Maass form invariants
| Level: | \( 15 = 3 \cdot 5 \) |
| Weight: | \( 0 \) |
| Character: | 15.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(5.1172051641085013418147695668 \pm 2 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +1.69500219 \pm 2.7 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{4}= +1.87303244 \pm 2.7 \cdot 10^{-8} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +0.97860997 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{7}= +1.59196792 \pm 2.3 \cdot 10^{-8} \) | \(a_{8}= +1.47979190 \pm 1.9 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{10}= -0.75802803 \pm 3.7 \cdot 10^{-8} \) | \(a_{11}= -1.19606076 \pm 2.3 \cdot 10^{-8} \) | \(a_{12}= +1.08139578 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{13}= -0.81830464 \pm 2.3 \cdot 10^{-8} \) | \(a_{14}= +2.69838911 \pm 2.8 \cdot 10^{-8} \) | \(a_{15}= -0.25819889 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{16}= +0.63521808 \pm 2.3 \cdot 10^{-8} \) | \(a_{17}= -0.68412837 \pm 2.0 \cdot 10^{-8} \) | \(a_{18}= +0.56500073 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{19}= +0.04212964 \pm 2.0 \cdot 10^{-8} \) | \(a_{20}= -0.83764557 \pm 3.7 \cdot 10^{-8} \) | \(a_{21}= +0.91912311 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{22}= -2.02732561 \pm 2.8 \cdot 10^{-8} \) | \(a_{23}= -0.62599567 \pm 1.8 \cdot 10^{-8} \) | \(a_{24}= +0.85435825 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{25}= +0.2 \) | \(a_{26}= -1.38702816 \pm 3.0 \cdot 10^{-8} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{28}= +2.98180755 \pm 3.0 \cdot 10^{-8} \) | \(a_{29}= +0.91919391 \pm 1.5 \cdot 10^{-8} \) | \(a_{30}= -0.43764768 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{31}= +0.23469290 \pm 1.2 \cdot 10^{-8} \) | \(a_{32}= -0.40309587 \pm 2.0 \cdot 10^{-8} \) | \(a_{33}= -0.69054600 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{34}= -1.15959909 \pm 2.6 \cdot 10^{-8} \) | \(a_{35}= -0.71194970 \pm 3.4 \cdot 10^{-8} \) | \(a_{36}= +0.62434415 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{37}= +0.10659028 \pm 1.7 \cdot 10^{-8} \) | \(a_{38}= +0.07140983 \pm 2.3 \cdot 10^{-8} \) | \(a_{39}= -0.47244840 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{40}= -0.66178306 \pm 3.0 \cdot 10^{-8} \) | \(a_{41}= +1.80174136 \pm 2.0 \cdot 10^{-8} \) | \(a_{42}= +1.55791568 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{43}= +0.80772156 \pm 2.2 \cdot 10^{-8} \) | \(a_{44}= -2.24026060 \pm 2.2 \cdot 10^{-8} \) | \(a_{45}= -0.14907120 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{46}= -1.06106403 \pm 1.3 \cdot 10^{-8} \) | \(a_{47}= -1.41801684 \pm 2.7 \cdot 10^{-8} \) | \(a_{48}= +0.36674333 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{49}= +1.53436185 \pm 1.7 \cdot 10^{-8} \) | \(a_{50}= +0.33900044 \pm 3.7 \cdot 10^{-8} \) | \(a_{51}= -0.39498170 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{52}= -1.53271113 \pm 2.4 \cdot 10^{-8} \) | \(a_{53}= +0.32210269 \pm 2.9 \cdot 10^{-8} \) | \(a_{54}= +0.32620332 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{55}= +0.53489463 \pm 3.4 \cdot 10^{-8} \) | \(a_{56}= +2.35578123 \pm 2.0 \cdot 10^{-8} \) | \(a_{57}= +0.02432356 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{58}= +1.55803570 \pm 2.0 \cdot 10^{-8} \) | \(a_{59}= -1.29832333 \pm 1.9 \cdot 10^{-8} \) | \(a_{60}= -0.48361490 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{61}= -0.70183515 \pm 2.4 \cdot 10^{-8} \) | \(a_{62}= +0.39780498 \pm 1.4 \cdot 10^{-8} \) | \(a_{63}= +0.53065597 