-7} \) | \(a_{290}= +0.09844451 \pm 1.8 \cdot 10^{-7} \) | \(a_{291}= -0.01637416 \pm 1.3 \cdot 10^{-7} \) |
\(a_{292}= -1.63606648 \pm 2.6 \cdot 10^{-7} \) | \(a_{293}= +1.70182583 \pm 1.7 \cdot 10^{-7} \) | \(a_{294}= -0.13596664 \pm 2.4 \cdot 10^{-7} \) |
\(a_{295}= -0.00488736 \pm 1.2 \cdot 10^{-7} \) | \(a_{296}= -0.88408059 \pm 2.3 \cdot 10^{-7} \) | \(a_{297}= -0.22525683 \pm 1.8 \cdot 10^{-7} \) |
\(a_{298}= +2.96903445 \pm 2.5 \cdot 10^{-7} \) | \(a_{299}= -0.02733340 \pm 2.2 \cdot 10^{-7} \) | \(a_{300}= -0.96574785 \pm 4.6 \cdot 10^{-7} \) |
\(a_{301}= -0.42688342 \pm 2.2 \cdot 10^{-7} \) | \(a_{302}= +1.40388707 \pm 2.6 \cdot 10^{-7} \) | \(a_{303}= -0.70875009 \pm 2.2 \cdot 10^{-7} \) |
\(a_{304}= +0.24911369 \pm 1.6 \cdot 10^{-7} \) | \(a_{305}= -0.03675926 \pm 1.4 \cdot 10^{-7} \) | \(a_{306}= +0.97426967 \pm 4.4 \cdot 10^{-7} \) |
\(a_{307}= -1.48189367 \pm 2.5 \cdot 10^{-7} \) | \(a_{308}= -0.75984908 \pm 4.6 \cdot 10^{-7} \) | \(a_{309}= +0.92257698 \pm 1.8 \cdot 10^{-7} \) |
\(a_{310}= -0.50768044 \pm 2.4 \cdot 10^{-7} \) | \(a_{311}= -0.72937037 \pm 2.2 \cdot 10^{-7} \) | \(a_{312}= -0.01844593 \pm 4.8 \cdot 10^{-7} \) |
\(a_{313}= -1.13007153 \pm 2.4 \cdot 10^{-7} \) | \(a_{314}= -1.94753206 \pm 2.1 \cdot 10^{-7} \) | \(a_{315}= -0.02035970 \pm 1.9 \cdot 10^{-7} \) |
\(a_{316}= -1.58172634 \pm 1.9 \cdot 10^{-7} \) | \(a_{317}= -1.08233049 \pm 2.2 \cdot 10^{-7} \) | \(a_{318}= -1.38939194 \pm 4.5 \cdot 10^{-7} \) |
\(a_{319}= -0.43253234 \pm 1.4 \cdot 10^{-7} \) | \(a_{320}= +0.25060038 \pm 1.4 \cdot 10^{-7} \) | \(a_{321}= +0.54061885 \pm 2.3 \cdot 10^{-7} \) |
\(a_{322}= +0.63057224 \pm 4.3 \cdot 10^{-7} \) | \(a_{323}= -1.89972274 \pm 2.5 \cdot 10^{-7} \) | \(a_{324}= +0.19084202 \pm 2.8 \cdot 10^{-7} \) |
\(a_{325}= -0.02630321 \pm 1.8 \cdot 10^{-7} \) | \(a_{326}= +2.42088585 \pm 1.5 \cdot 10^{-7} \) | \(a_{327}= -0.02707394 \pm 2.2 \cdot 10^{-7} \) |
\(a_{328}= +1.13658867 \pm 1.9 \cdot 10^{-7} \) | \(a_{329}= -0.02680847 \pm 2.0 \cdot 10^{-7} \) | \(a_{330}= -0.18002464 \pm 6.0 \cdot 10^{-7} \) |
\(a_{331}= +0.57517798 \pm 1.7 \cdot 10^{-7} \) | \(a_{332}= +0.71847696 \pm 2.0 \cdot 10^{-7} \) | \(a_{333}= +0.24912100 \pm 1.9 \cdot 10^{-7} \) |
\(a_{334}= +0.16116352 \pm 2.1 \cdot 10^{-7} \) | \(a_{335}= +0.02500380 \pm 2.0 \cdot 10^{-7} \) | \(a_{336}= +0.05073494 \pm 2.3 \cdot 10^{-7} \) |
\(a_{337}= -0.20985206 \pm 2.3 \cdot 10^{-7} \) | \(a_{338}= +1.64730535 \pm 2.2 \cdot 10^{-7} \) | \(a_{339}= +1.06199060 \pm 1.4 \cdot 10^{-7} \) |
\(a_{340}= +0.49211618 \pm 1.2 \cdot 10^{-7} \) | \(a_{341}= +2.23057863 \pm 1.6 \cdot 10^{-7} \) | \(a_{342}= -0.58877665 \pm 4.3 \cdot 10^{-7} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +1.33603728 \pm 3.2 \cdot 10^{-7} \) | \(a_{345}= +0.09442216 \pm 3.9 \cdot 10^{-7} \) |
\(a_{346}= -0.97005321 \pm 2.7 \cdot 10^{-7} \) | \(a_{347}= -0.63576446 \pm 2.0 \cdot 10^{-7} \) | \(a_{348}= +0.36644992 \pm 4.8 \cdot 10^{-7} \) |
\(a_{349}= -1.09631933 \pm 1.9 \cdot 10^{-7} \) | \(a_{350}= +0.60680599 \pm 4.2 \cdot 10^{-7} \) | \(a_{351}= +0.00519779 \pm 2.1 \cdot 10^{-7} \) |
\(a_{352}= -0.93597790 \pm 2.0 \cdot 10^{-7} \) | \(a_{353}= +1.16910939 \pm 1.5 \cdot 10^{-7} \) | \(a_{354}= -0.02878479 \pm 3.8 \cdot 10^{-7} \) |
\(a_{355}= -0.03434280 \pm 2.3 \cdot 10^{-7} \) | \(a_{356}= +0.30656857 \pm 2.0 \cdot 10^{-7} \) | \(a_{357}= -0.38690092 \pm 2.1 \cdot 10^{-7} \) |
\(a_{358}= -1.06237521 \pm 2.0 \cdot 10^{-7} \) | \(a_{359}= +0.19870523 \pm 1.3 \cdot 10^{-7} \) | \(a_{360}= +0.06372073 \pm 4.6 \cdot 10^{-7} \) |
\(a_{361}= +0.14805216 \pm 2.2 \cdot 10^{-7} \) | \(a_{362}= +0.77354132 \pm 2.0 \cdot 10^{-7} \) | \(a_{363}= +0.21361799 \pm 1.7 \cdot 10^{-7} \) |
\(a_{364}= +0.01753349 \pm 4.8 \cdot 10^{-7} \) | \(a_{365}= +0.15393102 \pm 1.8 \cdot 10^{-7} \) | \(a_{366}= -0.21649880 \pm 4.3 \cdot 10^{-7} \) |
\(a_{367}= +1.04061304 \pm 1.6 \cdot 10^{-7} \) | \(a_{368}= -0.23529334 \pm 2.2 \cdot 10^{-7} \) | \(a_{369}= -0.32027409 \pm 1.6 \cdot 10^{-7} \) |
\(a_{370}= +0.19909682 \pm 2.3 \cdot 10^{-7} \) | \(a_{371}= +0.55175383 \pm 2.2 \cdot 10^{-7} \) | \(a_{372}= -1.88979018 \pm 4.9 \cdot 10^{-7} \) |
\(a_{373}= -1.11733944 \pm 2.5 \cdot 10^{-7} \) | \(a_{374}= -3.42105675 \pm 2.2 \cdot 10^{-7} \) | \(a_{375}= +0.18416327 \pm 1.7 \cdot 10^{-7} \) |
\(a_{376}= +0.08390375 \pm 3.0 \cdot 10^{-7} \) | \(a_{377}= +0.00998067 \pm 1.5 \cdot 10^{-7} \) | \(a_{378}= -0.11991130 \pm 2.4 \cdot 10^{-7} \) |
