Properties

Label 2.38
Level $2$
Weight $0$
Character 2.1
Symmetry odd
\(R\) 23.93058
Fricke sign not computed rigorously

Related objects

Downloads

Learn more

Maass form invariants

Level: \( 2 \)
Weight: \( 0 \)
Character: 2.1
Symmetry: odd
Fricke sign: not computed rigorously
Spectral parameter: \(23.930581825233946013034586505 \pm 8 \cdot 10^{-3}\)

Maass form coefficients

The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.

\(a_{1}= +1 \) \(a_{2}= \pm0.70710678 \pm 1.0 \cdot 10^{-8} \) \(a_{3}= -0.55636732 \pm 2.1 \)
\(a_{4}= \pm0.5 \) \(a_{5}= -1.85793066 \pm 1.5 \) \(a_{6}= \pm0.39341110 \pm 1.4 \)
\(a_{7}= +0.05380371 \pm 1.7 \) \(a_{8}= \pm0.35355339 \pm 1.0 \cdot 10^{-8} \) \(a_{9}= -0.69045541 \pm 3.6 \)
\(a_{10}= \pm1.31375537 \pm 1.0 \) \(a_{11}= +1.23395450 \pm 5.0 \) \(a_{12}= \pm0.27818366 \pm 1.0 \)
\(a_{13}= +0.46875253 \pm 4.0 \) \(a_{14}= \pm0.03804497 \pm 1.2 \) \(a_{15}= +1.03369190 \pm 1.1 \)
\(a_{16}= \pm0.25 \) \(a_{17}= +0.81963746 \pm 2.9 \) \(a_{18}= \pm0.48822570 \pm 2.5 \)
\(a_{19}= -0.65883209 \pm 2.0 \) \(a_{20}= \pm0.92896533 \pm 7.7 \cdot 10^{-1} \) \(a_{21}= -0.02993462 \pm 8.8 \cdot 10^{-1} \)
\(a_{22}= \pm0.87253759 \pm 3.5 \) \(a_{23}= -0.32016844 \pm 2.1 \) \(a_{24}= \pm0.19670555 \pm 7.4 \cdot 10^{-1} \)
\(a_{25}= +2.45190635 \pm 3.9 \) \(a_{26}= \pm0.33145809 \pm 2.8 \) \(a_{27}= +0.94051414 \pm 3.2 \)
\(a_{28}= \pm0.02690185 \pm 8.7 \cdot 10^{-1} \) \(a_{29}= +0.47393141 \pm 3.5 \) \(a_{30}= \pm0.73093055 \pm 8.0 \cdot 10^{-1} \)
\(a_{31}= +0.95162468 \pm 4.1 \) \(a_{32}= \pm0.17677670 \pm 1.0 \cdot 10^{-8} \) \(a_{33}= -0.68653196 \pm 2.0 \)
\(a_{34}= \pm0.57957121 \pm 2.0 \) \(a_{35}= -0.09996355 \pm 4.4 \cdot 10^{-1} \) \(a_{36}= \pm0.34522770 \pm 1.8 \)
\(a_{37}= +1.46756026 \pm 5.2 \) \(a_{38}= \pm0.46586464 \pm 1.4 \) \(a_{39}= -0.26079859 \pm 1.5 \)
\(a_{40}= \pm0.65687769 \pm 5.4 \cdot 10^{-1} \) \(a_{41}= +0.89972361 \pm 5.3 \) \(a_{42}= \pm0.02116698 \pm 6.2 \cdot 10^{-1} \)
\(a_{43}= -1.09087770 \pm 1.2 \) \(a_{44}= \pm0.61697725 \pm 2.5 \) \(a_{45}= +1.28281827 \pm 9.2 \cdot 10^{-1} \)
\(a_{46}= \pm0.22639328 \pm 1.5 \) \(a_{47}= -0.99498130 \pm 3.7 \) \(a_{48}= \pm0.13909183 \pm 5.2 \cdot 10^{-1} \)
\(a_{49}= -0.99710516 \pm 3.7 \) \(a_{50}= \pm1.73375961 \pm 2.8 \) \(a_{51}= -0.45601950 \pm 2.1 \)
\(a_{52}= \pm0.23437626 \pm 2.0 \) \(a_{53}= +0.53800149 \pm 4.3 \) \(a_{54}= \pm0.66504393 \pm 2.3 \)
\(a_{55}= -2.29260190 \pm 1.2 \) \(a_{56}= \pm0.01902248 \pm 6.1 \cdot 10^{-1} \) \(a_{57}= +0.36655265 \pm 1.7 \)
\(a_{58}= \pm0.33512012 \pm 2.5 \) \(a_{59}= +0.51039982 \pm 3.5 \) \(a_{60}= \pm0.51684595 \pm 5.6 \cdot 10^{-1} \)

Displaying $a_n$ with $n$ up to: 60 180 1000