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{64}= -1.31846645 \pm 2.5 \cdot 10^{-8} \) | \(a_{65}= +0.36595696 \pm 3.4 \cdot 10^{-8} \) | \(a_{66}= -1.17047699 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{67}= +0.96679228 \pm 2.0 \cdot 10^{-8} \) | \(a_{68}= -1.28139463 \pm 2.5 \cdot 10^{-8} \) | \(a_{69}= -0.36141877 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{70}= -1.20675630 \pm 6.1 \cdot 10^{-8} \) | \(a_{71}= +0.35720131 \pm 2.6 \cdot 10^{-8} \) | \(a_{72}= +0.49326397 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{73}= +1.02664663 \pm 2.2 \cdot 10^{-8} \) | \(a_{74}= +0.18067076 \pm 1.9 \cdot 10^{-8} \) | \(a_{75}= +0.11547005 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{76}= +0.07891018 \pm 2.6 \cdot 10^{-8} \) | \(a_{77}= -1.90409035 \pm 1.8 \cdot 10^{-8} \) | \(a_{78}= -0.80080108 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{79}= +0.29720824 \pm 2.3 \cdot 10^{-8} \) | \(a_{80}= -0.28407816 \pm 3.3 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{82}= +3.05395556 \pm 2.6 \cdot 10^{-8} \) | \(a_{83}= -0.01792562 \pm 1.5 \cdot 10^{-8} \) | \(a_{84}= +1.72154739 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{85}= +0.30595151 \pm 3.1 \cdot 10^{-8} \) | \(a_{86}= +1.36908981 \pm 2.3 \cdot 10^{-8} \) | \(a_{87}= +0.53069685 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{88}= -1.76992102 \pm 2.0 \cdot 10^{-8} \) | \(a_{89}= +1.22071165 \pm 2.1 \cdot 10^{-8} \) | \(a_{90}= -0.25267601 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{91}= -1.30271473 \pm 1.8 \cdot 10^{-8} \) | \(a_{92}= -1.17251019 \pm 1.7 \cdot 10^{-8} \) | \(a_{93}= +0.13550001 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{94}= -2.40354166 \pm 3.3 \cdot 10^{-8} \) | \(a_{95}= -0.01884095 \pm 3.1 \cdot 10^{-8} \) | \(a_{96}= -0.23272751 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{97}= -1.30377325 \pm 2.0 \cdot 10^{-8} \) | \(a_{98}= +2.60074670 \pm 2.0 \cdot 10^{-8} \) | \(a_{99}= -0.39868692 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{100}= +0.37460649 \pm 3.7 \cdot 10^{-8} \) | \(a_{101}= -1.17897204 \pm 2.1 \cdot 10^{-8} \) | \(a_{102}= -0.66949485 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{103}= +1.19814987 \pm 2.3 \cdot 10^{-8} \) | \(a_{104}= -1.21092058 \pm 1.6 \cdot 10^{-8} \) | \(a_{105}= -0.41104435 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{106}= +0.54596477 \pm 2.7 \cdot 10^{-8} \) | \(a_{107}= -0.06611486 \pm 2.1 \cdot 10^{-8} \) | \(a_{108}= +0.36046526 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{109}= +0.82271433 \pm 2.1 \cdot 10^{-8} \) | \(a_{110}= +0.90664757 \pm 6.1 \cdot 10^{-8} \) | \(a_{111}= +0.06153993 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{112}= +1.01124680 \pm 2.0 \cdot 10^{-8} \) | \(a_{113}= -0.18932203 \pm 2.7 \cdot 10^{-8} \) | \(a_{114}= +0.04122849 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{115}= +0.27995377 \pm 2.8 \cdot 10^{-8} \) | \(a_{116}= +1.72168001 \pm 1.8 \cdot 10^{-8} \) | \(a_{117}= -0.27276821 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{118}= -2.20066089 \pm 2.9 \cdot 10^{-8} \) | \(a_{119}= -1.08911042 \pm 2.3 \cdot 10^{-8} \) | \(a_{120}= -0.38208063 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{121}= +0.43056134 \pm 2.2 \cdot 10^{-8} \) | \(a_{122}= -1.18961212 \pm 2.8 \cdot 10^{-8} \) | \(a_{123}= +1.04023586 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{124}= +0.43958742 \pm 1.6 \cdot 10^{-8} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +0.89946304 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{127}= +1.69581864 \pm 