\(a_{379}= +1.68965049 \pm 1.7 \cdot 10^{-7} \) | \(a_{380}= -0.29739869 \pm 1.7 \cdot 10^{-7} \) | \(a_{381}= +0.56610140 \pm 2.4 \cdot 10^{-7} \) |
\(a_{382}= -2.47283670 \pm 2.8 \cdot 10^{-7} \) | \(a_{383}= -1.23166184 \pm 2.4 \cdot 10^{-7} \) | \(a_{384}= +1.01426148 \pm 2.1 \cdot 10^{-7} \) |
\(a_{385}= +0.07149119 \pm 3.7 \cdot 10^{-7} \) | \(a_{386}= -0.18365271 \pm 2.3 \cdot 10^{-7} \) | \(a_{387}= -0.37647579 \pm 2.2 \cdot 10^{-7} \) |
\(a_{388}= -0.04871204 \pm 1.5 \cdot 10^{-7} \) | \(a_{389}= -1.49896038 \pm 1.6 \cdot 10^{-7} \) | \(a_{390}= +0.00415406 \pm 6.3 \cdot 10^{-7} \) |
\(a_{391}= +1.79432974 \pm 1.4 \cdot 10^{-7} \) | \(a_{392}= -0.16899048 \pm 2.8 \cdot 10^{-7} \) | \(a_{393}= -0.17278941 \pm 1.7 \cdot 10^{-7} \) |
\(a_{394}= +1.41671668 \pm 1.6 \cdot 10^{-7} \) | \(a_{395}= +0.14881837 \pm 1.3 \cdot 10^{-7} \) | \(a_{396}= -0.67012390 \pm 4.6 \cdot 10^{-7} \) |
\(a_{397}= +0.54666080 \pm 1.6 \cdot 10^{-7} \) | \(a_{398}= -0.26264145 \pm 1.7 \cdot 10^{-7} \) | \(a_{399}= +0.23381435 \pm 2.0 \cdot 10^{-7} \) |
\(a_{400}= -0.22642513 \pm 1.5 \cdot 10^{-7} \) | \(a_{401}= +0.65354591 \pm 1.9 \cdot 10^{-7} \) | \(a_{402}= +0.14726335 \pm 4.4 \cdot 10^{-7} \) |
\(a_{403}= -0.05147052 \pm 1.8 \cdot 10^{-7} \) | \(a_{404}= -2.10848383 \pm 2.7 \cdot 10^{-7} \) | \(a_{405}= -0.01795557 \pm 1.9 \cdot 10^{-7} \) |
\(a_{406}= -0.23025059 \pm 4.4 \cdot 10^{-7} \) | \(a_{407}= -0.87476506 \pm 1.6 \cdot 10^{-7} \) | \(a_{408}= +1.21090215 \pm 4.8 \cdot 10^{-7} \) |
\(a_{409}= +0.31705422 \pm 1.7 \cdot 10^{-7} \) | \(a_{410}= -0.25596218 \pm 1.6 \cdot 10^{-7} \) | \(a_{411}= -0.74255616 \pm 1.7 \cdot 10^{-7} \) |
\(a_{412}= +2.74460444 \pm 2.4 \cdot 10^{-7} \) | \(a_{413}= +0.01143099 \pm 1.5 \cdot 10^{-7} \) | \(a_{414}= +0.55611245 \pm 4.3 \cdot 10^{-7} \) |
\(a_{415}= -0.06759865 \pm 1.8 \cdot 10^{-7} \) | \(a_{416}= +0.02159766 \pm 1.9 \cdot 10^{-7} \) | \(a_{417}= +0.44185508 \pm 2.2 \cdot 10^{-7} \) |
\(a_{418}= +2.06743412 \pm 2.7 \cdot 10^{-7} \) | \(a_{419}= +1.01171452 \pm 2.0 \cdot 10^{-7} \) | \(a_{420}= -0.06056875 \pm 4.6 \cdot 10^{-7} \) |
\(a_{421}= -1.19891346 \pm 1.7 \cdot 10^{-7} \) | \(a_{422}= +0.11824230 \pm 2.0 \cdot 10^{-7} \) | \(a_{423}= -0.02364285 \pm 2.0 \cdot 10^{-7} \) |
\(a_{424}= -1.72685012 \pm 3.1 \cdot 10^{-7} \) | \(a_{425}= +1.72670149 \pm 1.8 \cdot 10^{-7} \) | \(a_{426}= -0.20226671 \pm 4.9 \cdot 10^{-7} \) |
\(a_{427}= +0.08597577 \pm 2.0 \cdot 10^{-7} \) | \(a_{428}= +1.60830471 \pm 3.3 \cdot 10^{-7} \) | \(a_{429}= -0.01825156 \pm 3.9 \cdot 10^{-7} \) |
\(a_{430}= -0.30087843 \pm 2.5 \cdot 10^{-7} \) | \(a_{431}= -0.07904859 \pm 1.9 \cdot 10^{-7} \) | \(a_{432}= +0.04474401 \pm 2.3 \cdot 10^{-7} \) |
\(a_{433}= -0.60425109 \pm 1.4 \cdot 10^{-7} \) | \(a_{434}= +1.18740726 \pm 4.5 \cdot 10^{-7} \) | \(a_{435}= -0.03447782 \pm 3.9 \cdot 10^{-7} \) |
\(a_{436}= -0.08054314 \pm 2.3 \cdot 10^{-7} \) | \(a_{437}= -1.08436042 \pm 1.7 \cdot 10^{-7} \) | \(a_{438}= +0.90659814 \pm 4.2 \cdot 10^{-7} \) |
\(a_{439}= +0.08292341 \pm 1.9 \cdot 10^{-7} \) | \(a_{440}= -0.22374937 \pm 2.1 \cdot 10^{-7} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= +0.07894076 \pm 1.4 \cdot 10^{-7} \) | \(a_{443}= -1.25547478 \pm 1.9 \cdot 10^{-7} \) | \(a_{444}= +0.74111820 \pm 4.6 \cdot 10^{-7} \) |
\(a_{445}= -0.02884382 \pm 1.9 \cdot 10^{-7} \) | \(a_{446}= -1.83718241 \pm 2.2 \cdot 10^{-7} \) | \(a_{447}= -1.03983297 \pm 1.8 \cdot 10^{-7} \) |
\(a_{448}= -0.58612601 \pm 1.9 \cdot 10^{-7} \) | \(a_{449}= -0.61365116 \pm 1.7 \cdot 10^{-7} \) | \(a_{450}= +0.53515258 \pm 4.2 \cdot 10^{-7} \) |
\(a_{451}= +1.12461248 \pm 1.2 \cdot 10^{-7} \) | \(a_{452}= +3.15935060 \pm 2.3 \cdot 10^{-7} \) | \(a_{453}= -0.49167771 \pm 2.1 \cdot 10^{-7} \) |
\(a_{454}= -2.38027798 \pm 1.9 \cdot 10^{-7} \) | \(a_{455}= -0.00164966 \pm 4.0 \cdot 10^{-7} \) | \(a_{456}= -0.73177986 \pm 4.7 \cdot 10^{-7} \) |
\(a_{457}= -1.84775946 \pm 2.1 \cdot 10^{-7} \) | \(a_{458}= +0.36522637 \pm 2.3 \cdot 10^{-7} \) | \(a_{459}= -0.34121454 \pm 2.1 \cdot 10^{-7} \) |
\(a_{460}= +0.28089957 \pm 2.9 \cdot 10^{-7} \) | \(a_{461}= -0.98261667 \pm 2.4 \cdot 10^{-7} \) | \(a_{462}= +0.42105732 \pm 4.2 \cdot 10^{-7} \) |
\(a_{463}= +0.75724140 \pm 1.8 \cdot 10^{-7} \) | \(a_{464}= +0.08591629 \pm 1.9 \cdot 10^{-7} \) | \(a_{465}= +0.17780288 \pm 4.0 \cdot 10^{-7} \) |
\(a_{466}= +0.01873024 \pm 1.9 \cdot 10^{-7} \) | \(a_{467}= +0.27524339 \pm 2.1 \cdot 10^{-7} \) | \(a_{468}= +0.01546309 \pm 4.8 \cdot 10^{-7} \) |
