Maass form invariants
| Level: | \( 2 \) |
| Weight: | \( 0 \) |
| Character: | 2.1 |
| Symmetry: | odd |
| Fricke sign: | not computed rigorously |
| Spectral parameter: | \(23.930581825233946013034586505 \pm 8 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= \pm0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.55636732 \pm 2.1 \) |
| \(a_{4}= \pm0.5 \) | \(a_{5}= -1.85793066 \pm 1.5 \) | \(a_{6}= \pm0.39341110 \pm 1.4 \) |
| \(a_{7}= +0.05380371 \pm 1.7 \) | \(a_{8}= \pm0.35355339 \pm 1.0 \cdot 10^{-8} \) | \(a_{9}= -0.69045541 \pm 3.6 \) |
| \(a_{10}= \pm1.31375537 \pm 1.0 \) | \(a_{11}= +1.23395450 \pm 5.0 \) | \(a_{12}= \pm0.27818366 \pm 1.0 \) |
| \(a_{13}= +0.46875253 \pm 4.0 \) | \(a_{14}= \pm0.03804497 \pm 1.2 \) | \(a_{15}= +1.03369190 \pm 1.1 \) |
| \(a_{16}= \pm0.25 \) | \(a_{17}= +0.81963746 \pm 2.9 \) | \(a_{18}= \pm0.48822570 \pm 2.5 \) |
| \(a_{19}= -0.65883209 \pm 2.0 \) | \(a_{20}= \pm0.92896533 \pm 7.7 \cdot 10^{-1} \) | \(a_{21}= -0.02993462 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{22}= \pm0.87253759 \pm 3.5 \) | \(a_{23}= -0.32016844 \pm 2.1 \) | \(a_{24}= \pm0.19670555 \pm 7.4 \cdot 10^{-1} \) |
| \(a_{25}= +2.45190635 \pm 3.9 \) | \(a_{26}= \pm0.33145809 \pm 2.8 \) | \(a_{27}= +0.94051414 \pm 3.2 \) |
| \(a_{28}= \pm0.02690185 \pm 8.7 \cdot 10^{-1} \) | \(a_{29}= +0.47393141 \pm 3.5 \) | \(a_{30}= \pm0.73093055 \pm 8.0 \cdot 10^{-1} \) |
| \(a_{31}= +0.95162468 \pm 4.1 \) | \(a_{32}= \pm0.17677670 \pm 1.0 \cdot 10^{-8} \) | \(a_{33}= -0.68653196 \pm 2.0 \) |
| \(a_{34}= \pm0.57957121 \pm 2.0 \) | \(a_{35}= -0.09996355 \pm 4.4 \cdot 10^{-1} \) | \(a_{36}= \pm0.34522770 \pm 1.8 \) |
| \(a_{37}= +1.46756026 \pm 5.2 \) | \(a_{38}= \pm0.46586464 \pm 1.4 \) | \(a_{39}= -0.26079859 \pm 1.5 \) |
| \(a_{40}= \pm0.65687769 \pm 5.4 \cdot 10^{-1} \) | \(a_{41}= +0.89972361 \pm 5.3 \) | \(a_{42}= \pm0.02116698 \pm 6.2 \cdot 10^{-1} \) |
| \(a_{43}= -1.09087770 \pm 1.2 \) | \(a_{44}= \pm0.61697725 \pm 2.5 \) | \(a_{45}= +1.28281827 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{46}= \pm0.22639328 \pm 1.5 \) | \(a_{47}= -0.99498130 \pm 3.7 \) | \(a_{48}= \pm0.13909183 \pm 5.2 \cdot 10^{-1} \) |
| \(a_{49}= -0.99710516 \pm 3.7 \) | \(a_{50}= \pm1.73375961 \pm 2.8 \) | \(a_{51}= -0.45601950 \pm 2.1 \) |
| \(a_{52}= \pm0.23437626 \pm 2.0 \) | \(a_{53}= +0.53800149 \pm 4.3 \) | \(a_{54}= \pm0.66504393 \pm 2.3 \) |
| \(a_{55}= -2.29260190 \pm 1.2 \) | \(a_{56}= \pm0.01902248 \pm 6.1 \cdot 10^{-1} \) | \(a_{57}= +0.36655265 \pm 1.7 \) |
| \(a_{58}= \pm0.33512012 \pm 2.5 \) | \(a_{59}= +0.51039982 \pm 3.5 \) | \(a_{60}= \pm0.51684595 \pm 5.6 \cdot 10^{-1} \) |
| \(a_{61}= -1.16639239 \pm 1.9 \) | \(a_{62}= \pm0.67290026 \pm 2.9 \) | \(a_{63}= -0.03714906 \pm 1.4 \) |
| \(a_{64}= \pm0.125 \) | \(a_{65}= -0.87090969 \pm 1.0 \) | \(a_{66}= \pm0.48545140 \pm 1.4 \) |
| \(a_{67}= +0.56925180 \pm 6.9 \) | \(a_{68}= \pm0.40981873 \pm 1.4 \) | \(a_{69}= +0.17813126 \pm 1.5 \) |
| \(a_{70}= \pm0.07068491 \pm 3.1 \cdot 10^{-1} \) | \(a_{71}= +0.34335775 \pm 3.0 \) | \(a_{72}= \pm0.24411285 \pm 1.2 \) |
| \(a_{73}= -0.33121215 \pm 6.5 \) | \(a_{74}= \pm1.03772181 \pm 3.6 \) | \(a_{75}= -1.36416057 \pm 1.6 \) |
| \(a_{76}= \pm0.32941605 \pm 1.0 \) | \(a_{77}= +0.06639132 \pm 2.0 \) | \(a_{78}= \pm0.18441245 \pm 1.1 \) |
| \(a_{79}= +1.30643217 \pm 2.1 \) | \(a_{80}= \pm0.46448267 \pm 3.8 \cdot 10^{-1} \) | \(a_{81}= +0.16718407 \pm 2.8 \) |
| \(a_{82}= \pm0.63620067 \pm 3.7 \) | \(a_{83}= +0.32819127 \pm 2.2 \) | \(a_{84}= \pm0.01496731 \pm 4.4 \cdot 10^{-1} \) |
| \(a_{85}= -1.52282958 \pm 1.9 \) | \(a_{86}= \pm0.77136702 \pm 8.5 \cdot 10^{-1} \) | \(a_{87}= -0.26367995 \pm 1.5 \) |
| \(a_{88}= \pm0.43626880 \pm 1.7 \) | \(a_{89}= +0.93022301 \pm 2.1 \) | \(a_{90}= \pm0.90708950 \pm 6.5 \cdot 10^{-1} \) |
| \(a_{91}= +0.02522062 \pm 1.6 \) | \(a_{92}= \pm0.16008422 \pm 1.0 \) | \(a_{93}= -0.52945287 \pm 1.7 \) |
| \(a_{94}= \pm0.70355803 \pm 2.6 \) | \(a_{95}= +1.22406434 \pm 1.5 \) | \(a_{96}= \pm0.09835278 \pm 3.7 \cdot 10^{-1} \) |
| \(a_{97}= -0.58046112 \pm 1.0 \) | \(a_{98}= \pm0.70505982 \pm 2.6 \) | \(a_{99}= -0.85199055 \pm 4.3 \) |
| \(a_{100}= \pm1.22595318 \pm 1.9 \) | \(a_{101}= +0.83057933 \pm 2.0 \) | \(a_{102}= \pm0.32245448 \pm 1.5 \) |
| \(a_{103}= -0.30468954 \pm 6.9 \) | \(a_{104}= \pm0.16572904 \pm 1.4 \) | \(a_{105}= +0.05561645 \pm 2.1 \cdot 10^{-1} \) |
| \(a_{106}= \pm0.38042450 \pm 3.0 \) | \(a_{107}= -0.10040533 \pm 2.5 \) | \(a_{108}= \pm0.47025707 \pm 1.6 \) |
| \(a_{109}= +0.39359415 \pm 5.4 \) | \(a_{110}= \pm1.62111435 \pm 9.1 \cdot 10^{-1} \) | \(a_{111}= -0.81650257 \pm 2.1 \) |
| \(a_{112}= \pm0.01345093 \pm 4.3 \cdot 10^{-1} \) | \(a_{113}= +0.44501199 \pm 3.3 \) | \(a_{114}= \pm0.25919186 \pm 1.2 \) |
| \(a_{115}= +0.59485077 \pm 9.6 \cdot 10^{-1} \) | \(a_{116}= \pm0.23696571 \pm 1.7 \) | \(a_{117}= -0.32365272 \pm 3.4 \) |
| \(a_{118}= \pm0.36090718 \pm 2.5 \) | \(a_{119}= +0.04409953 \pm 8.1 \cdot 10^{-1} \) | \(a_{120}= \pm0.36546528 \pm 4.0 \cdot 10^{-1} \) |
| \(a_{121}= +0.52264370 \pm 2.2 \) | \(a_{122}= \pm0.82476397 \pm 1.3 \) | \(a_{123}= -0.50057681 \pm 2.4 \) |
| \(a_{124}= \pm0.47581234 \pm 2.0 \) | \(a_{125}= -2.69754133 \pm 2.4 \) | \(a_{126}= \pm0.02626835 \pm 1.0 \) |