2.0 \cdot 10^{-8} \) | \(a_{128}= -1.83170766 \pm 2.6 \cdot 10^{-8} \) | \(a_{129}= +0.46633826 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{130}= +0.62029785 \pm 6.1 \cdot 10^{-8} \) | \(a_{131}= -0.47318138 \pm 2.6 \cdot 10^{-8} \) | \(a_{132}= -1.29341506 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{133}= +0.06706904 \pm 1.9 \cdot 10^{-8} \) | \(a_{134}= +1.63871503 \pm 2.2 \cdot 10^{-8} \) | \(a_{135}= -0.08606630 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{136}= -1.01236762 \pm 1.9 \cdot 10^{-8} \) | \(a_{137}= +0.07801255 \pm 2.0 \cdot 10^{-8} \) | \(a_{138}= -0.61260560 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{139}= +0.23786000 \pm 2.6 \cdot 10^{-8} \) | \(a_{140}= -1.33350488 \pm 6.1 \cdot 10^{-8} \) | \(a_{141}= -0.81869241 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{142}= +0.60545700 \pm 2.1 \cdot 10^{-8} \) | \(a_{143}= +0.97874207 \pm 2.5 \cdot 10^{-8} \) | \(a_{144}= +0.21173936 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{145}= -0.41107601 \pm 2.5 \cdot 10^{-8} \) | \(a_{146}= +1.74016829 \pm 3.3 \cdot 10^{-8} \) | \(a_{147}= +0.88586423 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{148}= +0.19964705 \pm 2.2 \cdot 10^{-8} \) | \(a_{149}= -1.06692475 \pm 1.5 \cdot 10^{-8} \) | \(a_{150}= +0.19572199 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{151}= -0.35885599 \pm 2.8 \cdot 10^{-8} \) | \(a_{152}= +0.06234310 \pm 1.7 \cdot 10^{-8} \) | \(a_{153}= -0.22804279 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{154}= -3.22743733 \pm 2.4 \cdot 10^{-8} \) | \(a_{155}= -0.10495786 \pm 2.2 \cdot 10^{-8} \) | \(a_{156}= -0.88491119 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{157}= -0.24540964 \pm 2.1 \cdot 10^{-8} \) | \(a_{158}= +0.50376863 \pm 3.3 \cdot 10^{-8} \) | \(a_{159}= +0.18596607 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{160}= +0.18026995 \pm 3.1 \cdot 10^{-8} \) | \(a_{161}= -0.99656502 \pm 1.8 \cdot 10^{-8} \) | \(a_{162}= +0.18833358 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{163}= +0.13379899 \pm 2.4 \cdot 10^{-8} \) | \(a_{164}= +3.37472001 \pm 1.9 \cdot 10^{-8} \) | \(a_{165}= +0.30882156 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{166}= -0.03038397 \pm 2.0 \cdot 10^{-8} \) | \(a_{167}= +0.22537467 \pm 2.8 \cdot 10^{-8} \) | \(a_{168}= +1.36011093 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{169}= -0.33037752 \pm 2.6 \cdot 10^{-8} \) | \(a_{170}= +0.51858848 \pm 5.8 \cdot 10^{-8} \) | \(a_{171}= +0.01404321 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{172}= +1.51288868 \pm 2.5 \cdot 10^{-8} \) | \(a_{173}= -0.32678881 \pm 1.9 \cdot 10^{-8} \) | \(a_{174}= +0.89953233 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{175}= +0.31839358 \pm 3.4 \cdot 10^{-8} \) | \(a_{176}= -0.75975941 \pm 2.5 \cdot 10^{-8} \) | \(a_{177}= -0.74958732 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{178}= +2.06910892 \pm 2.8 \cdot 10^{-8} \) | \(a_{179}= +0.16776411 \pm 2.0 \cdot 10^{-8} \) | \(a_{180}= -0.27921519 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{181}= -1.96139803 \pm 2.1 \cdot 10^{-8} \) | \(a_{182}= -2.20810433 \pm 2.7 \cdot 10^{-8} \) | \(a_{183}= -0.40520471 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{184}= -0.92634332 \pm 1.3 \cdot 10^{-8} \) | \(a_{185}= -0.04766862 \pm 2.8 \cdot 10^{-8} \) | \(a_{186}= +0.22967281 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{187}= +0.81825910 \pm 1.8 \cdot 10^{-8} \) | \(a_{188}= -2.65599155 \pm 3.6 \cdot 10^{-8} \) | \(a_{189}= +0.30637437 