\(a_{469}= -0.05848106 \pm 2.1 \cdot 10^{-7} \) | \(a_{470}= -0.01889530 \pm 2.5 \cdot 10^{-7} \) | \(a_{471}= +0.68207630 \pm 2.0 \cdot 10^{-7} \) |
\(a_{472}= -0.03577610 \pm 2.0 \cdot 10^{-7} \) | \(a_{473}= +1.32195950 \pm 1.7 \cdot 10^{-7} \) | \(a_{474}= +0.87648648 \pm 3.7 \cdot 10^{-7} \) |
\(a_{475}= -1.04349090 \pm 1.8 \cdot 10^{-7} \) | \(a_{476}= -1.15100421 \pm 4.8 \cdot 10^{-7} \) | \(a_{477}= +0.48660114 \pm 2.2 \cdot 10^{-7} \) |
\(a_{478}= +0.59684288 \pm 2.1 \cdot 10^{-7} \) | \(a_{479}= -0.13540819 \pm 2.0 \cdot 10^{-7} \) | \(a_{480}= -0.07460825 \pm 4.0 \cdot 10^{-7} \) |
\(a_{481}= +0.02018517 \pm 1.8 \cdot 10^{-7} \) | \(a_{482}= +1.03977906 \pm 1.9 \cdot 10^{-7} \) | \(a_{483}= -0.22084278 \pm 2.0 \cdot 10^{-7} \) |
\(a_{484}= +0.63549916 \pm 2.5 \cdot 10^{-7} \) | \(a_{485}= +0.00458312 \pm 1.1 \cdot 10^{-7} \) | \(a_{486}= -0.10575183 \pm 2.4 \cdot 10^{-7} \) |
\(a_{487}= +0.28305364 \pm 1.7 \cdot 10^{-7} \) | \(a_{488}= -0.26908244 \pm 2.2 \cdot 10^{-7} \) | \(a_{489}= -0.84785709 \pm 2.0 \cdot 10^{-7} \) |
\(a_{490}= +0.03805701 \pm 4.2 \cdot 10^{-7} \) | \(a_{491}= -0.84786609 \pm 1.5 \cdot 10^{-7} \) | \(a_{492}= -0.95279386 \pm 4.3 \cdot 10^{-7} \) |
\(a_{493}= -0.65519134 \pm 2.2 \cdot 10^{-7} \) | \(a_{494}= -0.04770597 \pm 1.8 \cdot 10^{-7} \) | \(a_{495}= +0.06304930 \pm 3.7 \cdot 10^{-7} \) |
\(a_{496}= -0.44307217 \pm 2.2 \cdot 10^{-7} \) | \(a_{497}= +0.08032394 \pm 2.6 \cdot 10^{-7} \) | \(a_{498}= -0.39813167 \pm 4.2 \cdot 10^{-7} \) |
\(a_{499}= +0.85299758 \pm 1.8 \cdot 10^{-7} \) | \(a_{500}= +0.54787334 \pm 2.4 \cdot 10^{-7} \) | \(a_{501}= -0.05644365 \pm 1.6 \cdot 10^{-7} \) |
\(a_{502}= -0.24445649 \pm 1.9 \cdot 10^{-7} \) | \(a_{503}= +1.00302287 \pm 2.0 \cdot 10^{-7} \) | \(a_{504}= -0.14903559 \pm 2.8 \cdot 10^{-7} \) |
\(a_{505}= +0.19837890 \pm 1.4 \cdot 10^{-7} \) | \(a_{506}= -1.95273681 \pm 1.8 \cdot 10^{-7} \) | \(a_{507}= -0.57692911 \pm 2.4 \cdot 10^{-7} \) |
\(a_{508}= +1.68411359 \pm 3.7 \cdot 10^{-7} \) | \(a_{509}= -0.09269527 \pm 2.0 \cdot 10^{-7} \) | \(a_{510}= -0.27269773 \pm 6.2 \cdot 10^{-7} \) |
\(a_{511}= -0.36002728 \pm 1.9 \cdot 10^{-7} \) | \(a_{512}= +0.46094656 \pm 2.4 \cdot 10^{-7} \) | \(a_{513}= +0.20620487 \pm 2.0 \cdot 10^{-7} \) |
\(a_{514}= -1.26986084 \pm 1.8 \cdot 10^{-7} \) | \(a_{515}= -0.25822897 \pm 1.8 \cdot 10^{-7} \) | \(a_{516}= -1.11999015 \pm 4.9 \cdot 10^{-7} \) |
\(a_{517}= +0.08301966 \pm 1.5 \cdot 10^{-7} \) | \(a_{518}= -0.46566500 \pm 4.2 \cdot 10^{-7} \) | \(a_{519}= +0.33973783 \pm 2.3 \cdot 10^{-7} \) |
\(a_{520}= +0.00516301 \pm 2.6 \cdot 10^{-7} \) | \(a_{521}= +0.77120567 \pm 2.1 \cdot 10^{-7} \) | \(a_{522}= -0.20306193 \pm 4.4 \cdot 10^{-7} \) |
\(a_{523}= -0.00751766 \pm 1.9 \cdot 10^{-7} \) | \(a_{524}= -0.51403688 \pm 2.8 \cdot 10^{-7} \) | \(a_{525}= -0.21251922 \pm 1.9 \cdot 10^{-7} \) |
\(a_{526}= +1.57133683 \pm 2.1 \cdot 10^{-7} \) | \(a_{527}= +3.37883594 \pm 2.3 \cdot 10^{-7} \) | \(a_{528}= -0.15711440 \pm 4.1 \cdot 10^{-7} \) |
\(a_{529}= +0.02420217 \pm 1.9 \cdot 10^{-7} \) | \(a_{530}= +0.38889031 \pm 2.2 \cdot 10^{-7} \) | \(a_{531}= +0.01008118 \pm 1.5 \cdot 10^{-7} \) |
\(a_{532}= +0.69558196 \pm 4.7 \cdot 10^{-7} \) | \(a_{533}= -0.02595039 \pm 2.0 \cdot 10^{-7} \) | \(a_{534}= -0.16987971 \pm 4.1 \cdot 10^{-7} \) |
\(a_{535}= -0.15131902 \pm 1.7 \cdot 10^{-7} \) | \(a_{536}= +0.18303096 \pm 2.4 \cdot 10^{-7} \) | \(a_{537}= +0.37207139 \pm 1.8 \cdot 10^{-7} \) |
\(a_{538}= +1.21586813 \pm 1.9 \cdot 10^{-7} \) | \(a_{539}= -0.16720983 \pm 1.8 \cdot 10^{-7} \) | \(a_{540}= -0.05341661 \pm 4.6 \cdot 10^{-7} \) |
\(a_{541}= +0.08787570 \pm 1.9 \cdot 10^{-7} \) | \(a_{542}= +0.57137081 \pm 2.1 \cdot 10^{-7} \) | \(a_{543}= -0.27091426 \pm 1.6 \cdot 10^{-7} \) |
\(a_{544}= -1.41780062 \pm 1.5 \cdot 10^{-7} \) | \(a_{545}= +0.00757799 \pm 1.5 \cdot 10^{-7} \) | \(a_{546}= -0.00971588 \pm 4.5 \cdot 10^{-7} \) |
\(a_{547}= -0.54588393 \pm 1.5 \cdot 10^{-7} \) | \(a_{548}= -2.20905462 \pm 2.4 \cdot 10^{-7} \) | \(a_{549}= +0.07582350 \pm 2.0 \cdot 10^{-7} \) |
\(a_{550}= -1.87913820 \pm 2.0 \cdot 10^{-7} \) | \(a_{551}= +0.39594927 \pm 1.7 \cdot 10^{-7} \) | \(a_{552}= +0.69118210 \pm 4.7 \cdot 10^{-7} \) |
\(a_{553}= -0.34806937 \pm 1.4 \cdot 10^{-7} \) | \(a_{554}= +2.24401803 \pm 2.0 \cdot 10^{-7} \) | \(a_{555}= -0.06972888 \pm 3.7 \cdot 10^{-7} \) |