| \(a_{127}= +1.96175496 \pm 5.2 \) | \(a_{128}= \pm0.08838835 \pm 1.0 \cdot 10^{-8} \) | \(a_{129}= +0.60692870 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{130}= \pm0.61582615 \pm 7.2 \cdot 10^{-1} \) | \(a_{131}= +1.39199921 \pm 3.4 \) | \(a_{132}= \pm0.34326598 \pm 1.0 \) |
| \(a_{133}= -0.03544761 \pm 4.9 \cdot 10^{-1} \) | \(a_{134}= \pm0.40252181 \pm 4.8 \) | \(a_{135}= -1.74741007 \pm 1.3 \) |
| \(a_{136}= \pm0.28978560 \pm 1.0 \) | \(a_{137}= +0.29342066 \pm 1.9 \) | \(a_{138}= \pm0.12595782 \pm 1.0 \) |
| \(a_{139}= -1.05760725 \pm 6.5 \) | \(a_{140}= \pm0.04998178 \pm 2.2 \cdot 10^{-1} \) | \(a_{141}= +0.55357508 \pm 1.6 \) |
| \(a_{142}= \pm0.24279059 \pm 2.1 \) | \(a_{143}= +0.57841929 \pm 4.8 \) | \(a_{144}= \pm0.17261385 \pm 9.0 \cdot 10^{-1} \) |
| \(a_{145}= -0.88053170 \pm 1.1 \) | \(a_{146}= \pm0.23420236 \pm 4.6 \) | \(a_{147}= +0.55475673 \pm 1.8 \) |
| \(a_{148}= \pm0.73378013 \pm 2.6 \) | \(a_{149}= +1.31888516 \pm 5.3 \cdot 10^{-1} \) | \(a_{150}= \pm0.96460719 \pm 1.1 \) |
| \(a_{151}= +0.14302079 \pm 5.1 \) | \(a_{152}= \pm0.23293232 \pm 7.3 \cdot 10^{-1} \) | \(a_{153}= -0.56592312 \pm 1.7 \) |
| \(a_{154}= \pm0.04694576 \pm 1.4 \) | \(a_{155}= -1.76805267 \pm 1.0 \) | \(a_{156}= \pm0.13039929 \pm 7.9 \cdot 10^{-1} \) |
| \(a_{157}= +0.94276440 \pm 4.1 \) | \(a_{158}= \pm0.92378705 \pm 1.5 \) | \(a_{159}= -0.29932645 \pm 1.7 \) |
| \(a_{160}= \pm0.32843884 \pm 2.7 \cdot 10^{-1} \) | \(a_{161}= -0.01722625 \pm 1.0 \) | \(a_{162}= \pm0.11821699 \pm 1.9 \) |
| \(a_{163}= +0.58660724 \pm 4.6 \) | \(a_{164}= \pm0.44986181 \pm 2.6 \) | \(a_{165}= +1.27552877 \pm 5.0 \cdot 10^{-1} \) |
| \(a_{166}= \pm0.23206628 \pm 1.6 \) | \(a_{167}= -1.58933236 \pm 4.8 \) | \(a_{168}= \pm0.01058349 \pm 3.1 \cdot 10^{-1} \) |
| \(a_{169}= -0.78027107 \pm 1.3 \) | \(a_{170}= \pm1.07680312 \pm 1.3 \) | \(a_{171}= +0.45489418 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{172}= \pm0.54543885 \pm 6.0 \cdot 10^{-1} \) | \(a_{173}= +0.98112097 \pm 6.6 \) | \(a_{174}= \pm0.18644988 \pm 1.0 \) |
| \(a_{175}= +0.13192165 \pm 1.6 \) | \(a_{176}= \pm0.30848862 \pm 1.2 \) | \(a_{177}= -0.28396978 \pm 1.5 \) |
| \(a_{178}= \pm0.65776700 \pm 1.5 \) | \(a_{179}= -0.49345028 \pm 8.2 \) | \(a_{180}= \pm0.64140913 \pm 4.6 \cdot 10^{-1} \) |
| \(a_{181}= +0.79265618 \pm 2.7 \) | \(a_{182}= \pm0.01783367 \pm 1.1 \) | \(a_{183}= +0.64894261 \pm 1.8 \) |
| \(a_{184}= \pm0.11319664 \pm 7.5 \cdot 10^{-1} \) | \(a_{185}= -2.72662522 \pm 1.4 \) | \(a_{186}= \pm0.37437972 \pm 1.2 \) |
| \(a_{187}= +1.01139533 \pm 2.4 \) | \(a_{188}= \pm0.49749065 \pm 1.8 \) | \(a_{189}= +0.05060315 \pm 1.2 \) |
| \(a_{190}= \pm0.86554420 \pm 1.1 \) | \(a_{191}= +0.60609529 \pm 2.4 \) | \(a_{192}= \pm0.06954591 \pm 2.6 \cdot 10^{-1} \) |
| \(a_{193}= -1.24728591 \pm 3.7 \) | \(a_{194}= \pm0.41044799 \pm 7.3 \cdot 10^{-1} \) | \(a_{195}= +0.48454569 \pm 4.0 \cdot 10^{-1} \) |
| \(a_{196}= \pm0.49855258 \pm 1.8 \) | \(a_{197}= +1.31310956 \pm 5.7 \) | \(a_{198}= \pm0.60244830 \pm 3.0 \) |
| \(a_{199}= +0.71005867 \pm 4.4 \) | \(a_{200}= \pm0.86687980 \pm 1.4 \) | \(a_{201}= -0.31671310 \pm 2.8 \) |
| \(a_{202}= \pm0.58730828 \pm 1.4 \) | \(a_{203}= +0.02549927 \pm 1.4 \) | \(a_{204}= \pm0.22800975 \pm 1.0 \) |
| \(a_{205}= -1.67162409 \pm 1.7 \) | \(a_{206}= \pm0.21544804 \pm 4.9 \) | \(a_{207}= +0.22106203 \pm 1.4 \) |
| \(a_{208}= \pm0.11718813 \pm 1.0 \) | \(a_{209}= -0.81296882 \pm 1.2 \) | \(a_{210}= \pm0.03932677 \pm 1.5 \cdot 10^{-1} \) |
| \(a_{211}= -0.25123613 \pm 2.0 \) | \(a_{212}= \pm0.26900075 \pm 2.1 \) | \(a_{213}= -0.19103303 \pm 1.5 \) |
| \(a_{214}= \pm0.07099729 \pm 1.8 \) | \(a_{215}= +2.02677513 \pm 5.5 \cdot 10^{-1} \) | \(a_{216}= \pm0.33252196 \pm 1.1 \) |
| \(a_{217}= +0.05120093 \pm 1.7 \) | \(a_{218}= \pm0.27831309 \pm 3.8 \) | \(a_{219}= +0.18427562 \pm 2.7 \) |
| \(a_{220}= \pm1.14630095 \pm 6.4 \cdot 10^{-1} \) | \(a_{221}= +0.38420713 \pm 1.9 \) | \(a_{222}= \pm0.57735451 \pm 1.5 \) |
| \(a_{223}= +0.22262638 \pm 6.7 \) | \(a_{224}= \pm0.00951124 \pm 3.0 \cdot 10^{-1} \) | \(a_{225}= -1.69293199 \pm 3.3 \) |
| \(a_{226}= \pm0.31467099 \pm 2.3 \) | \(a_{227}= +1.11581459 \pm 4.1 \) | \(a_{228}= \pm0.18327632 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{229}= -1.95294277 \pm 3.8 \) | \(a_{230}= \pm0.42062301 \pm 6.8 \cdot 10^{-1} \) | \(a_{231}= -0.03693796 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{232}= \pm0.16756006 \pm 1.2 \) | \(a_{233}= +0.54227845 \pm 3.3 \) | \(a_{234}= \pm0.22885703 \pm 2.4 \) |
| \(a_{235}= +1.84860628 \pm 1.2 \) | \(a_{236}= \pm0.25519991 \pm 1.7 \) | \(a_{237}= -0.72685617 \pm 1.1 \) |
| \(a_{238}= \pm0.03118308 \pm 5.7 \cdot 10^{-1} \) | \(a_{239}= -0.10033602 \pm 4.3 \) | \(a_{240}= \pm0.25842298 \pm 2.8 \cdot 10^{-1} \) |
| \(a_{241}= -0.63275293 \pm 4.4 \) | \(a_{242}= \pm0.36956491 \pm 1.6 \) | \(a_{243}= -1.03352990 \pm 3.9 \) |
| \(a_{244}= \pm0.58319620 \pm 9.5 \cdot 10^{-1} \) | \(a_{245}= +1.85255225 \pm 1.4 \) | \(a_{246}= \pm0.35396126 \pm 1.7 \) |
| \(a_{247}= -0.30882921 \pm 9.6 \cdot 10^{-1} \) | \(a_{248}= \pm0.33645013 \pm 1.4 \) | \(a_{249}= -0.18259490 \pm 1.2 \) |
| \(a_{250}= \pm1.90744977 \pm 1.7 \) | \(a_{251}= +0.17974667 \pm 6.1 \) | \(a_{252}= \pm0.01857453 \pm 7.2 \cdot 10^{-1} \) |
| \(a_{253}= -0.39507329 \pm 2.1 \) | \(a_{254}= \pm1.38717023 \pm 3.7 \) | \(a_{255}= +0.84725261 \pm 1.7 \) |