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{190}= -0.03193545 \pm 5.8 \cdot 10^{-8} \) | \(a_{191}= +0.05458494 \pm 1.7 \cdot 10^{-8} \) | \(a_{192}= -0.76121696 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{193}= -0.85789754 \pm 1.8 \cdot 10^{-8} \) | \(a_{194}= -2.20989852 \pm 1.9 \cdot 10^{-8} \) | \(a_{195}= +0.21128535 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{196}= +2.87390952 \pm 2.0 \cdot 10^{-8} \) | \(a_{197}= +1.67908593 \pm 1.3 \cdot 10^{-8} \) | \(a_{198}= -0.67577520 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{199}= +1.27586847 \pm 2.4 \cdot 10^{-8} \) | \(a_{200}= +0.29595838 \pm 3.0 \cdot 10^{-8} \) | \(a_{201}= +0.55817778 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{202}= -1.99836020 \pm 1.5 \cdot 10^{-8} \) | \(a_{203}= +1.46332722 \pm 1.6 \cdot 10^{-8} \) | \(a_{204}= -0.73981353 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{205}= -0.80576323 \pm 3.1 \cdot 10^{-8} \) | \(a_{206}= +2.03086666 \pm 2.9 \cdot 10^{-8} \) | \(a_{207}= -0.20866522 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{208}= -0.51980190 \pm 2.3 \cdot 10^{-8} \) | \(a_{209}= -0.05038961 \pm 2.0 \cdot 10^{-8} \) | \(a_{210}= -0.69672107 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{211}= +0.63284690 \pm 2.1 \cdot 10^{-8} \) | \(a_{212}= +0.60330879 \pm 3.2 \cdot 10^{-8} \) | \(a_{213}= +0.20623027 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{214}= -0.11206484 \pm 2.3 \cdot 10^{-8} \) | \(a_{215}= -0.36122406 \pm 3.3 \cdot 10^{-8} \) | \(a_{216}= +0.28478608 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{217}= +0.37362357 \pm 1.2 \cdot 10^{-8} \) | \(a_{218}= +1.39450260 \pm 2.2 \cdot 10^{-8} \) | \(a_{219}= +0.59273471 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{220}= +1.00187500 \pm 6.1 \cdot 10^{-8} \) | \(a_{221}= +0.55982542 \pm 2.4 \cdot 10^{-8} \) | \(a_{222}= +0.10431031 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{223}= -1.64668508 \pm 2.0 \cdot 10^{-8} \) | \(a_{224}= -0.64171569 \pm 1.8 \cdot 10^{-8} \) | \(a_{225}= +0.06666667 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{226}= -0.32090126 \pm 2.6 \cdot 10^{-8} \) | \(a_{227}= -1.98355898 \pm 2.1 \cdot 10^{-8} \) | \(a_{228}= +0.04555882 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{229}= +1.56136369 \pm 3.2 \cdot 10^{-8} \) | \(a_{230}= +0.47452226 \pm 5.6 \cdot 10^{-8} \) | \(a_{231}= -1.09932708 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{232}= +1.36021570 \pm 1.3 \cdot 10^{-8} \) | \(a_{233}= +0.59588508 \pm 3.1 \cdot 10^{-8} \) | \(a_{234}= -0.46234272 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{235}= +0.63415641 \pm 3.8 \cdot 10^{-8} \) | \(a_{236}= -2.43180170 \pm 3.0 \cdot 10^{-8} \) | \(a_{237}= +0.17159326 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{238}= -1.84604455 \pm 3.0 \cdot 10^{-8} \) | \(a_{239}= -0.32866793 \pm 1.8 \cdot 10^{-8} \) | \(a_{240}= -0.16401260 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{241}= -0.32247205 \pm 2.5 \cdot 10^{-8} \) | \(a_{242}= +0.72980241 \pm 2.4 \cdot 10^{-8} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{244}= -1.31456001 \pm 2.8 \cdot 10^{-8} \) | \(a_{245}= -0.68618748 \pm 2.8 \cdot 10^{-8} \) | \(a_{246}= +1.76320206 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{247}= -0.03447488 \pm 1.6 \cdot 10^{-8} \) | \(a_{248}= +0.34729665 \pm 1.2 \cdot 10^{-8} \) | \(a_{249}= -0.01034936 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{250}= -0.15160561 \pm 3.7 \cdot 10^{-8} \) | \(a_{251}= -0.95351821 \pm 1.8 \cdot 10^{-8} \) | \(a_{252}= +0.99393585 