\(a_{556}= +1.31448913 \pm 2.8 \cdot 10^{-7} \) | \(a_{557}= -0.58030766 \pm 2.0 \cdot 10^{-7} \) | \(a_{558}= +1.04719477 \pm 4.5 \cdot 10^{-7} \) |
\(a_{559}= -0.03050417 \pm 2.3 \cdot 10^{-7} \) | \(a_{560}= -0.01420069 \pm 4.1 \cdot 10^{-7} \) | \(a_{561}= +1.19814292 \pm 3.9 \cdot 10^{-7} \) |
\(a_{562}= +1.10812284 \pm 2.5 \cdot 10^{-7} \) | \(a_{563}= -1.40260529 \pm 1.4 \cdot 10^{-7} \) | \(a_{564}= -0.07033589 \pm 4.7 \cdot 10^{-7} \) |
\(a_{565}= -0.29725079 \pm 1.2 \cdot 10^{-7} \) | \(a_{566}= -1.95778271 \pm 1.9 \cdot 10^{-7} \) | \(a_{567}= +0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -0.25139364 \pm 2.8 \cdot 10^{-7} \) | \(a_{569}= +0.53936196 \pm 1.8 \cdot 10^{-7} \) | \(a_{570}= +0.16479837 \pm 6.2 \cdot 10^{-7} \) |
\(a_{571}= +1.71524659 \pm 1.9 \cdot 10^{-7} \) | \(a_{572}= -0.05429718 \pm 1.9 \cdot 10^{-7} \) | \(a_{573}= +0.86605163 \pm 2.2 \cdot 10^{-7} \) |
\(a_{574}= +0.59866664 \pm 3.9 \cdot 10^{-7} \) | \(a_{575}= +0.98560001 \pm 2.0 \cdot 10^{-7} \) | \(a_{576}= -0.51691455 \pm 1.9 \cdot 10^{-7} \) |
\(a_{577}= +1.23191869 \pm 2.3 \cdot 10^{-7} \) | \(a_{578}= -3.53364054 \pm 2.3 \cdot 10^{-7} \) | \(a_{579}= +0.06431995 \pm 2.2 \cdot 10^{-7} \) |
\(a_{580}= -0.10256920 \pm 1.9 \cdot 10^{-7} \) | \(a_{581}= +0.15810562 \pm 1.9 \cdot 10^{-7} \) | \(a_{582}= +0.02699294 \pm 3.6 \cdot 10^{-7} \) |
\(a_{583}= -1.70865437 \pm 2.2 \cdot 10^{-7} \) | \(a_{584}= +1.12679443 \pm 2.6 \cdot 10^{-7} \) | \(a_{585}= -0.00145486 \pm 4.0 \cdot 10^{-7} \) |
\(a_{586}= -2.80547327 \pm 2.2 \cdot 10^{-7} \) | \(a_{587}= +0.18294834 \pm 2.4 \cdot 10^{-7} \) | \(a_{588}= +0.14166346 \pm 2.8 \cdot 10^{-7} \) |
\(a_{589}= -2.04191898 \pm 2.0 \cdot 10^{-7} \) | \(a_{590}= +0.00805685 \pm 1.7 \cdot 10^{-7} \) | \(a_{591}= -0.49617097 \pm 1.6 \cdot 10^{-7} \) |
\(a_{592}= +0.17375942 \pm 2.1 \cdot 10^{-7} \) | \(a_{593}= -0.03088770 \pm 1.4 \cdot 10^{-7} \) | \(a_{594}= +0.37133765 \pm 4.2 \cdot 10^{-7} \) |
\(a_{595}= +0.10829343 \pm 3.9 \cdot 10^{-7} \) | \(a_{596}= -3.09343313 \pm 2.9 \cdot 10^{-7} \) | \(a_{597}= +0.09198386 \pm 1.4 \cdot 10^{-7} \) |
\(a_{598}= +0.04505933 \pm 2.1 \cdot 10^{-7} \) | \(a_{599}= -1.23203159 \pm 2.3 \cdot 10^{-7} \) | \(a_{600}= +0.66513147 \pm 4.6 \cdot 10^{-7} \) |
\(a_{601}= +0.12136226 \pm 2.1 \cdot 10^{-7} \) | \(a_{602}= +0.70372068 \pm 4.5 \cdot 10^{-7} \) | \(a_{603}= -0.05157545 \pm 2.1 \cdot 10^{-7} \) |
\(a_{604}= -1.46270811 \pm 3.1 \cdot 10^{-7} \) | \(a_{605}= -0.05979160 \pm 1.1 \cdot 10^{-7} \) | \(a_{606}= +1.16838010 \pm 4.5 \cdot 10^{-7} \) |
\(a_{607}= -0.51110014 \pm 2.2 \cdot 10^{-7} \) | \(a_{608}= +0.85681401 \pm 1.4 \cdot 10^{-7} \) | \(a_{609}= +0.08063974 \pm 2.1 \cdot 10^{-7} \) |
\(a_{610}= +0.06059794 \pm 1.7 \cdot 10^{-7} \) | \(a_{611}= -0.00191568 \pm 1.6 \cdot 10^{-7} \) | \(a_{612}= -1.01509030 \pm 4.8 \cdot 10^{-7} \) |
\(a_{613}= -0.42800064 \pm 1.8 \cdot 10^{-7} \) | \(a_{614}= +2.44291339 \pm 2.7 \cdot 10^{-7} \) | \(a_{615}= +0.08964460 \pm 3.4 \cdot 10^{-7} \) |
\(a_{616}= +0.52332453 \pm 4.5 \cdot 10^{-7} \) | \(a_{617}= -0.76835907 \pm 1.9 \cdot 10^{-7} \) | \(a_{618}= -1.52087541 \pm 4.1 \cdot 10^{-7} \) |
\(a_{619}= +0.52549022 \pm 1.6 \cdot 10^{-7} \) | \(a_{620}= +0.52895160 \pm 2.7 \cdot 10^{-7} \) | \(a_{621}= -0.19476502 \pm 2.0 \cdot 10^{-7} \) |
\(a_{622}= +1.20237280 \pm 2.2 \cdot 10^{-7} \) | \(a_{623}= +0.06746245 \pm 1.8 \cdot 10^{-7} \) | \(a_{624}= +0.00362541 \pm 4.4 \cdot 10^{-7} \) |
\(a_{625}= +0.92233816 \pm 1.6 \cdot 10^{-7} \) | \(a_{626}= +1.86293181 \pm 2.7 \cdot 10^{-7} \) | \(a_{627}= -0.72406912 \pm 3.8 \cdot 10^{-7} \) |
\(a_{628}= +2.02913112 \pm 2.4 \cdot 10^{-7} \) | \(a_{629}= -1.32507664 \pm 1.5 \cdot 10^{-7} \) | \(a_{630}= +0.03356313 \pm 4.2 \cdot 10^{-7} \) |
\(a_{631}= +0.78425434 \pm 2.0 \cdot 10^{-7} \) | \(a_{632}= +1.08936920 \pm 1.7 \cdot 10^{-7} \) | \(a_{633}= -0.04141152 \pm 2.1 \cdot 10^{-7} \) |
\(a_{634}= +1.78423033 \pm 2.7 \cdot 10^{-7} \) | \(a_{635}= -0.15845158 \pm 1.9 \cdot 10^{-7} \) | \(a_{636}= +1.44760566 \pm 4.9 \cdot 10^{-7} \) |
\(a_{637}= +0.00385836 \pm 2.1 \cdot 10^{-7} \) | \(a_{638}= +0.71303296 \pm 2.2 \cdot 10^{-7} \) | \(a_{639}= +0.07083905 \pm 2.6 \cdot 10^{-7} \) |
\(a_{640}= -0.28389142 \pm 1.7 \cdot 10^{-7} \) | \(a_{641}= +1.26060469 \pm 1.9 \cdot 10^{-7} \) | \(a_{642}= -0.89121443 \pm 4.6 \cdot 10^{-7} \) |
\(a_{643}= +0.52586283 \pm 1.8 \cdot 10^{-7} \) | \(a_{644}= -0.65699240 \pm 4.7 \cdot 10^{-7} \) | \(a_{645}= +0.10537544 \pm 4.0 \cdot 10^{-7} \) |