| \(a_{256}= \pm0.0625 \) | \(a_{257}= -0.45381778 \pm 1.4 \) | \(a_{258}= \pm0.42916340 \pm 6.7 \cdot 10^{-1} \) |
| \(a_{259}= +0.07896018 \pm 2.0 \) | \(a_{260}= \pm0.43545485 \pm 5.1 \cdot 10^{-1} \) | \(a_{261}= -0.32722851 \pm 2.9 \) |
| \(a_{262}= \pm0.98429208 \pm 2.4 \) | \(a_{263}= +1.30601784 \pm 2.3 \) | \(a_{264}= \pm0.24272570 \pm 7.0 \cdot 10^{-1} \) |
| \(a_{265}= -0.99956947 \pm 1.2 \) | \(a_{266}= \pm0.02506524 \pm 3.5 \cdot 10^{-1} \) | \(a_{267}= -0.51754569 \pm 1.7 \) |
| \(a_{268}= \pm0.28462590 \pm 3.4 \) | \(a_{269}= -0.47713775 \pm 5.7 \) | \(a_{270}= \pm1.23560551 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{271}= -1.73875902 \pm 4.2 \) | \(a_{272}= \pm0.20490937 \pm 7.3 \cdot 10^{-1} \) | \(a_{273}= -0.01403193 \pm 7.3 \cdot 10^{-1} \) |
| \(a_{274}= \pm0.20747974 \pm 1.3 \) | \(a_{275}= +3.02554087 \pm 4.7 \) | \(a_{276}= \pm0.08906563 \pm 7.7 \cdot 10^{-1} \) |
| \(a_{277}= +1.33255645 \pm 3.4 \) | \(a_{278}= \pm0.74784126 \pm 4.6 \) | \(a_{279}= -0.65705440 \pm 3.5 \) |
| \(a_{280}= \pm0.03534245 \pm 1.5 \cdot 10^{-1} \) | \(a_{281}= -0.15010539 \pm 3.4 \) | \(a_{282}= \pm0.39143669 \pm 1.1 \) |
| \(a_{283}= -0.11756486 \pm 3.9 \) | \(a_{284}= \pm0.17167887 \pm 1.5 \) | \(a_{285}= -0.68102940 \pm 1.5 \) |
| \(a_{286}= \pm0.40900420 \pm 3.4 \) | \(a_{287}= +0.04840846 \pm 2.0 \) | \(a_{288}= \pm0.12205642 \pm 6.3 \cdot 10^{-1} \) |
| \(a_{289}= -0.32819443 \pm 4.0 \) | \(a_{290}= \pm0.62262994 \pm 7.8 \cdot 10^{-1} \) | \(a_{291}= +0.32294960 \pm 8.1 \cdot 10^{-1} \) |
| \(a_{292}= \pm0.16560608 \pm 3.2 \) | \(a_{293}= -1.00276937 \pm 5.0 \) | \(a_{294}= \pm0.39227224 \pm 1.2 \) |
| \(a_{295}= -0.94828748 \pm 1.1 \) | \(a_{296}= \pm0.51886091 \pm 1.8 \) | \(a_{297}= +1.16055166 \pm 3.5 \) |
| \(a_{298}= \pm0.93259264 \pm 3.8 \cdot 10^{-1} \) | \(a_{299}= -0.15007977 \pm 1.7 \) | \(a_{300}= \pm0.68208028 \pm 8.2 \cdot 10^{-1} \) |
| \(a_{301}= -0.05869326 \pm 6.7 \cdot 10^{-1} \) | \(a_{302}= \pm0.10113097 \pm 3.6 \) | \(a_{303}= -0.46210720 \pm 1.8 \) |
| \(a_{304}= \pm0.16470802 \pm 5.2 \cdot 10^{-1} \) | \(a_{305}= +2.16707619 \pm 1.4 \) | \(a_{306}= \pm0.40016807 \pm 1.2 \) |
| \(a_{307}= -0.01074777 \pm 2.8 \) | \(a_{308}= \pm0.03319566 \pm 1.0 \) | \(a_{309}= +0.16951930 \pm 2.6 \) |
| \(a_{310}= \pm1.25020203 \pm 7.5 \cdot 10^{-1} \) | \(a_{311}= +0.94602602 \pm 1.6 \) | \(a_{312}= \pm0.09220622 \pm 5.6 \cdot 10^{-1} \) |
| \(a_{313}= -1.95971867 \pm 2.3 \) | \(a_{314}= \pm0.66663510 \pm 2.9 \) | \(a_{315}= +0.06902038 \pm 3.7 \cdot 10^{-1} \) |
| \(a_{316}= \pm0.65321609 \pm 1.0 \) | \(a_{317}= -1.29634381 \pm 1.1 \) | \(a_{318}= \pm0.21165576 \pm 1.2 \) |
| \(a_{319}= +0.58480980 \pm 4.2 \) | \(a_{320}= \pm0.23224133 \pm 1.9 \cdot 10^{-1} \) | \(a_{321}= +0.05586224 \pm 1.2 \) |
| \(a_{322}= \pm0.01218080 \pm 7.6 \cdot 10^{-1} \) | \(a_{323}= -0.54000346 \pm 3.1 \) | \(a_{324}= \pm0.08359204 \pm 1.4 \) |
| \(a_{325}= +1.14933730 \pm 3.7 \) | \(a_{326}= \pm0.41479395 \pm 3.3 \) | \(a_{327}= -0.21898292 \pm 2.7 \) |
| \(a_{328}= \pm0.31810033 \pm 1.8 \) | \(a_{329}= -0.05353368 \pm 1.4 \) | \(a_{330}= \pm0.90193505 \pm 3.6 \cdot 10^{-1} \) |
| \(a_{331}= +1.64923650 \pm 4.2 \) | \(a_{332}= \pm0.16409564 \pm 1.1 \) | \(a_{333}= -1.01328492 \pm 4.3 \) |
| \(a_{334}= \pm1.12382769 \pm 3.4 \) | \(a_{335}= -1.05763038 \pm 2.0 \) | \(a_{336}= \pm0.00748366 \pm 2.2 \cdot 10^{-1} \) |
| \(a_{337}= -0.34126848 \pm 4.5 \) | \(a_{338}= \pm0.55173496 \pm 9.6 \cdot 10^{-1} \) | \(a_{339}= -0.24759013 \pm 1.6 \) |
| \(a_{340}= \pm0.76141479 \pm 9.7 \cdot 10^{-1} \) | \(a_{341}= +1.17426155 \pm 5.0 \) | \(a_{342}= \pm0.32165876 \pm 6.1 \cdot 10^{-1} \) |
| \(a_{343}= -0.10745166 \pm 3.1 \) | \(a_{344}= \pm0.38568351 \pm 4.2 \cdot 10^{-1} \) | \(a_{345}= -0.33095553 \pm 8.4 \cdot 10^{-1} \) |
| \(a_{346}= \pm0.69375729 \pm 4.7 \) | \(a_{347}= +0.31375746 \pm 3.7 \) | \(a_{348}= \pm0.13183997 \pm 7.7 \cdot 10^{-1} \) |
| \(a_{349}= +0.76036385 \pm 4.1 \) | \(a_{350}= \pm0.09328269 \pm 1.1 \) | \(a_{351}= +0.44086838 \pm 2.8 \) |
| \(a_{352}= \pm0.21813440 \pm 8.9 \cdot 10^{-1} \) | \(a_{353}= +0.41627882 \pm 7.3 \) | \(a_{354}= \pm0.20079696 \pm 1.1 \) |
| \(a_{355}= -0.63793489 \pm 1.2 \) | \(a_{356}= \pm0.46511151 \pm 1.0 \) | \(a_{357}= -0.02453554 \pm 3.5 \cdot 10^{-1} \) |
| \(a_{358}= \pm0.34892204 \pm 5.8 \) | \(a_{359}= -1.30152050 \pm 1.4 \) | \(a_{360}= \pm0.45354475 \pm 3.2 \cdot 10^{-1} \) |
| \(a_{361}= -0.56594028 \pm 4.2 \) | \(a_{362}= \pm0.56049256 \pm 1.9 \) | \(a_{363}= -0.29078188 \pm 1.4 \) |
| \(a_{364}= \pm0.01261031 \pm 8.1 \cdot 10^{-1} \) | \(a_{365}= +0.61536922 \pm 1.9 \) | \(a_{366}= \pm0.45887172 \pm 1.3 \) |
| \(a_{367}= +0.15199885 \pm 4.8 \) | \(a_{368}= \pm0.08004211 \pm 5.3 \cdot 10^{-1} \) | \(a_{369}= -0.62121903 \pm 4.3 \) |
| \(a_{370}= \pm1.92801518 \pm 1.0 \) | \(a_{371}= +0.02894647 \pm 1.6 \) | \(a_{372}= \pm0.26472644 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{373}= -0.02954793 \pm 3.3 \) | \(a_{374}= \pm0.71516450 \pm 1.6 \) | \(a_{375}= +1.50082384 \pm 1.5 \) |
| \(a_{376}= \pm0.35177901 \pm 1.3 \) | \(a_{377}= +0.22215655 \pm 3.3 \) | \(a_{378}= \pm0.03578183 \pm 8.7 \cdot 10^{-1} \) |
| \(a_{379}= +1.94807648 \pm 1.8 \) | \(a_{380}= \pm0.61203217 \pm 7.9 \cdot 10^{-1} \) | \(a_{381}= -1.09145635 \pm 2.7 \) |