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{253}= +0.74872885 \pm 1.8 \cdot 10^{-8} \) | \(a_{254}= +2.87441632 \pm 1.8 \cdot 10^{-8} \) | \(a_{255}= +0.17664119 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{256}= -1.78628206 \pm 2.3 \cdot 10^{-8} \) | \(a_{257}= -1.73905677 \pm 2.4 \cdot 10^{-8} \) | \(a_{258}= +0.79044437 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{259}= +0.16968830 \pm 1.8 \cdot 10^{-8} \) | \(a_{260}= +0.68544926 \pm 6.1 \cdot 10^{-8} \) | \(a_{261}= +0.30639797 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{262}= -0.80204347 \pm 2.7 \cdot 10^{-8} \) | \(a_{263}= +1.13193684 \pm 1.9 \cdot 10^{-8} \) | \(a_{264}= -1.02186438 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{265}= -0.14404870 \pm 3.9 \cdot 10^{-8} \) | \(a_{266}= +0.11368216 \pm 2.2 \cdot 10^{-8} \) | \(a_{267}= +0.70477820 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{268}= +1.81083329 \pm 2.5 \cdot 10^{-8} \) | \(a_{269}= -1.55042728 \pm 2.1 \cdot 10^{-8} \) | \(a_{270}= -0.14588256 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{271}= -1.22672478 \pm 2.2 \cdot 10^{-8} \) | \(a_{272}= -0.43457071 \pm 2.1 \cdot 10^{-8} \) | \(a_{273}= -0.75212270 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{274}= +0.13223144 \pm 3.1 \cdot 10^{-8} \) | \(a_{275}= -0.23921215 \pm 3.4 \cdot 10^{-8} \) | \(a_{276}= -0.67694907 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{277}= +1.19669067 \pm 2.2 \cdot 10^{-8} \) | \(a_{278}= +0.40317322 \pm 3.6 \cdot 10^{-8} \) | \(a_{279}= +0.07823097 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{280}= -1.05353739 \pm 5.4 \cdot 10^{-8} \) | \(a_{281}= +0.57992080 \pm 2.4 \cdot 10^{-8} \) | \(a_{282}= -1.38768543 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{283}= +0.07558351 \pm 2.3 \cdot 10^{-8} \) | \(a_{284}= +0.66904964 \pm 2.7 \cdot 10^{-8} \) | \(a_{285}= -0.01087783 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{286}= +1.65896995 \pm 2.9 \cdot 10^{-8} \) | \(a_{287}= +2.86831444 \pm 1.8 \cdot 10^{-8} \) | \(a_{288}= -0.13436529 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{289}= -0.53196837 \pm 1.7 \cdot 10^{-8} \) | \(a_{290}= -0.69677475 \pm 5.3 \cdot 10^{-8} \) | \(a_{291}= -0.75273384 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{292}= +1.92294244 \pm 3.4 \cdot 10^{-8} \) | \(a_{293}= -0.68926149 \pm 1.8 \cdot 10^{-8} \) | \(a_{294}= +1.50154181 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{295}= +0.58062784 \pm 2.9 \cdot 10^{-8} \) | \(a_{296}= +0.15773143 \pm 1.4 \cdot 10^{-8} \) | \(a_{297}= -0.23018200 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{298}= -1.80843980 \pm 2.0 \cdot 10^{-8} \) | \(a_{299}= +0.51225516 \pm 1.4 \cdot 10^{-8} \) | \(a_{300}= +0.21627916 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{301}= +1.28586681 \pm 2.3 \cdot 10^{-8} \) | \(a_{302}= -0.60826170 \pm 3.3 \cdot 10^{-8} \) | \(a_{303}= -0.68067983 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{304}= +0.02676151 \pm 2.0 \cdot 10^{-8} \) | \(a_{305}= +0.31387022 \pm 3.5 \cdot 10^{-8} \) | \(a_{306}= -0.38653303 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{307}= -1.59237463 \pm 2.3 \cdot 10^{-8} \) | \(a_{308}= -3.56642300 \pm 2.2 \cdot 10^{-8} \) | \(a_{309}= +0.69175215 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{310}= -0.17790380 \pm 5.0 \cdot 10^{-8} \) | \(a_{311}= +0.31510456 \pm 2.0 \cdot 10^{-8} \) | \(a_{312}= -0.69912532 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{313}= +0.53919439 \pm 2.1 \cdot 10^{-8} \) | \(a_{314}= -0.41596989 \pm 2.2 \cdot 10^{-8} \) | \(a_{315}= -0.23731657 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{316}= +0.55668068 \pm 2.8 \cdot 10^{-8} \) | \(a_{317}= +0.21044913 \pm 2.6 \cdot 10^{-8} \) | \(a_{318}= +0.31521290 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{319}= -1.09941177 \pm 1.8 \cdot 10^{-8} \) | \(a_{320}= +0.58963612 \pm 3.6 \cdot 10^{-8} \) | \(a_{321}= -0.03817143 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{322}= -1.68917989 \pm 1.4 \cdot 10^{-8} \) | \(a_{323}= -0.02882208 \pm 1.3 \cdot 10^{-8} \) | \(a_{324}= +0.20811472 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{325}= -0.16366093 \pm 3.4 \cdot 10^{-8} \) | \(a_{326}= +0.22678958 \pm 2.4 \cdot 10^{-8} \) | \(a_{327}= +0.47499434 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{328}= +2.66620227 \pm 1.5 \cdot 10^{-8} \) | \(a_{329}= -2.25743732 \pm 2.8 \cdot 10^{-8} \) | \(a_{330}= +0.52345322 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{331}= +0.22471188 \pm 2.6 \cdot 10^{-8} \) | \(a_{332}= -0.03357528 \pm 2.0 \cdot 10^{-8} \) | \(a_{333}= +0.03553009 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{334}= +0.38201057 \pm 2.8 \cdot 10^{-8} \) | \(a_{335}= -0.43236265 \pm 3.1 \cdot 10^{-8} \) | \(a_{336}= +0.58384361 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{337}= +0.32689539 \pm 2.1 \cdot 10^{-8} \) | \(a_{338}= -0.55999062 \pm 3.3 \cdot 10^{-8} \) | \(a_{339}= -0.10930513 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{340}= +0.57305710 \pm 5.8 \cdot 10^{-8} \) | \(a_{341}= -0.28070697 \pm 1.1 \cdot 10^{-8} \) | \(a_{342}= +0.02380328 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{343}= +0.85068692 \pm 2.2 \cdot 10^{-8} \) | \(a_{344}= +1.19525982 \pm 1.6 \cdot 10^{-8} \) | \(a_{345}= +0.16163139 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{346}= -0.55390775 \pm 2.6 \cdot 10^{-8} \) | \(a_{347}= +1.38533834 \pm 2.5 \cdot 10^{-8} \) | \(a_{348}= +0.99401242 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{349}= -0.07977839 \pm 2.1 \cdot 10^{-8} \) | \(a_{350}= +0.53967782 \pm 6.1 \cdot 10^{-8} \) | \(a_{351}= -0.15748280 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{352}= +0.48212715 \pm 1.9 \cdot 10^{-8} \) | \(a_{353}= +1.68517409 \pm 2.6 \cdot 10^{-8} \) | \(a_{354}= -1.27055216 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{355}= -0.15974528 \pm 3.6 \cdot 10^{-8} \) | \(a_{356}= +2.28643252 \pm 2.6 \cdot 10^{-8} \) | \(a_{357}= -0.62879819 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{358}= +0.28436053 \pm 2.6 \cdot 10^{-8} \) | \(a_{359}= +1.20780697 \pm 2.3 \cdot 10^{-8} \) | \(a_{360}= -0.22059435 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{361}= -0.99822509 \pm 1.8 \cdot 10^{-8} \) | \(a_{362}= -3.32457397 \pm 3.0 \cdot 10^{-8} \) | \(a_{363}= +0.24858470 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{364}= -2.44002695 \pm 2.4 \cdot 10^{-8} \) | \(a_{365}= -0.45913033 \pm 3.3 \cdot 10^{-8} \) | \(a_{366}= -0.68682288 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{367}= -0.66590153 \pm 1.9 \cdot 10^{-8} \) | \(a_{368}= -0.39764376 \pm 2.0 \cdot 10^{-8} \) | \(a_{369}= +0.60058045 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{370}= -0.08079842 \pm 5.5 \cdot 10^{-8} \) | \(a_{371}= +0.51277715 \pm 3.2 \cdot 10^{-8} \) | \(a_{372}= +0.25379591 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{373}= -1.51794570 \pm 2.0 \cdot 10^{-8} \) | \(a_{374}= +1.38695097 \pm 2.1 \cdot 10^{-8} \) | \(a_{375}= -0.05163978 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{376}= -2.09836984 \pm 2.3 \cdot 10^{-8} \) | \(a_{377}= -0.75218064 \pm 1.3 \cdot 10^{-8} \) | \(a_{378}= +0.51930523 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{379}= +0.59752629 \pm 2.1 \cdot 10^{-8} \) | \(a_{380}= -0.03528971 \pm 5.8 \cdot 10^{-8} \) | \(a_{381}= +0.97908135 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{382}= +0.09252159 \pm 1.9 \cdot 10^{-8} \) | \(a_{383}= +0.00635301 \pm 2.8 \cdot 10^{-8} \) | \(a_{384}= -1.05753691 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{385}= +0.85153509 \pm 5.8 \cdot 10^{-8} \) | \(a_{386}= -1.45413821 \pm 2.4 \cdot 10^{-8} \) | \(a_{387}= +0.26924052 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{388}= -2.44200959 \pm 2.0 \cdot 10^{-8} \) | \(a_{389}= +0.20963693 \pm 2.7 \cdot 10^{-8} \) | \(a_{390}= +0.35812913 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{391}= +0.42826140 \pm 1.5 \cdot 10^{-8} \) | \(a_{392}= +2.27053624 \pm 1.5 \cdot 10^{-8} \) | \(a_{393}= -0.27319140 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{394}= +2.84605434 \pm 1.8 \cdot 10^{-8} \) | \(a_{395}= -0.13291557 \pm 3.4 \cdot 10^{-8} \) | \(a_{396}= -0.74675353 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{397}= -0.08479966 \pm 2.4 \cdot 10^{-8} \) | \(a_{398}= +2.16259986 \pm 2.8 \cdot 10^{-8} \) | \(a_{399}= +0.03872233 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{400}= +0.12704362 \pm 3.3 \cdot 10^{-8} \) | \(a_{401}= -0.71599891 \pm 1.4 \cdot 10^{-8} \) | \(a_{402}= +0.94611256 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{403}= -0.19205029 \pm 1.2 \cdot 10^{-8} \) | \(a_{404}= -2.20825288 \pm 2.2 \cdot 10^{-8} \) | \(a_{405}= -0.04969040 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{406}= +2.48034285 \pm 2.0 \cdot 10^{-8} \) | \(a_{407}= -0.12748845 \pm 1.5 \cdot 10^{-8} \) | \(a_{408}= -0.58449072 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{409}= +1.12980846 \pm 2.5 \cdot 10^{-8} \) | \(a_{410}= -1.36577045 \pm 5.8 \cdot 10^{-8} \) | \(a_{411}= +0.04504057 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{412}= +2.24417358 \pm 2.2 \cdot 10^{-8} \) | \(a_{413}= -2.06688908 \pm 2.1 \cdot 10^{-8} \) | \(a_{414}= -0.35368801 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{415}= +0.00801658 \pm 2.6 \cdot 10^{-8} \) | \(a_{416}= +0.32985522 \pm 2.5 \cdot 10^{-8} \) | \(a_{417}= +0.13732853 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{418}= -0.08541050 \pm 2.4 \cdot 10^{-8} \) | \(a_{419}= -1.54273020 \pm 2.0 \cdot 10^{-8} \) | \(a_{420}= -0.76989940 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{421}= -1.72197814 \pm 2.8 \cdot 10^{-8} \) | \(a_{422}= +1.07267688 \pm 2.4 \cdot 10^{-8} \) | \(a_{423}= -0.47267228 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{424}= +0.47664495 \pm 1.7 \cdot 10^{-8} \) | \(a_{425}= -0.13682567 \pm 3.1 \cdot 10^{-8} \) | \(a_{426}= +0.34956076 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{427}= -1.11729905 \pm 2.0 \cdot 10^{-8} \) | \(a_{428}= -0.12383529 \pm 2.7 \cdot 10^{-8} \) | \(a_{429}= +0.56507700 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{430}= -0.61227558 \pm 6.0 \cdot 10^{-8} \) | \(a_{431}= +0.96051817 \pm 2.1 \cdot 10^{-8} \) | \(a_{432}= +0.12224778 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{433}= +1.64404605 \pm 2.0 \cdot 10^{-8} \) | \(a_{434}= +0.63329277 \pm 1.4 \cdot 10^{-8} \) | \(a_{435}= -0.23733485 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{436}= +1.54097064 \pm 1.7 \cdot 10^{-8} \) | \(a_{437}= -0.02637297 \pm 1.7 \cdot 10^{-8} \) | \(a_{438}= +1.00468663 