\(a_{646}= +3.13170789 \pm 2.5 \cdot 10^{-7} \) | \(a_{647}= -1.56283857 \pm 2.6 \cdot 10^{-7} \) | \(a_{648}= -0.13143704 \pm 2.8 \cdot 10^{-7} \) |
\(a_{649}= -0.03539913 \pm 1.3 \cdot 10^{-7} \) | \(a_{650}= +0.04336105 \pm 1.9 \cdot 10^{-7} \) | \(a_{651}= -0.41586086 \pm 2.2 \cdot 10^{-7} \) |
\(a_{652}= -2.52231782 \pm 1.7 \cdot 10^{-7} \) | \(a_{653}= +0.47893950 \pm 1.9 \cdot 10^{-7} \) | \(a_{654}= +0.04463160 \pm 4.5 \cdot 10^{-7} \) |
\(a_{655}= +0.04836369 \pm 1.4 \cdot 10^{-7} \) | \(a_{656}= -0.22338800 \pm 1.5 \cdot 10^{-7} \) | \(a_{657}= -0.31751421 \pm 1.9 \cdot 10^{-7} \) |
\(a_{658}= +0.04419398 \pm 4.3 \cdot 10^{-7} \) | \(a_{659}= -0.57261938 \pm 2.2 \cdot 10^{-7} \) | \(a_{660}= +0.18756744 \pm 6.4 \cdot 10^{-7} \) |
\(a_{661}= -0.93100578 \pm 1.9 \cdot 10^{-7} \) | \(a_{662}= -0.94818543 \pm 1.8 \cdot 10^{-7} \) | \(a_{663}= -0.02764711 \pm 4.2 \cdot 10^{-7} \) |
\(a_{664}= -0.49483065 \pm 2.0 \cdot 10^{-7} \) | \(a_{665}= -0.06544455 \pm 3.9 \cdot 10^{-7} \) | \(a_{666}= -0.41067792 \pm 4.2 \cdot 10^{-7} \) |
\(a_{667}= -0.37398276 \pm 1.2 \cdot 10^{-7} \) | \(a_{668}= -0.16791606 \pm 2.7 \cdot 10^{-7} \) | \(a_{669}= +0.64342899 \pm 2.4 \cdot 10^{-7} \) |
\(a_{670}= -0.04121896 \pm 2.0 \cdot 10^{-7} \) | \(a_{671}= -0.26624713 \pm 1.7 \cdot 10^{-7} \) | \(a_{672}= +0.17450027 \pm 2.1 \cdot 10^{-7} \) |
\(a_{673}= +1.38220817 \pm 1.6 \cdot 10^{-7} \) | \(a_{674}= +0.34594277 \pm 2.5 \cdot 10^{-7} \) | \(a_{675}= -0.18742433 \pm 1.9 \cdot 10^{-7} \) |
\(a_{676}= -1.71632530 \pm 2.8 \cdot 10^{-7} \) | \(a_{677}= -0.62940914 \pm 2.4 \cdot 10^{-7} \) | \(a_{678}= -1.75069987 \pm 3.8 \cdot 10^{-7} \) |
\(a_{679}= -0.01071941 \pm 1.3 \cdot 10^{-7} \) | \(a_{680}= -0.33893108 \pm 1.1 \cdot 10^{-7} \) | \(a_{681}= +0.83363516 \pm 2.1 \cdot 10^{-7} \) |
\(a_{682}= -3.67712643 \pm 2.0 \cdot 10^{-7} \) | \(a_{683}= +0.13946509 \pm 1.6 \cdot 10^{-7} \) | \(a_{684}= +0.61344563 \pm 4.7 \cdot 10^{-7} \) |
\(a_{685}= +0.20784120 \pm 1.0 \cdot 10^{-7} \) | \(a_{686}= -0.08901106 \pm 2.4 \cdot 10^{-7} \) | \(a_{687}= -0.12791176 \pm 2.6 \cdot 10^{-7} \) |
\(a_{688}= -0.26258813 \pm 2.5 \cdot 10^{-7} \) | \(a_{689}= +0.03942714 \pm 2.3 \cdot 10^{-7} \) | \(a_{690}= -0.15565567 \pm 6.2 \cdot 10^{-7} \) |
\(a_{691}= +0.91172218 \pm 2.4 \cdot 10^{-7} \) | \(a_{692}= +1.01069718 \pm 3.0 \cdot 10^{-7} \) | \(a_{693}= -0.14746521 \pm 1.8 \cdot 10^{-7} \) |
\(a_{694}= +1.04806272 \pm 2.0 \cdot 10^{-7} \) | \(a_{695}= -0.12367508 \pm 2.2 \cdot 10^{-7} \) | \(a_{696}= -0.25238200 \pm 4.8 \cdot 10^{-7} \) |
\(a_{697}= +1.70354051 \pm 9.7 \cdot 10^{-8} \) | \(a_{698}= +1.80729105 \pm 2.0 \cdot 10^{-7} \) | \(a_{699}= -0.00655982 \pm 1.9 \cdot 10^{-7} \) |
\(a_{700}= -0.63223037 \pm 4.6 \cdot 10^{-7} \) | \(a_{701}= -1.11516126 \pm 1.9 \cdot 10^{-7} \) | \(a_{702}= -0.00856860 \pm 4.5 \cdot 10^{-7} \) |
\(a_{703}= +0.80077849 \pm 1.3 \cdot 10^{-7} \) | \(a_{704}= +1.81509706 \pm 2.0 \cdot 10^{-7} \) | \(a_{705}= +0.00661763 \pm 3.8 \cdot 10^{-7} \) |
\(a_{706}= -1.92728604 \pm 1.6 \cdot 10^{-7} \) | \(a_{707}= -0.46398585 \pm 2.2 \cdot 10^{-7} \) | \(a_{708}= +0.02999084 \pm 4.2 \cdot 10^{-7} \) |
\(a_{709}= -1.65373960 \pm 1.9 \cdot 10^{-7} \) | \(a_{710}= +0.05661438 \pm 2.4 \cdot 10^{-7} \) | \(a_{711}= -0.30696833 \pm 1.4 \cdot 10^{-7} \) |
\(a_{712}= -0.21114042 \pm 1.9 \cdot 10^{-7} \) | \(a_{713}= +1.92863720 \pm 1.8 \cdot 10^{-7} \) | \(a_{714}= +0.63780921 \pm 4.4 \cdot 10^{-7} \) |
\(a_{715}= +0.00510861 \pm 1.8 \cdot 10^{-7} \) | \(a_{716}= +1.10688735 \pm 2.3 \cdot 10^{-7} \) | \(a_{717}= -0.20902988 \pm 1.8 \cdot 10^{-7} \) |
\(a_{718}= -0.32756714 \pm 1.9 \cdot 10^{-7} \) | \(a_{719}= -0.22484033 \pm 1.6 \cdot 10^{-7} \) | \(a_{720}= -0.01252383 \pm 4.1 \cdot 10^{-7} \) |
\(a_{721}= +0.60396841 \pm 1.8 \cdot 10^{-7} \) | \(a_{722}= -0.24406515 \pm 2.5 \cdot 10^{-7} \) | \(a_{723}= -0.36415763 \pm 2.1 \cdot 10^{-7} \) |
\(a_{724}= -0.80595170 \pm 2.4 \cdot 10^{-7} \) | \(a_{725}= -0.35988736 \pm 1.6 \cdot 10^{-7} \) | \(a_{726}= -0.35215094 \pm 4.1 \cdot 10^{-7} \) |
\(a_{727}= -0.98923643 \pm 2.3 \cdot 10^{-7} \) | \(a_{728}= -0.01207569 \pm 4.8 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.25375649 \pm 2.2 \cdot 10^{-7} \) | \(a_{731}= +2.00247784 \pm 1.8 \cdot 10^{-7} \) | \(a_{732}= +0.22556981 \pm 4.7 \cdot 10^{-7} \) |
\(a_{733}= +1.26080717 \pm 1.8 \cdot 10^{-7} \) | \(a_{734}= -1.71545879 \pm 1.9 \cdot 10^{-7} \) | \(a_{735}= -0.01332855 \pm 1.9 \cdot 10^{-7} \) |