| \(a_{382}= \pm0.42857409 \pm 1.7 \) | \(a_{383}= -1.35877773 \pm 2.4 \) | \(a_{384}= \pm0.04917639 \pm 1.8 \cdot 10^{-1} \) |
| \(a_{385}= -0.12335048 \pm 5.1 \cdot 10^{-1} \) | \(a_{386}= \pm0.88196432 \pm 2.6 \) | \(a_{387}= +0.75320240 \pm 7.9 \cdot 10^{-1} \) |
| \(a_{388}= \pm0.29023056 \pm 5.2 \cdot 10^{-1} \) | \(a_{389}= +0.48681849 \pm 7.3 \) | \(a_{390}= \pm0.34262554 \pm 2.8 \cdot 10^{-1} \) |
| \(a_{391}= -0.26242205 \pm 1.8 \) | \(a_{392}= \pm0.35252991 \pm 1.3 \) | \(a_{393}= -0.77446287 \pm 1.6 \) |
| \(a_{394}= \pm0.92850867 \pm 4.0 \) | \(a_{395}= -2.42726040 \pm 8.0 \cdot 10^{-1} \) | \(a_{396}= \pm0.42599528 \pm 2.1 \) |
| \(a_{397}= +0.20450818 \pm 3.1 \) | \(a_{398}= \pm0.50208730 \pm 3.1 \) | \(a_{399}= +0.01972189 \pm 3.9 \cdot 10^{-1} \) |
| \(a_{400}= \pm0.61297659 \pm 9.9 \cdot 10^{-1} \) | \(a_{401}= +1.48537797 \pm 2.2 \) | \(a_{402}= \pm0.22394998 \pm 2.0 \) |
| \(a_{403}= +0.44607647 \pm 3.9 \) | \(a_{404}= \pm0.41528967 \pm 1.0 \) | \(a_{405}= -0.31061641 \pm 1.1 \) |
| \(a_{406}= \pm0.01803070 \pm 1.0 \) | \(a_{407}= +1.81090259 \pm 6.1 \) | \(a_{408}= \pm0.16122724 \pm 7.7 \cdot 10^{-1} \) |
| \(a_{409}= -0.46461170 \pm 1.7 \) | \(a_{410}= \pm1.18201673 \pm 1.2 \) | \(a_{411}= -0.16324967 \pm 1.4 \) |
| \(a_{412}= \pm0.15234477 \pm 3.4 \) | \(a_{413}= +0.02746140 \pm 1.4 \) | \(a_{414}= \pm0.15631446 \pm 1.0 \) |
| \(a_{415}= -0.60975663 \pm 8.9 \cdot 10^{-1} \) | \(a_{416}= \pm0.08286452 \pm 7.0 \cdot 10^{-1} \) | \(a_{417}= +0.58841811 \pm 2.6 \) |
| \(a_{418}= \pm0.57485577 \pm 8.5 \cdot 10^{-1} \) | \(a_{419}= -1.22217371 \pm 6.6 \) | \(a_{420}= \pm0.02780823 \pm 1.0 \cdot 10^{-1} \) |
| \(a_{421}= -1.02127759 \pm 1.3 \) | \(a_{422}= \pm0.17765077 \pm 1.4 \) | \(a_{423}= +0.68699022 \pm 3.1 \) |
| \(a_{424}= \pm0.19021225 \pm 1.5 \) | \(a_{425}= +2.00967430 \pm 1.9 \) | \(a_{426}= \pm0.13508075 \pm 1.0 \) |
| \(a_{427}= -0.06275623 \pm 8.3 \cdot 10^{-1} \) | \(a_{428}= \pm0.05020266 \pm 1.2 \) | \(a_{429}= -0.32181359 \pm 1.8 \) |
| \(a_{430}= \pm1.43314644 \pm 3.9 \cdot 10^{-1} \) | \(a_{431}= -1.18499762 \pm 6.4 \) | \(a_{432}= \pm0.23512854 \pm 8.1 \cdot 10^{-1} \) |
| \(a_{433}= -0.71851344 \pm 2.9 \) | \(a_{434}= \pm0.03620453 \pm 1.2 \) | \(a_{435}= +0.48989906 \pm 7.0 \cdot 10^{-1} \) |
| \(a_{436}= \pm0.19679707 \pm 2.7 \) | \(a_{437}= +0.21093724 \pm 1.5 \) | \(a_{438}= \pm0.13030254 \pm 1.9 \) |
| \(a_{439}= -0.16376271 \pm 1.1 \) | \(a_{440}= \pm0.81055717 \pm 4.5 \cdot 10^{-1} \) | \(a_{441}= +0.68845665 \pm 3.0 \) |
| \(a_{442}= \pm0.27167547 \pm 1.3 \) | \(a_{443}= +1.65839008 \pm 3.8 \) | \(a_{444}= \pm0.40825129 \pm 1.0 \) |
| \(a_{445}= -1.72828986 \pm 1.4 \) | \(a_{446}= \pm0.15742062 \pm 4.7 \) | \(a_{447}= -0.73378460 \pm 2.2 \cdot 10^{-1} \) |
| \(a_{448}= \pm0.00672546 \pm 2.1 \cdot 10^{-1} \) | \(a_{449}= -0.94889224 \pm 6.1 \) | \(a_{450}= \pm1.19708369 \pm 2.3 \) |
| \(a_{451}= +1.11021800 \pm 6.1 \) | \(a_{452}= \pm0.22250599 \pm 1.6 \) | \(a_{453}= -0.07957209 \pm 2.1 \) |
| \(a_{454}= \pm0.78900006 \pm 2.9 \) | \(a_{455}= -0.04685817 \pm 4.1 \cdot 10^{-1} \) | \(a_{456}= \pm0.12959593 \pm 6.3 \cdot 10^{-1} \) |
| \(a_{457}= -0.38889714 \pm 3.4 \) | \(a_{458}= \pm1.38093907 \pm 2.6 \) | \(a_{459}= +0.77088063 \pm 2.6 \) |
| \(a_{460}= \pm0.29742538 \pm 4.8 \cdot 10^{-1} \) | \(a_{461}= +1.59842409 \pm 2.6 \) | \(a_{462}= \pm0.02611908 \pm 6.5 \cdot 10^{-1} \) |
| \(a_{463}= +0.63040983 \pm 3.8 \) | \(a_{464}= \pm0.11848285 \pm 8.9 \cdot 10^{-1} \) | \(a_{465}= +0.98368672 \pm 4.3 \cdot 10^{-1} \) |
| \(a_{466}= \pm0.38344877 \pm 2.3 \) | \(a_{467}= -1.74453761 \pm 2.9 \) | \(a_{468}= \pm0.16182636 \pm 1.7 \) |
| \(a_{469}= +0.03062786 \pm 2.7 \) | \(a_{470}= \pm1.30716203 \pm 8.6 \cdot 10^{-1} \) | \(a_{471}= -0.52452330 \pm 2.1 \) |
| \(a_{472}= \pm0.18045359 \pm 1.2 \) | \(a_{473}= -1.34609344 \pm 1.1 \) | \(a_{474}= \pm0.51396492 \pm 7.8 \cdot 10^{-1} \) |
| \(a_{475}= -1.61539459 \pm 1.0 \) | \(a_{476}= \pm0.02204977 \pm 4.0 \cdot 10^{-1} \) | \(a_{477}= -0.37146604 \pm 3.6 \) |
| \(a_{478}= \pm0.07094828 \pm 3.0 \) | \(a_{479}= +0.99118749 \pm 2.5 \) | \(a_{480}= \pm0.18273264 \pm 2.0 \cdot 10^{-1} \) |
| \(a_{481}= +0.68792258 \pm 4.8 \) | \(a_{482}= \pm0.44742389 \pm 3.1 \) | \(a_{483}= +0.00958412 \pm 1.0 \) |
| \(a_{484}= \pm0.26132185 \pm 1.1 \) | \(a_{485}= +1.07845651 \pm 6.6 \cdot 10^{-1} \) | \(a_{486}= \pm0.73081600 \pm 2.7 \) |
| \(a_{487}= -0.79009341 \pm 4.1 \) | \(a_{488}= \pm0.41238199 \pm 6.7 \cdot 10^{-1} \) | \(a_{489}= -0.32636910 \pm 2.4 \) |
| \(a_{490}= \pm1.30995226 \pm 1.0 \) | \(a_{491}= +1.12306978 \pm 2.6 \) | \(a_{492}= \pm0.25028841 \pm 1.2 \) |
| \(a_{493}= +0.38845194 \pm 2.0 \) | \(a_{494}= \pm0.21837523 \pm 6.8 \cdot 10^{-1} \) | \(a_{495}= +1.58293937 \pm 1.1 \) |
| \(a_{496}= \pm0.23790617 \pm 1.0 \) | \(a_{497}= +0.01847392 \pm 1.1 \) | \(a_{498}= \pm0.12911409 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{499}= -1.66644993 \pm 5.8 \) | \(a_{500}= \pm1.34877066 \pm 1.2 \) | \(a_{501}= +0.88425259 \pm 1.9 \) |
| \(a_{502}= \pm0.12710009 \pm 4.3 \) | \(a_{503}= -0.66787683 \pm 7.6 \) | \(a_{504}= \pm0.01313418 \pm 5.1 \cdot 10^{-1} \) |
| \(a_{505}= -1.54315881 \pm 1.6 \) | \(a_{506}= \pm0.27935900 \pm 1.5 \) | \(a_{507}= +0.43411732 \pm 1.2 \) |
| \(a_{508}= \pm0.98087748 \pm 2.6 \) | \(a_{509}= +0.40362839 \pm 4.7 \) | \(a_{510}= \pm0.59909807 \pm 1.2 \) |
| \(a_{511}= -0.01782044 \pm 2.5 \) | \(a_{512}= \pm0.04419417 \pm 1.0 \cdot 10^{-8} \) | \(a_{513}= -0.61964090 \pm 2.0 \) |
| \(a_{514}= \pm0.32089763 \pm 9.9 \cdot 10^{-1} \) | \(a_{515}= +0.56609204 \pm 1.8 \) | \(a_{516}= \pm0.30346435 \pm 4.8 \cdot 10^{-1} \) |
| \(a_{517}= -1.22776166 \pm 4.4 \) | \(a_{518}= \pm0.05583328 \pm 1.4 \) | \(a_{519}= -0.54586365 \pm 2.6 \) |
| \(a_{520}= \pm0.30791307 \pm 3.6 \cdot 10^{-1} \) | \(a_{521}= +0.67366692 \pm 5.3 \) | \(a_{522}= \pm0.23138550 \pm 2.1 \) |
| \(a_{523}= +1.46494330 \pm 5.8 \) | \(a_{524}= \pm0.69599960 \pm 1.7 \) | \(a_{525}= -0.07339689 \pm 8.2 \cdot 10^{-1} \) |
| \(a_{526}= \pm0.92349407 \pm 1.6 \) | \(a_{527}= +0.77998724 \pm 1.9 \) | \(a_{528}= \pm0.17163299 \pm 5.0 \cdot 10^{-1} \) |
| \(a_{529}= -0.89749217 \pm 3.7 \) | \(a_{530}= \pm0.70680235 \pm 8.9 \cdot 10^{-1} \) | \(a_{531}= -0.35240832 \pm 2.9 \) |
| \(a_{532}= \pm0.01772380 \pm 2.4 \cdot 10^{-1} \) | \(a_{533}= +0.42174772 \pm 4.8 \) | \(a_{534}= \pm0.36596006 \pm 1.2 \) |
| \(a_{535}= +0.18654614 \pm 6.8 \cdot 10^{-1} \) | \(a_{536}= \pm0.20126091 \pm 2.4 \) | \(a_{537}= +0.27453961 \pm 3.2 \) |
| \(a_{538}= \pm0.33738734 \pm 4.0 \) | \(a_{539}= -1.23038240 \pm 4.2 \) | \(a_{540}= \pm0.87370503 \pm 6.9 \cdot 10^{-1} \) |
| \(a_{541}= +1.34538526 \pm 4.1 \) | \(a_{542}= \pm1.22948829 \pm 3.0 \) | \(a_{543}= -0.44100800 \pm 1.9 \) |
| \(a_{544}= \pm0.14489280 \pm 5.1 \cdot 10^{-1} \) | \(a_{545}= -0.73127064 \pm 2.0 \) | \(a_{546}= \pm0.00992207 \pm 5.1 \cdot 10^{-1} \) |
| \(a_{547}= -0.34190114 \pm 6.9 \) | \(a_{548}= \pm0.14671033 \pm 9.5 \cdot 10^{-1} \) | \(a_{549}= +0.80534193 \pm 6.4 \cdot 10^{-1} \) |
| \(a_{550}= \pm2.13938046 \pm 3.3 \) | \(a_{551}= -0.31224122 \pm 1.3 \) | \(a_{552}= \pm0.06297891 \pm 5.4 \cdot 10^{-1} \) |
| \(a_{553}= +0.07029089 \pm 8.6 \cdot 10^{-1} \) | \(a_{554}= \pm0.94225970 \pm 2.4 \) | \(a_{555}= +1.51700516 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{556}= \pm0.52880362 \pm 3.2 \) | \(a_{557}= -0.06148261 \pm 1.9 \) | \(a_{558}= \pm0.46460762 \pm 2.5 \) |
| \(a_{559}= -0.51135168 \pm 9.3 \cdot 10^{-1} \) | \(a_{560}= \pm0.02499089 \pm 1.1 \cdot 10^{-1} \) | \(a_{561}= -0.56270731 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{562}= \pm0.10614054 \pm 2.4 \) | \(a_{563}= +0.01044076 \pm 7.5 \) | \(a_{564}= \pm0.27678754 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{565}= -0.82680142 \pm 8.6 \cdot 10^{-1} \) | \(a_{566}= \pm0.08313091 \pm 2.7 \) | \(a_{567}= +0.00899512 \pm 1.1 \) |
| \(a_{568}= \pm0.12139530 \pm 1.0 \) | \(a_{569}= +0.86904978 \pm 1.4 \) | \(a_{570}= \pm0.48156051 \pm 1.0 \) |
| \(a_{571}= -1.48833804 \pm 1.9 \) | \(a_{572}= \pm0.28920964 \pm 2.4 \) | \(a_{573}= -0.33721161 \pm 1.1 \) |
| \(a_{574}= \pm0.03422995 \pm 1.4 \) | \(a_{575}= -0.78502304 \pm 1.8 \) | \(a_{576}= \pm0.08630693 \pm 4.5 \cdot 10^{-1} \) |
| \(a_{577}= +1.22497750 \pm 2.3 \) | \(a_{578}= \pm0.23206851 \pm 2.8 \) | \(a_{579}= +0.69394912 \pm 2.1 \) |
| \(a_{580}= \pm0.44026585 \pm 5.5 \cdot 10^{-1} \) | \(a_{581}= +0.01765791 \pm 9.1 \cdot 10^{-1} \) | \(a_{582}= \pm0.22835985 \pm 5.7 \cdot 10^{-1} \) |
| \(a_{583}= +0.66386936 \pm 5.1 \) | \(a_{584}= \pm0.11710118 \pm 2.3 \) | \(a_{585}= +0.60132430 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{586}= \pm0.70906502 \pm 3.5 \) | \(a_{587}= +1.39585711 \pm 9.7 \cdot 10^{-1} \) | \(a_{588}= \pm0.27737836 \pm 9.0 \cdot 10^{-1} \) |
| \(a_{589}= -0.62696088 \pm 1.0 \) | \(a_{590}= \pm0.67054051 \pm 7.9 \cdot 10^{-1} \) | \(a_{591}= -0.73057125 \pm 2.3 \) |
| \(a_{592}= \pm0.36689007 \pm 1.3 \) | \(a_{593}= +0.15814022 \pm 2.7 \) | \(a_{594}= \pm0.82063395 \pm 2.5 \) |
| \(a_{595}= -0.08193387 \pm 2.3 \cdot 10^{-1} \) | \(a_{596}= \pm0.65944258 \pm 2.6 \cdot 10^{-1} \) | \(a_{597}= -0.39505344 \pm 2.7 \) |
| \(a_{598}= \pm0.10612242 \pm 1.2 \) | \(a_{599}= +0.94295064 \pm 4.7 \) | \(a_{600}= \pm0.48230359 \pm 5.8 \cdot 10^{-1} \) |
| \(a_{601}= -1.40155385 \pm 2.1 \) | \(a_{602}= \pm0.04150240 \pm 4.7 \cdot 10^{-1} \) | \(a_{603}= -0.39304299 \pm 5.8 \) |
| \(a_{604}= \pm0.07151039 \pm 2.5 \) | \(a_{605}= -0.97103576 \pm 1.2 \) | \(a_{606}= \pm0.32675913 \pm 1.3 \) |
| \(a_{607}= +0.52606794 \pm 8.8 \cdot 10^{-1} \) | \(a_{608}= \pm0.11646616 \pm 3.6 \cdot 10^{-1} \) | \(a_{609}= -0.01418696 \pm 6.3 \cdot 10^{-1} \) |
| \(a_{610}= \pm1.53235427 \pm 1.0 \) | \(a_{611}= -0.46640000 \pm 3.4 \) | \(a_{612}= \pm0.28296156 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{613}= -1.38623060 \pm 2.1 \) | \(a_{614}= \pm0.00759982 \pm 2.0 \) | \(a_{615}= +0.93003701 \pm 1.2 \) |
| \(a_{616}= \pm0.02347288 \pm 7.2 \cdot 10^{-1} \) | \(a_{617}= +1.28391266 \pm 3.6 \) | \(a_{618}= \pm0.11986825 \pm 1.9 \) |
| \(a_{619}= -0.53494386 \pm 2.8 \) | \(a_{620}= \pm0.88402633 \pm 5.3 \cdot 10^{-1} \) | \(a_{621}= -0.30112295 \pm 1.6 \) |
| \(a_{622}= \pm0.66894142 \pm 1.2 \) | \(a_{623}= +0.05004945 \pm 6.5 \cdot 10^{-1} \) | \(a_{624}= \pm0.06519965 \pm 3.9 \cdot 10^{-1} \) |
| \(a_{625}= +2.55993840 \pm 3.5 \) | \(a_{626}= \pm1.38573036 \pm 1.6 \) | \(a_{627}= +0.45230928 \pm 5.6 \cdot 10^{-1} \) |
| \(a_{628}= \pm0.47138220 \pm 2.0 \) | \(a_{629}= +1.20286737 \pm 2.7 \) | \(a_{630}= \pm0.04880478 \pm 2.6 \cdot 10^{-1} \) |