\(a_{736}= -0.80927961 \pm 1.9 \cdot 10^{-7} \) | \(a_{737}= +0.18110237 \pm 1.7 \cdot 10^{-7} \) | \(a_{738}= +0.52797435 \pm 3.9 \cdot 10^{-7} \) |
\(a_{739}= -1.78837546 \pm 2.1 \cdot 10^{-7} \) | \(a_{740}= -0.20743872 \pm 2.6 \cdot 10^{-7} \) | \(a_{741}= +0.01670787 \pm 4.1 \cdot 10^{-7} \) |
\(a_{742}= -0.90957054 \pm 4.5 \cdot 10^{-7} \) | \(a_{743}= -1.10637166 \pm 1.9 \cdot 10^{-7} \) | \(a_{744}= +1.30153944 \pm 4.9 \cdot 10^{-7} \) |
\(a_{745}= +0.29104888 \pm 1.7 \cdot 10^{-7} \) | \(a_{746}= +1.84194286 \pm 3.1 \cdot 10^{-7} \) | \(a_{747}= +0.13943605 \pm 1.9 \cdot 10^{-7} \) |
\(a_{748}= +3.56439458 \pm 2.2 \cdot 10^{-7} \) | \(a_{749}= +0.35391812 \pm 2.3 \cdot 10^{-7} \) | \(a_{750}= -0.30359460 \pm 4.0 \cdot 10^{-7} \) |
\(a_{751}= -1.16778886 \pm 2.1 \cdot 10^{-7} \) | \(a_{752}= -0.01649065 \pm 2.9 \cdot 10^{-7} \) | \(a_{753}= +0.08561501 \pm 1.7 \cdot 10^{-7} \) |
\(a_{754}= -0.01645321 \pm 1.9 \cdot 10^{-7} \) | \(a_{755}= +0.13762041 \pm 2.1 \cdot 10^{-7} \) | \(a_{756}= +0.12493543 \pm 2.8 \cdot 10^{-7} \) |
\(a_{757}= +0.65146231 \pm 1.9 \cdot 10^{-7} \) | \(a_{758}= -2.78540213 \pm 1.7 \cdot 10^{-7} \) | \(a_{759}= +0.68389914 \pm 3.8 \cdot 10^{-7} \) |
\(a_{760}= +0.20482492 \pm 1.6 \cdot 10^{-7} \) | \(a_{761}= -1.90732467 \pm 2.3 \cdot 10^{-7} \) | \(a_{762}= -0.93322262 \pm 4.7 \cdot 10^{-7} \) |
\(a_{763}= -0.01772405 \pm 2.2 \cdot 10^{-7} \) | \(a_{764}= +2.57644534 \pm 3.5 \cdot 10^{-7} \) | \(a_{765}= +0.09550583 \pm 3.9 \cdot 10^{-7} \) |
\(a_{766}= +2.03040424 \pm 2.8 \cdot 10^{-7} \) | \(a_{767}= +0.00081683 \pm 1.7 \cdot 10^{-7} \) | \(a_{768}= -0.77669577 \pm 2.2 \cdot 10^{-7} \) |
\(a_{769}= -1.79088064 \pm 2.2 \cdot 10^{-7} \) | \(a_{770}= -0.11785379 \pm 6.0 \cdot 10^{-7} \) | \(a_{771}= +0.44473825 \pm 1.8 \cdot 10^{-7} \) |
\(a_{772}= +0.19134752 \pm 2.8 \cdot 10^{-7} \) | \(a_{773}= -0.12794980 \pm 1.8 \cdot 10^{-7} \) | \(a_{774}= +0.62062330 \pm 4.5 \cdot 10^{-7} \) |
\(a_{775}= +1.85594691 \pm 1.8 \cdot 10^{-7} \) | \(a_{776}= +0.03354904 \pm 1.5 \cdot 10^{-7} \) | \(a_{777}= +0.16308797 \pm 1.9 \cdot 10^{-7} \) |
\(a_{778}= +2.47104799 \pm 1.9 \cdot 10^{-7} \) | \(a_{779}= -1.02949411 \pm 1.2 \cdot 10^{-7} \) | \(a_{780}= -0.00432811 \pm 6.7 \cdot 10^{-7} \) |
\(a_{781}= -0.24874471 \pm 1.6 \cdot 10^{-7} \) | \(a_{782}= -2.95796670 \pm 1.4 \cdot 10^{-7} \) | \(a_{783}= +0.07111756 \pm 2.1 \cdot 10^{-7} \) |
\(a_{784}= +0.03321381 \pm 2.3 \cdot 10^{-7} \) | \(a_{785}= -0.19091291 \pm 2.2 \cdot 10^{-7} \) | \(a_{786}= +0.28484471 \pm 4.0 \cdot 10^{-7} \) |
\(a_{787}= +0.57224212 \pm 1.5 \cdot 10^{-7} \) | \(a_{788}= -1.47607526 \pm 1.7 \cdot 10^{-7} \) | \(a_{789}= -0.55032296 \pm 2.0 \cdot 10^{-7} \) |
\(a_{790}= -0.24532825 \pm 1.6 \cdot 10^{-7} \) | \(a_{791}= +0.69523605 \pm 1.4 \cdot 10^{-7} \) | \(a_{792}= +0.46152885 \pm 4.5 \cdot 10^{-7} \) |
\(a_{793}= +0.00614364 \pm 2.1 \cdot 10^{-7} \) | \(a_{794}= -0.90117463 \pm 2.6 \cdot 10^{-7} \) | \(a_{795}= -0.13619949 \pm 4.0 \cdot 10^{-7} \) |
\(a_{796}= +0.27364578 \pm 2.2 \cdot 10^{-7} \) | \(a_{797}= +0.75384495 \pm 1.7 \cdot 10^{-7} \) | \(a_{798}= -0.38544480 \pm 4.3 \cdot 10^{-7} \) |
\(a_{799}= +0.12575652 \pm 1.7 \cdot 10^{-7} \) | \(a_{800}= -0.77877787 \pm 1.5 \cdot 10^{-7} \) | \(a_{801}= +0.05949629 \pm 1.8 \cdot 10^{-7} \) |
\(a_{802}= -1.07737558 \pm 2.2 \cdot 10^{-7} \) | \(a_{803}= +1.11492144 \pm 1.5 \cdot 10^{-7} \) | \(a_{804}= -0.15343350 \pm 4.8 \cdot 10^{-7} \) |
\(a_{805}= +0.06181381 \pm 3.9 \cdot 10^{-7} \) | \(a_{806}= +0.08484956 \pm 2.2 \cdot 10^{-7} \) | \(a_{807}= -0.42582859 \pm 1.9 \cdot 10^{-7} \) |
\(a_{808}= +1.45215850 \pm 2.6 \cdot 10^{-7} \) | \(a_{809}= +0.36621446 \pm 2.0 \cdot 10^{-7} \) | \(a_{810}= +0.02959990 \pm 4.2 \cdot 10^{-7} \) |
\(a_{811}= +0.76414887 \pm 2.0 \cdot 10^{-7} \) | \(a_{812}= +0.23989779 \pm 4.8 \cdot 10^{-7} \) | \(a_{813}= -0.20010890 \pm 1.8 \cdot 10^{-7} \) |
\(a_{814}= +1.44205709 \pm 1.8 \cdot 10^{-7} \) | \(a_{815}= +0.23731490 \pm 1.5 \cdot 10^{-7} \) | \(a_{816}= -0.23799376 \pm 4.3 \cdot 10^{-7} \) |
\(a_{817}= -1.21014976 \pm 2.0 \cdot 10^{-7} \) | \(a_{818}= -0.52266638 \pm 1.6 \cdot 10^{-7} \) | \(a_{819}= +0.00340275 \pm 2.1 \cdot 10^{-7} \) |
\(a_{820}= +0.26668666 \pm 1.9 \cdot 10^{-7} \) | \(a_{821}= +1.13788156 \pm 1.6 \cdot 10^{-7} \) | \(a_{822}= +1.22410967 \pm 4.0 \cdot 10^{-7} \) |
\(a_{823}= -1.24617430 \pm 1.5 \cdot 10^{-7} \) | \(a_{824}= -1.89026855 \pm 2.5 \cdot 10^{-7} \) | \(a_{825}= +0.65812300 \pm 3.7 \cdot 10^{-7} \) |
\(a_{826}= -0.01884407 \pm 3.8 \cdot 10^{-7} \) | \(a_{827}= +1.40085231 \pm 2.3 \cdot 10^{-7} \) | \(a_{828}= -0.57941284 \pm 4.7 \cdot 10^{-7} \) |
\(a_{829}= +0.95792087 \pm 1.5 \cdot 10^{-7} \) | \(a_{830}= +0.11143691 \pm 2.2 \cdot 10^{-7} \) | \(a_{831}= -0.78591339 \pm 1.7 \cdot 10^{-7} \) |
\(a_{832}= -0.04188330 \pm 1.2 \cdot 10^{-7} \) | \(a_{833}= -0.25328611 \pm 2.1 \cdot 10^{-7} \) | \(a_{834}= -0.72840158 \pm 4.5 \cdot 10^{-7} \) |
\(a_{835}= +0.01579856 \pm 1.4 \cdot 10^{-7} \) | \(a_{836}= -2.15405692 \pm 2.9 \cdot 10^{-7} \) | \(a_{837}= -0.36675481 \pm 2.2 \cdot 10^{-7} \) |
\(a_{838}= -1.66781936 \pm 2.2 \cdot 10^{-7} \) | \(a_{839}= -0.82102957 \pm 2.1 \cdot 10^{-7} \) | \(a_{840}= +0.04171501 \pm 4.6 \cdot 10^{-7} \) |
\(a_{841}= -0.86344190 \pm 2.4 \cdot 10^{-7} \) | \(a_{842}= +1.97641827 \pm 1.8 \cdot 10^{-7} \) | \(a_{843}= -0.38809340 \pm 2.4 \cdot 10^{-7} \) |
\(a_{844}= -0.12319650 \pm 2.2 \cdot 10^{-7} \) | \(a_{845}= +0.16148225 \pm 1.9 \cdot 10^{-7} \) | \(a_{846}= +0.03897543 \pm 4.3 \cdot 10^{-7} \) |
\(a_{847}= +0.13984580 \pm 1.7 \cdot 10^{-7} \) | \(a_{848}= +0.33939947 \pm 2.7 \cdot 10^{-7} \) | \(a_{849}= +0.68566635 \pm 1.7 \cdot 10^{-7} \) |
\(a_{850}= -2.84648100 \pm 1.7 \cdot 10^{-7} \) | \(a_{851}= -0.75635282 \pm 1.9 \cdot 10^{-7} \) | \(a_{852}= +0.21074142 \pm 5.3 \cdot 10^{-7} \) |
\(a_{853}= -1.45329791 \pm 2.1 \cdot 10^{-7} \) | \(a_{854}= -0.14173173 \pm 4.3 \cdot 10^{-7} \) | \(a_{855}= -0.05771667 \pm 3.9 \cdot 10^{-7} \) |
\(a_{856}= -1.10767430 \pm 3.1 \cdot 10^{-7} \) | \(a_{857}= +0.47379614 \pm 1.8 \cdot 10^{-7} \) | \(a_{858}= +0.03008785 \pm 6.3 \cdot 10^{-7} \) |
\(a_{859}= +1.32982742 \pm 1.9 \cdot 10^{-7} \) | \(a_{860}= +0.31348484 \pm 3.1 \cdot 10^{-7} \) | \(a_{861}= -0.20966861 \pm 1.6 \cdot 10^{-7} \) |
\(a_{862}= +0.13031222 \pm 2.1 \cdot 10^{-7} \) | \(a_{863}= -0.31790492 \pm 2.1 \cdot 10^{-7} \) | \(a_{864}= +0.15389477 \pm 2.1 \cdot 10^{-7} \) |
\(a_{865}= -0.09509250 \pm 2.1 \cdot 10^{-7} \) | \(a_{866}= +0.99611268 \pm 1.8 \cdot 10^{-7} \) | \(a_{867}= +1.23757268 \pm 1.9 \cdot 10^{-7} \) |
\(a_{868}= -1.23715808 \pm 4.9 \cdot 10^{-7} \) | \(a_{869}= +1.07789056 \pm 1.2 \cdot 10^{-7} \) | \(a_{870}= +0.05683696 \pm 6.3 \cdot 10^{-7} \) |
\(a_{871}= -0.00417893 \pm 2.3 \cdot 10^{-7} \) | \(a_{872}= +0.05547181 \pm 2.8 \cdot 10^{-7} \) | \(a_{873}= -0.00945363 \pm 1.3 \cdot 10^{-7} \) |
\(a_{874}= +1.78757668 \pm 2.0 \cdot 10^{-7} \) | \(a_{875}= +0.12056316 \pm 1.7 \cdot 10^{-7} \) | \(a_{876}= -0.94458342 \pm 4.6 \cdot 10^{-7} \) |
\(a_{877}= -0.89398833 \pm 2.1 \cdot 10^{-7} \) | \(a_{878}= -0.13669990 \pm 2.6 \cdot 10^{-7} \) | \(a_{879}= +0.98254960 \pm 1.8 \cdot 10^{-7} \) |
\(a_{880}= +0.04397626 \pm 2.1 \cdot 10^{-7} \) | \(a_{881}= +0.87723383 \pm 1.8 \cdot 10^{-7} \) | \(a_{882}= -0.07850037 \pm 2.4 \cdot 10^{-7} \) |
\(a_{883}= +0.55456630 \pm 2.1 \cdot 10^{-7} \) | \(a_{884}= -0.08224828 \pm 1.1 \cdot 10^{-7} \) | \(a_{885}= -0.00282172 \pm 3.3 \cdot 10^{-7} \) |
\(a_{886}= +2.06966006 \pm 2.5 \cdot 10^{-7} \) | \(a_{887}= +0.88323016 \pm 1.6 \cdot 10^{-7} \) | \(a_{888}= -0.51042416 \pm 4.6 \cdot 10^{-7} \) |
\(a_{889}= +0.37060036 \pm 2.4 \cdot 10^{-7} \) | \(a_{890}= +0.04754927 \pm 2.6 \cdot 10^{-7} \) | \(a_{891}= -0.13005209 \pm 1.8 \cdot 10^{-7} \) |
\(a_{892}= +1.91415796 \pm 2.8 \cdot 10^{-7} \) | \(a_{893}= -0.07599795 \pm 1.4 \cdot 10^{-7} \) | \(a_{894}= +1.71417284 \pm 4.2 \cdot 10^{-7} \) |
\(a_{895}= -0.10414265 \pm 1.4 \cdot 10^{-7} \) | \(a_{896}= +0.66399000 \pm 2.1 \cdot 10^{-7} \) | \(a_{897}= -0.01578095 \pm 4.1 \cdot 10^{-7} \) |
\(a_{898}= +1.01160877 \pm 2.1 \cdot 10^{-7} \) | \(a_{899}= -0.70423310 \pm 2.3 \cdot 10^{-7} \) | \(a_{900}= -0.55757478 \pm 4.6 \cdot 10^{-7} \) |
\(a_{901}= -2.58823549 \pm 2.1 \cdot 10^{-7} \) | \(a_{902}= -1.85393253 \pm 1.4 \cdot 10^{-7} \) | \(a_{903}= -0.24646126 \pm 2.2 \cdot 10^{-7} \) |
\(a_{904}= -2.17591321 \pm 2.2 \cdot 10^{-7} \) | \(a_{905}= +0.07582880 \pm 1.2 \cdot 10^{-7} \) | \(a_{906}= +0.81053458 \pm 4.4 \cdot 10^{-7} \) |
\(a_{907}= +1.32988531 \pm 1.7 \cdot 10^{-7} \) | \(a_{908}= +2.48000853 \pm 2.3 \cdot 10^{-7} \) | \(a_{909}= -0.40919705 \pm 2.2 \cdot 10^{-7} \) |
\(a_{910}= +0.00271947 \pm 6.3 \cdot 10^{-7} \) | \(a_{911}= +0.81728961 \pm 1.5 \cdot 10^{-7} \) | \(a_{912}= +0.14382585 \pm 4.3 \cdot 10^{-7} \) |