| \(a_{631}= -0.01772160 \pm 4.3 \cdot 10^{-1} \) | \(a_{632}= \pm0.46189352 \pm 7.5 \cdot 10^{-1} \) | \(a_{633}= +0.13977957 \pm 1.9 \) |
| \(a_{634}= \pm0.91665350 \pm 8.1 \cdot 10^{-1} \) | \(a_{635}= -3.64480469 \pm 2.2 \) | \(a_{636}= \pm0.14966322 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{637}= -0.46739556 \pm 3.3 \) | \(a_{638}= \pm0.41352297 \pm 2.9 \) | \(a_{639}= -0.23707321 \pm 2.3 \) |
| \(a_{640}= \pm0.16421942 \pm 1.3 \cdot 10^{-1} \) | \(a_{641}= -1.01540158 \pm 2.0 \) | \(a_{642}= \pm0.03950057 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{643}= +1.86147793 \pm 7.7 \) | \(a_{644}= \pm0.00861312 \pm 5.3 \cdot 10^{-1} \) | \(a_{645}= -1.12763145 \pm 4.9 \cdot 10^{-1} \) |
| \(a_{646}= \pm0.38184011 \pm 2.1 \) | \(a_{647}= +1.48553747 \pm 4.8 \) | \(a_{648}= \pm0.05910850 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{649}= +0.62981016 \pm 4.1 \) | \(a_{650}= \pm0.81270420 \pm 2.6 \) | \(a_{651}= -0.02848653 \pm 8.7 \cdot 10^{-1} \) |
| \(a_{652}= \pm0.29330362 \pm 2.3 \) | \(a_{653}= +0.96910161 \pm 6.7 \) | \(a_{654}= \pm0.15484431 \pm 1.9 \) |
| \(a_{655}= -2.58623801 \pm 1.3 \) | \(a_{656}= \pm0.22493090 \pm 1.3 \) | \(a_{657}= +0.22868722 \pm 5.4 \) |
| \(a_{658}= \pm0.03785403 \pm 1.0 \) | \(a_{659}= +1.55480298 \pm 7.2 \) | \(a_{660}= \pm0.63776439 \pm 2.5 \cdot 10^{-1} \) |
| \(a_{661}= -0.90941584 \pm 1.4 \) | \(a_{662}= \pm1.16618631 \pm 3.0 \) | \(a_{663}= -0.21376029 \pm 7.4 \cdot 10^{-1} \) |
| \(a_{664}= \pm0.11603314 \pm 8.0 \cdot 10^{-1} \) | \(a_{665}= +0.06585920 \pm 1.5 \cdot 10^{-1} \) | \(a_{666}= \pm0.71650064 \pm 3.1 \) |
| \(a_{667}= -0.15173788 \pm 1.5 \) | \(a_{668}= \pm0.79466618 \pm 2.4 \) | \(a_{669}= -0.12386204 \pm 2.9 \) |
| \(a_{670}= \pm0.74785762 \pm 1.4 \) | \(a_{671}= -1.43927514 \pm 1.0 \) | \(a_{672}= \pm0.00529174 \pm 1.5 \cdot 10^{-1} \) |
| \(a_{673}= +0.97031587 \pm 2.1 \) | \(a_{674}= \pm0.24131326 \pm 3.2 \) | \(a_{675}= +2.30605260 \pm 2.8 \) |
| \(a_{676}= \pm0.39013553 \pm 6.8 \cdot 10^{-1} \) | \(a_{677}= -0.46084115 \pm 3.7 \) | \(a_{678}= \pm0.17507266 \pm 1.1 \) |
| \(a_{679}= -0.03123096 \pm 3.8 \cdot 10^{-1} \) | \(a_{680}= \pm0.53840156 \pm 6.8 \cdot 10^{-1} \) | \(a_{681}= -0.62080277 \pm 2.0 \) |
| \(a_{682}= \pm0.83032830 \pm 3.5 \) | \(a_{683}= -0.65146251 \pm 4.4 \) | \(a_{684}= \pm0.22744709 \pm 4.3 \cdot 10^{-1} \) |
| \(a_{685}= -0.54515525 \pm 7.1 \cdot 10^{-1} \) | \(a_{686}= \pm0.07597980 \pm 2.2 \) | \(a_{687}= +1.08655353 \pm 1.4 \) |
| \(a_{688}= \pm0.27271943 \pm 3.0 \cdot 10^{-1} \) | \(a_{689}= +0.25218956 \pm 4.0 \) | \(a_{690}= \pm0.23402090 \pm 5.9 \cdot 10^{-1} \) |
| \(a_{691}= -0.36902228 \pm 6.5 \) | \(a_{692}= \pm0.49056049 \pm 3.3 \) | \(a_{693}= -0.04584025 \pm 1.7 \) |
| \(a_{694}= \pm0.22186003 \pm 2.6 \) | \(a_{695}= +1.96496093 \pm 1.6 \) | \(a_{696}= \pm0.09322494 \pm 5.4 \cdot 10^{-1} \) |
| \(a_{697}= +0.73744718 \pm 3.3 \) | \(a_{698}= \pm0.53765844 \pm 2.9 \) | \(a_{699}= -0.30170601 \pm 1.4 \) |
| \(a_{700}= \pm0.06596082 \pm 8.2 \cdot 10^{-1} \) | \(a_{701}= -1.71743986 \pm 5.3 \) | \(a_{702}= \pm0.31174102 \pm 2.0 \) |
| \(a_{703}= -0.96687580 \pm 1.6 \) | \(a_{704}= \pm0.15424431 \pm 6.3 \cdot 10^{-1} \) | \(a_{705}= -1.02850412 \pm 8.2 \cdot 10^{-1} \) |
| \(a_{706}= \pm0.29435358 \pm 5.2 \) | \(a_{707}= +0.04468825 \pm 2.5 \cdot 10^{-1} \) | \(a_{708}= \pm0.14198489 \pm 7.9 \cdot 10^{-1} \) |
| \(a_{709}= +1.71636439 \pm 7.6 \cdot 10^{-1} \) | \(a_{710}= \pm0.45108809 \pm 8.6 \cdot 10^{-1} \) | \(a_{711}= -0.90203316 \pm 1.6 \) |
| \(a_{712}= \pm0.32888350 \pm 7.6 \cdot 10^{-1} \) | \(a_{713}= -0.30468019 \pm 1.8 \) | \(a_{714}= \pm0.01734925 \pm 2.5 \cdot 10^{-1} \) |
| \(a_{715}= -1.07466293 \pm 1.2 \) | \(a_{716}= \pm0.24672514 \pm 4.1 \) | \(a_{717}= +0.05582369 \pm 2.7 \) |
| \(a_{718}= \pm0.92031397 \pm 1.0 \) | \(a_{719}= +0.07117236 \pm 3.9 \) | \(a_{720}= \pm0.32070457 \pm 2.3 \cdot 10^{-1} \) |
| \(a_{721}= -0.01639343 \pm 2.7 \) | \(a_{722}= \pm0.40018021 \pm 2.9 \) | \(a_{723}= +0.35204305 \pm 1.8 \) |
| \(a_{724}= \pm0.39632809 \pm 1.3 \) | \(a_{725}= +1.16203544 \pm 3.2 \) | \(a_{726}= \pm0.20561384 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{727}= +1.68162147 \pm 2.8 \) | \(a_{728}= \pm0.00891684 \pm 5.7 \cdot 10^{-1} \) | \(a_{729}= +0.40783819 \pm 1.6 \) |
| \(a_{730}= \pm0.43513175 \pm 1.3 \) | \(a_{731}= -0.89412423 \pm 1.0 \) | \(a_{732}= \pm0.32447130 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{733}= +0.61576520 \pm 5.9 \) | \(a_{734}= \pm0.10747942 \pm 3.4 \) | \(a_{735}= -1.03069953 \pm 1.1 \) |
| \(a_{736}= \pm0.05659832 \pm 3.7 \cdot 10^{-1} \) | \(a_{737}= +0.70243082 \pm 8.1 \) | \(a_{738}= \pm0.43926819 \pm 3.0 \) |
| \(a_{739}= +0.70317643 \pm 3.3 \) | \(a_{740}= \pm1.36331261 \pm 7.4 \cdot 10^{-1} \) | \(a_{741}= +0.17182248 \pm 4.6 \cdot 10^{-1} \) |
| \(a_{742}= \pm0.02046825 \pm 1.1 \) | \(a_{743}= +0.58538276 \pm 1.8 \) | \(a_{744}= \pm0.18718986 \pm 6.0 \cdot 10^{-1} \) |
| \(a_{745}= -2.45039718 \pm 1.9 \cdot 10^{-1} \) | \(a_{746}= \pm0.02089354 \pm 2.3 \) | \(a_{747}= -0.22660144 \pm 1.8 \) |
| \(a_{748}= \pm0.50569767 \pm 1.2 \) | \(a_{749}= -0.00540218 \pm 1.1 \) | \(a_{750}= \pm1.06124271 \pm 1.0 \) |
| \(a_{751}= -1.83289608 \pm 2.9 \) | \(a_{752}= \pm0.24874533 \pm 9.4 \cdot 10^{-1} \) | \(a_{753}= -0.10000518 \pm 2.4 \) |