\(a_{913}= -0.48961664 \pm 1.7 \cdot 10^{-7} \) | \(a_{914}= +3.04604601 \pm 2.8 \cdot 10^{-7} \) | \(a_{915}= -0.02122297 \pm 3.8 \cdot 10^{-7} \) |
\(a_{916}= -0.38052888 \pm 3.1 \cdot 10^{-7} \) | \(a_{917}= -0.11311722 \pm 1.7 \cdot 10^{-7} \) | \(a_{918}= +0.56249485 \pm 4.4 \cdot 10^{-7} \) |
\(a_{919}= -0.79842535 \pm 2.4 \cdot 10^{-7} \) | \(a_{920}= -0.19346162 \pm 2.6 \cdot 10^{-7} \) | \(a_{921}= -0.85557171 \pm 2.6 \cdot 10^{-7} \) |
\(a_{922}= +1.61985132 \pm 2.4 \cdot 10^{-7} \) | \(a_{923}= +0.00573978 \pm 2.1 \cdot 10^{-7} \) | \(a_{924}= -0.43869907 \pm 4.6 \cdot 10^{-7} \) |
\(a_{925}= -0.72784590 \pm 1.9 \cdot 10^{-7} \) | \(a_{926}= -1.24831841 \pm 2.0 \cdot 10^{-7} \) | \(a_{927}= +0.53265007 \pm 1.8 \cdot 10^{-7} \) |
\(a_{928}= +0.29550477 \pm 2.1 \cdot 10^{-7} \) | \(a_{929}= -0.57131979 \pm 2.4 \cdot 10^{-7} \) | \(a_{930}= -0.29310944 \pm 6.4 \cdot 10^{-7} \) |
\(a_{931}= +0.15306742 \pm 2.0 \cdot 10^{-7} \) | \(a_{932}= -0.01951501 \pm 2.0 \cdot 10^{-7} \) | \(a_{933}= -0.42110218 \pm 2.4 \cdot 10^{-7} \) |
\(a_{934}= -0.45374089 \pm 1.8 \cdot 10^{-7} \) | \(a_{935}= -0.33535977 \pm 1.3 \cdot 10^{-7} \) | \(a_{936}= -0.01064976 \pm 4.8 \cdot 10^{-7} \) |
\(a_{937}= -0.73725529 \pm 1.9 \cdot 10^{-7} \) | \(a_{938}= +0.09640649 \pm 4.4 \cdot 10^{-7} \) | \(a_{939}= -0.65244710 \pm 2.5 \cdot 10^{-7} \) |
\(a_{940}= +0.01968699 \pm 2.8 \cdot 10^{-7} \) | \(a_{941}= -0.99986940 \pm 2.0 \cdot 10^{-7} \) | \(a_{942}= -1.12440816 \pm 4.3 \cdot 10^{-7} \) |
\(a_{943}= +0.97237974 \pm 2.0 \cdot 10^{-7} \) | \(a_{944}= +0.00703152 \pm 1.6 \cdot 10^{-7} \) | \(a_{945}= -0.01175468 \pm 1.9 \cdot 10^{-7} \) |
\(a_{946}= -2.17926065 \pm 2.4 \cdot 10^{-7} \) | \(a_{947}= -0.14661851 \pm 1.8 \cdot 10^{-7} \) | \(a_{948}= -0.91321013 \pm 4.1 \cdot 10^{-7} \) |
\(a_{949}= -0.02572677 \pm 2.1 \cdot 10^{-7} \) | \(a_{950}= +1.72020296 \pm 1.8 \cdot 10^{-7} \) | \(a_{951}= -0.62488380 \pm 2.3 \cdot 10^{-7} \) |
\(a_{952}= +0.79272154 \pm 4.8 \cdot 10^{-7} \) | \(a_{953}= -1.54008994 \pm 2.2 \cdot 10^{-7} \) | \(a_{954}= -0.80216581 \pm 4.5 \cdot 10^{-7} \) |
\(a_{955}= -0.24240754 \pm 2.3 \cdot 10^{-7} \) | \(a_{956}= -0.62184982 \pm 2.2 \cdot 10^{-7} \) | \(a_{957}= -0.24972266 \pm 3.9 \cdot 10^{-7} \) |
\(a_{958}= +0.22322147 \pm 2.2 \cdot 10^{-7} \) | \(a_{959}= -0.48611712 \pm 1.7 \cdot 10^{-7} \) | \(a_{960}= +0.14468420 \pm 3.7 \cdot 10^{-7} \) |
\(a_{961}= +2.63174535 \pm 1.5 \cdot 10^{-7} \) | \(a_{962}= -0.03327542 \pm 2.0 \cdot 10^{-7} \) | \(a_{963}= +0.31212644 \pm 2.3 \cdot 10^{-7} \) |
\(a_{964}= -1.08334445 \pm 2.4 \cdot 10^{-7} \) | \(a_{965}= -0.01800313 \pm 1.8 \cdot 10^{-7} \) | \(a_{966}= +0.36406106 \pm 4.3 \cdot 10^{-7} \) |
\(a_{967}= -0.53108457 \pm 1.5 \cdot 10^{-7} \) | \(a_{968}= -0.43768204 \pm 2.2 \cdot 10^{-7} \) | \(a_{969}= -1.09680543 \pm 4.0 \cdot 10^{-7} \) |
\(a_{970}= -0.00755531 \pm 1.2 \cdot 10^{-7} \) | \(a_{971}= +0.11145955 \pm 1.3 \cdot 10^{-7} \) | \(a_{972}= +0.11018269 \pm 2.8 \cdot 10^{-7} \) |
\(a_{973}= +0.28926205 \pm 2.2 \cdot 10^{-7} \) | \(a_{974}= -0.46661616 \pm 1.8 \cdot 10^{-7} \) | \(a_{975}= -0.01518617 \pm 4.0 \cdot 10^{-7} \) |
\(a_{976}= +0.05288614 \pm 1.5 \cdot 10^{-7} \) | \(a_{977}= -0.07929888 \pm 1.8 \cdot 10^{-7} \) | \(a_{978}= +1.39769910 \pm 4.3 \cdot 10^{-7} \) |
\(a_{979}= -0.20891564 \pm 1.4 \cdot 10^{-7} \) | \(a_{980}= -0.03965155 \pm 4.6 \cdot 10^{-7} \) | \(a_{981}= -0.01563114 \pm 2.2 \cdot 10^{-7} \) |
\(a_{982}= +1.39771393 \pm 1.5 \cdot 10^{-7} \) | \(a_{983}= -1.63270051 \pm 1.9 \cdot 10^{-7} \) | \(a_{984}= +0.65620978 \pm 4.3 \cdot 10^{-7} \) |
\(a_{985}= +0.13887808 \pm 1.4 \cdot 10^{-7} \) | \(a_{986}= +1.08008809 \pm 1.5 \cdot 10^{-7} \) | \(a_{987}= -0.01547788 \pm 2.0 \cdot 10^{-7} \) |
\(a_{988}= +0.04970479 \pm 1.9 \cdot 10^{-7} \) | \(a_{989}= +1.14301296 \pm 2.4 \cdot 10^{-7} \) | \(a_{990}= -0.10393728 \pm 6.0 \cdot 10^{-7} \) |
\(a_{991}= -0.38738969 \pm 2.0 \cdot 10^{-7} \) | \(a_{992}= -1.52392448 \pm 2.0 \cdot 10^{-7} \) | \(a_{993}= +0.33207916 \pm 1.8 \cdot 10^{-7} \) |
\(a_{994}= -0.13241464 \pm 4.9 \cdot 10^{-7} \) | \(a_{995}= -0.02574625 \pm 1.4 \cdot 10^{-7} \) | \(a_{996}= +0.41481287 \pm 4.6 \cdot 10^{-7} \) |
\(a_{997}= +0.95225046 \pm 2.1 \cdot 10^{-7} \) | \(a_{998}= -1.40617323 \pm 2.2 \cdot 10^{-7} \) | \(a_{999}= +0.14383007 \pm 1.9 \cdot 10^{-7} \) |
\(a_{1000}= -0.37733224 \pm 2.3 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000