| \(a_{754}= \pm0.15708840 \pm 2.3 \) | \(a_{755}= -0.26572270 \pm 1.3 \) | \(a_{756}= \pm0.02530157 \pm 6.1 \cdot 10^{-1} \) |
| \(a_{757}= +0.84842991 \pm 7.8 \) | \(a_{758}= \pm1.37749809 \pm 1.3 \) | \(a_{759}= +0.21980587 \pm 1.1 \) |
| \(a_{760}= \pm0.43277210 \pm 5.6 \cdot 10^{-1} \) | \(a_{761}= +0.51120026 \pm 1.3 \) | \(a_{762}= \pm0.77177618 \pm 1.9 \) |
| \(a_{763}= +0.02117682 \pm 2.1 \) | \(a_{764}= \pm0.30304764 \pm 1.2 \) | \(a_{765}= +1.05144591 \pm 4.7 \cdot 10^{-1} \) |
| \(a_{766}= \pm0.96080095 \pm 1.7 \) | \(a_{767}= +0.23925121 \pm 3.3 \) | \(a_{768}= \pm0.03477296 \pm 1.3 \cdot 10^{-1} \) |
| \(a_{769}= -1.43603443 \pm 1.6 \) | \(a_{770}= \pm0.08722196 \pm 3.6 \cdot 10^{-1} \) | \(a_{771}= +0.25248938 \pm 1.1 \) |
| \(a_{772}= \pm0.62364295 \pm 1.8 \) | \(a_{773}= -0.48088340 \pm 6.8 \) | \(a_{774}= \pm0.53259453 \pm 5.6 \cdot 10^{-1} \) |
| \(a_{775}= +2.33329459 \pm 3.9 \) | \(a_{776}= \pm0.20522400 \pm 3.6 \cdot 10^{-1} \) | \(a_{777}= -0.04393086 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{778}= \pm0.34423266 \pm 5.2 \) | \(a_{779}= -0.59276679 \pm 2.3 \) | \(a_{780}= \pm0.24227285 \pm 2.0 \cdot 10^{-1} \) |
| \(a_{781}= +0.42368784 \pm 3.3 \) | \(a_{782}= \pm0.18556041 \pm 1.2 \) | \(a_{783}= +0.44573920 \pm 2.5 \) |
| \(a_{784}= \pm0.24927629 \pm 9.4 \cdot 10^{-1} \) | \(a_{785}= -1.75159089 \pm 1.6 \) | \(a_{786}= \pm0.54762795 \pm 1.1 \) |
| \(a_{787}= +0.36873747 \pm 4.0 \) | \(a_{788}= \pm0.65655478 \pm 2.8 \) | \(a_{789}= -0.72662564 \pm 2.1 \) |
| \(a_{790}= \pm1.71633229 \pm 5.6 \cdot 10^{-1} \) | \(a_{791}= +0.02394329 \pm 1.5 \) | \(a_{792}= \pm0.30122415 \pm 1.5 \) |
| \(a_{793}= -0.54674938 \pm 8.1 \cdot 10^{-1} \) | \(a_{794}= \pm0.14460912 \pm 2.2 \) | \(a_{795}= +0.55612779 \pm 7.5 \cdot 10^{-1} \) |
| \(a_{796}= \pm0.35502933 \pm 2.2 \) | \(a_{797}= +1.96142518 \pm 4.6 \) | \(a_{798}= \pm0.01394548 \pm 2.8 \cdot 10^{-1} \) |
| \(a_{799}= -0.81552395 \pm 2.3 \) | \(a_{800}= \pm0.43343990 \pm 7.0 \cdot 10^{-1} \) | \(a_{801}= -0.64227751 \pm 1.1 \) |
| \(a_{802}= \pm1.05032084 \pm 1.5 \) | \(a_{803}= -0.40870073 \pm 7.7 \) | \(a_{804}= \pm0.15835655 \pm 1.4 \) |
| \(a_{805}= +0.03200518 \pm 2.5 \cdot 10^{-1} \) | \(a_{806}= \pm0.31542370 \pm 2.7 \) | \(a_{807}= +0.26546385 \pm 2.2 \) |
| \(a_{808}= \pm0.29365414 \pm 7.1 \cdot 10^{-1} \) | \(a_{809}= +0.65140872 \pm 1.7 \) | \(a_{810}= \pm0.21963897 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{811}= -0.41330942 \pm 2.3 \) | \(a_{812}= \pm0.01274963 \pm 7.1 \cdot 10^{-1} \) | \(a_{813}= +0.96738869 \pm 1.9 \) |
| \(a_{814}= \pm1.28050150 \pm 4.3 \) | \(a_{815}= -1.08987557 \pm 2.0 \) | \(a_{816}= \pm0.11400487 \pm 5.4 \cdot 10^{-1} \) |
| \(a_{817}= +0.71870524 \pm 8.9 \cdot 10^{-1} \) | \(a_{818}= \pm0.32853008 \pm 1.2 \) | \(a_{819}= -0.01741372 \pm 1.3 \) |
| \(a_{820}= \pm0.83581204 \pm 8.9 \cdot 10^{-1} \) | \(a_{821}= +0.10667504 \pm 1.2 \) | \(a_{822}= \pm0.11543495 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{823}= -1.20578588 \pm 5.0 \) | \(a_{824}= \pm0.10772402 \pm 2.4 \) | \(a_{825}= -1.68331206 \pm 1.8 \) |
| \(a_{826}= \pm0.01941814 \pm 1.0 \) | \(a_{827}= -0.23129502 \pm 7.5 \) | \(a_{828}= \pm0.11053102 \pm 7.4 \cdot 10^{-1} \) |
| \(a_{829}= +0.82689705 \pm 7.7 \) | \(a_{830}= \pm0.43116305 \pm 6.3 \cdot 10^{-1} \) | \(a_{831}= -0.74139086 \pm 2.1 \) |
| \(a_{832}= \pm0.05859407 \pm 5.0 \cdot 10^{-1} \) | \(a_{833}= -0.81726475 \pm 2.7 \) | \(a_{834}= \pm0.41607444 \pm 1.8 \) |
| \(a_{835}= +2.95286934 \pm 1.3 \) | \(a_{836}= \pm0.40648441 \pm 6.0 \cdot 10^{-1} \) | \(a_{837}= +0.89501647 \pm 2.9 \) |
| \(a_{838}= \pm0.86420732 \pm 4.6 \) | \(a_{839}= +0.37362264 \pm 5.3 \cdot 10^{-1} \) | \(a_{840}= \pm0.01966339 \pm 7.6 \cdot 10^{-2} \) |
| \(a_{841}= -0.77538902 \pm 1.5 \) | \(a_{842}= \pm0.72215231 \pm 9.2 \cdot 10^{-1} \) | \(a_{843}= +0.08351373 \pm 1.5 \) |
| \(a_{844}= \pm0.12561806 \pm 1.0 \) | \(a_{845}= +1.44968955 \pm 1.1 \) | \(a_{846}= \pm0.48577544 \pm 2.2 \) |
| \(a_{847}= +0.02812017 \pm 7.6 \cdot 10^{-1} \) | \(a_{848}= \pm0.13450037 \pm 1.0 \) | \(a_{849}= +0.06540925 \pm 1.9 \) |
| \(a_{850}= \pm1.42105433 \pm 1.3 \) | \(a_{851}= -0.46986648 \pm 2.2 \) | \(a_{852}= \pm0.09551652 \pm 7.7 \cdot 10^{-1} \) |
| \(a_{853}= +0.69967618 \pm 4.2 \) | \(a_{854}= \pm0.04437536 \pm 5.8 \cdot 10^{-1} \) | \(a_{855}= -0.84516184 \pm 2.6 \cdot 10^{-1} \) |
| \(a_{856}= \pm0.03549864 \pm 9.0 \cdot 10^{-1} \) | \(a_{857}= -0.86164481 \pm 3.2 \) | \(a_{858}= \pm0.22755657 \pm 1.3 \) |
| \(a_{859}= -1.11314983 \pm 2.5 \) | \(a_{860}= \pm1.01338757 \pm 2.7 \cdot 10^{-1} \) | \(a_{861}= -0.02693289 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{862}= \pm0.83791985 \pm 4.5 \) | \(a_{863}= +0.18989460 \pm 3.1 \) | \(a_{864}= \pm0.16626098 \pm 5.7 \cdot 10^{-1} \) |
| \(a_{865}= -1.82285474 \pm 1.7 \) | \(a_{866}= \pm0.50806573 \pm 2.0 \) | \(a_{867}= +0.18259665 \pm 2.6 \) |
| \(a_{868}= \pm0.02560047 \pm 8.6 \cdot 10^{-1} \) | \(a_{869}= +1.61207786 \pm 2.3 \) | \(a_{870}= \pm0.34641095 \pm 5.0 \cdot 10^{-1} \) |
| \(a_{871}= +0.26683822 \pm 6.4 \) | \(a_{872}= \pm0.13915655 \pm 1.9 \) | \(a_{873}= +0.40078252 \pm 6.0 \cdot 10^{-1} \) |
| \(a_{874}= \pm0.14915516 \pm 1.0 \) | \(a_{875}= -0.14513772 \pm 8.5 \cdot 10^{-1} \) | \(a_{876}= \pm0.09213781 \pm 1.3 \) |
| \(a_{877}= -1.38128402 \pm 7.6 \) | \(a_{878}= \pm0.11579772 \pm 8.2 \cdot 10^{-1} \) | \(a_{879}= +0.55790811 \pm 1.9 \) |
| \(a_{880}= \pm0.57315047 \pm 3.2 \cdot 10^{-1} \) | \(a_{881}= -1.44567471 \pm 1.5 \) | \(a_{882}= \pm0.48681236 \pm 2.1 \) |
| \(a_{883}= -0.20015268 \pm 3.2 \) | \(a_{884}= \pm0.19210357 \pm 9.5 \cdot 10^{-1} \) | \(a_{885}= +0.52759617 \pm 7.4 \cdot 10^{-1} \) |
| \(a_{886}= \pm1.17265887 \pm 2.7 \) | \(a_{887}= +1.82848644 \pm 6.0 \) | \(a_{888}= \pm0.28867725 \pm 7.6 \cdot 10^{-1} \) |
| \(a_{889}= +0.10554969 \pm 1.9 \) | \(a_{890}= \pm1.22208548 \pm 1.0 \) | \(a_{891}= +0.20629754 \pm 3.0 \) |
| \(a_{892}= \pm0.11131319 \pm 3.3 \) | \(a_{893}= +0.65552561 \pm 1.5 \) | \(a_{894}= \pm0.51886407 \pm 1.6 \cdot 10^{-1} \) |
| \(a_{895}= +0.91679641 \pm 2.2 \) | \(a_{896}= \pm0.00475562 \pm 1.5 \cdot 10^{-1} \) | \(a_{897}= +0.08349948 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{898}= \pm0.67096814 \pm 4.3 \) | \(a_{899}= +0.45100483 \pm 3.4 \) | \(a_{900}= \pm0.84646600 \pm 1.6 \) |
| \(a_{901}= +0.44096618 \pm 2.3 \) | \(a_{902}= \pm0.78504267 \pm 4.3 \) | \(a_{903}= +0.03265501 \pm 6.9 \cdot 10^{-1} \) |
| \(a_{904}= \pm0.15733550 \pm 1.1 \) | \(a_{905}= -1.47270023 \pm 1.2 \) | \(a_{906}= \pm0.05626597 \pm 1.5 \) |
| \(a_{907}= -1.76959879 \pm 6.7 \) | \(a_{908}= \pm0.55790729 \pm 2.0 \) | \(a_{909}= -0.57347799 \pm 5.0 \cdot 10^{-1} \) |
| \(a_{910}= \pm0.03313373 \pm 2.9 \cdot 10^{-1} \) | \(a_{911}= +0.27329182 \pm 4.9 \) | \(a_{912}= \pm0.09163816 \pm 4.4 \cdot 10^{-1} \) |
| \(a_{913}= +0.40497310 \pm 2.5 \) | \(a_{914}= \pm0.27499180 \pm 2.4 \) | \(a_{915}= -1.20569037 \pm 1.3 \) |
| \(a_{916}= \pm0.97647138 \pm 1.9 \) | \(a_{917}= +0.07489472 \pm 1.2 \) | \(a_{918}= \pm0.54509492 \pm 1.8 \) |
| \(a_{919}= -0.73245934 \pm 7.6 \) | \(a_{920}= \pm0.21031151 \pm 3.4 \cdot 10^{-1} \) | \(a_{921}= +0.00597971 \pm 1.5 \) |
| \(a_{922}= \pm1.13025651 \pm 1.8 \) | \(a_{923}= +0.16094981 \pm 2.6 \) | \(a_{924}= \pm0.01846898 \pm 4.6 \cdot 10^{-1} \) |
| \(a_{925}= +3.59832033 \pm 4.8 \) | \(a_{926}= \pm0.44576706 \pm 2.7 \) | \(a_{927}= +0.21037454 \pm 5.9 \) |
| \(a_{928}= \pm0.08378003 \pm 6.3 \cdot 10^{-1} \) | \(a_{929}= -1.60525379 \pm 5.0 \) | \(a_{930}= \pm0.69557155 \pm 3.0 \cdot 10^{-1} \) |
| \(a_{931}= +0.65692488 \pm 1.9 \) | \(a_{932}= \pm0.27113922 \pm 1.6 \) | \(a_{933}= -0.52633796 \pm 1.3 \) |
| \(a_{934}= \pm1.23357438 \pm 2.0 \) | \(a_{935}= -1.87910240 \pm 6.2 \cdot 10^{-1} \) | \(a_{936}= \pm0.11442851 \pm 1.2 \) |
| \(a_{937}= +0.80836028 \pm 7.8 \) | \(a_{938}= \pm0.02165717 \pm 1.9 \) | \(a_{939}= +1.09032342 \pm 1.1 \) |
| \(a_{940}= \pm0.92430314 \pm 6.1 \cdot 10^{-1} \) | \(a_{941}= -0.22335543 \pm 1.3 \) | \(a_{942}= \pm0.37089398 \pm 1.4 \) |
| \(a_{943}= -0.28806311 \pm 2.4 \) | \(a_{944}= \pm0.12759996 \pm 8.9 \cdot 10^{-1} \) | \(a_{945}= -0.09401714 \pm 3.1 \cdot 10^{-1} \) |
| \(a_{946}= \pm0.95183180 \pm 8.3 \cdot 10^{-1} \) | \(a_{947}= +0.21968771 \pm 3.0 \) | \(a_{948}= \pm0.36342808 \pm 5.5 \cdot 10^{-1} \) |
| \(a_{949}= -0.15525653 \pm 6.1 \) | \(a_{950}= \pm1.14225647 \pm 7.4 \cdot 10^{-1} \) | \(a_{951}= +0.72124333 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{952}= \pm0.01559154 \pm 2.8 \cdot 10^{-1} \) | \(a_{953}= -0.05782598 \pm 1.2 \) | \(a_{954}= \pm0.26266616 \pm 2.5 \) |
| \(a_{955}= -1.12608302 \pm 8.7 \cdot 10^{-1} \) | \(a_{956}= \pm0.05016801 \pm 2.1 \) | \(a_{957}= -0.32536906 \pm 1.6 \) |
| \(a_{958}= \pm0.70087539 \pm 1.7 \) | \(a_{959}= +0.01578712 \pm 1.0 \) | \(a_{960}= \pm0.12921149 \pm 1.4 \cdot 10^{-1} \) |
| \(a_{961}= -0.09441048 \pm 1.2 \) | \(a_{962}= \pm0.48643472 \pm 3.4 \) | \(a_{963}= +0.06932540 \pm 2.1 \) |
| \(a_{964}= \pm0.31637646 \pm 2.2 \) | \(a_{965}= +2.31737073 \pm 1.7 \) | \(a_{966}= \pm0.00677700 \pm 7.3 \cdot 10^{-1} \) |
| \(a_{967}= -0.56639643 \pm 1.7 \) | \(a_{968}= \pm0.18478245 \pm 8.0 \cdot 10^{-1} \) | \(a_{969}= +0.30044028 \pm 2.9 \) |
| \(a_{970}= \pm0.76258391 \pm 4.7 \cdot 10^{-1} \) | \(a_{971}= +0.60648902 \pm 2.6 \) | \(a_{972}= \pm0.51676495 \pm 1.9 \) |
| \(a_{973}= -0.05690319 \pm 2.6 \) | \(a_{974}= \pm0.55868041 \pm 2.9 \) | \(a_{975}= -0.63945371 \pm 1.4 \) |
| \(a_{976}= \pm0.29159810 \pm 4.7 \cdot 10^{-1} \) | \(a_{977}= -1.32513845 \pm 3.0 \) | \(a_{978}= \pm0.23077780 \pm 1.7 \) |
| \(a_{979}= +1.14785287 \pm 1.6 \) | \(a_{980}= \pm0.92627613 \pm 7.1 \cdot 10^{-1} \) | \(a_{981}= -0.27175921 \pm 4.3 \) |
| \(a_{982}= \pm0.79413026 \pm 1.8 \) | \(a_{983}= +1.67754073 \pm 2.4 \) | \(a_{984}= \pm0.17698063 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{985}= -2.43966652 \pm 1.5 \) | \(a_{986}= \pm0.27467700 \pm 1.4 \) | \(a_{987}= +0.02978439 \pm 6.3 \cdot 10^{-1} \) |
| \(a_{988}= \pm0.15441460 \pm 4.8 \cdot 10^{-1} \) | \(a_{989}= +0.34926461 \pm 1.1 \) | \(a_{990}= \pm1.11930716 \pm 7.7 \cdot 10^{-1} \) |
| \(a_{991}= -0.73313884 \pm 4.3 \cdot 10^{-1} \) | \(a_{992}= \pm0.16822507 \pm 7.4 \cdot 10^{-1} \) | \(a_{993}= -0.91758129 \pm 1.9 \) |
| \(a_{994}= \pm0.01306303 \pm 8.0 \cdot 10^{-1} \) | \(a_{995}= -1.31923977 \pm 2.2 \) | \(a_{996}= \pm0.09129745 \pm 6.0 \cdot 10^{-1} \) |
| \(a_{997}= -0.24316538 \pm 2.3 \) | \(a_{998}= \pm1.17835805 \pm 4.1 \) | \(a_{999}= +1.38026119 \pm 3.7 \) |
| \(a_{1000}= \pm0.95372488 \pm 8.8 \cdot 10^{-1} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000