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{439}= +0.87892790 \pm 1.8 \cdot 10^{-8} \) | \(a_{440}= +0.79153274 \pm 5.4 \cdot 10^{-8} \) | \(a_{441}= +0.51145395 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{442}= +0.94890531 \pm 3.2 \cdot 10^{-8} \) | \(a_{443}= +0.49062079 \pm 2.0 \cdot 10^{-8} \) | \(a_{444}= +0.11526628 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{445}= -0.54591885 \pm 3.2 \cdot 10^{-8} \) | \(a_{446}= -2.79113482 \pm 2.8 \cdot 10^{-8} \) | \(a_{447}= -0.61598929 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{448}= -2.09895629 \pm 2.7 \cdot 10^{-8} \) | \(a_{449}= -0.28686660 \pm 1.8 \cdot 10^{-8} \) | \(a_{450}= +0.11300015 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{451}= -2.15499214 \pm 2.7 \cdot 10^{-8} \) | \(a_{452}= -0.35460630 \pm 2.5 \cdot 10^{-8} \) | \(a_{453}= -0.20718560 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{454}= -3.36213682 \pm 2.1 \cdot 10^{-8} \) | \(a_{455}= +0.58259174 \pm 5.7 \cdot 10^{-8} \) | \(a_{456}= +0.03599381 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{457}= +0.32029436 \pm 2.6 \cdot 10^{-8} \) | \(a_{458}= +2.64651487 \pm 4.0 \cdot 10^{-8} \) | \(a_{459}= -0.13166057 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{460}= +0.52436250 \pm 5.6 \cdot 10^{-8} \) | \(a_{461}= +1.18408249 \pm 2.1 \cdot 10^{-8} \) | \(a_{462}= -1.86336181 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{463}= +1.85068053 \pm 2.0 \cdot 10^{-8} \) | \(a_{464}= +0.58388859 \pm 1.6 \cdot 10^{-8} \) | \(a_{465}= -0.06059745 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{466}= +1.01002652 \pm 3.2 \cdot 10^{-8} \) | \(a_{467}= -0.31594664 \pm 2.7 \cdot 10^{-8} \) | \(a_{468}= -0.51090371 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{469}= +1.53910229 \pm 2.4 \cdot 10^{-8} \) | \(a_{470}= +1.07489651 \pm 6.5 \cdot 10^{-8} \) | \(a_{471}= -0.14168732 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{472}= -1.92124834 \pm 2.1 \cdot 10^{-8} \) | \(a_{473}= -0.96608406 \pm 2.0 \cdot 10^{-8} \) | \(a_{474}= +0.29085095 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{475}= +0.00842593 \pm 3.1 \cdot 10^{-8} \) | \(a_{476}= -2.03993914 \pm 3.2 \cdot 10^{-8} \) | \(a_{477}= +0.10736756 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{478}= -0.55709287 \pm 2.0 \cdot 10^{-8} \) | \(a_{479}= +0.71060704 \pm 1.6 \cdot 10^{-8} \) | \(a_{480}= +0.10407891 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{481}= -0.08722332 \pm 1.6 \cdot 10^{-8} \) | \(a_{482}= -0.54659083 \pm 2.5 \cdot 10^{-8} \) | \(a_{483}= -0.57536708 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{484}= +0.80645535 \pm 1.7 \cdot 10^{-8} \) | \(a_{485}= +0.58306512 \pm 3.0 \cdot 10^{-8} \) | \(a_{486}= +0.10873444 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{487}= +0.10751736 \pm 1.8 \cdot 10^{-8} \) | \(a_{488}= -1.03856997 \pm 2.2 \cdot 10^{-8} \) | \(a_{489}= +0.07724888 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{490}= -1.16308928 \pm 5.5 \cdot 10^{-8} \) | \(a_{491}= -0.07983445 \pm 2.7 \cdot 10^{-8} \) | \(a_{492}= +1.94839551 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{493}= -0.62884663 \pm 1.1 \cdot 10^{-8} \) | \(a_{494}= -0.05843500 \pm 1.8 \cdot 10^{-8} \) | \(a_{495}= +0.17829821 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{496}= +0.14908117 \pm 1.4 \cdot 10^{-8} \) | \(a_{497}= +0.56865302 \pm 2.9 \cdot 10^{-8} \) | \(a_{498}= -0.01754220 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{499}= -1.68284529 \pm 2.5 \cdot 10^{-8} \) | \(a_{500}= -0.16752911 \pm 3.7 \cdot 10^{-8} \) | \(a_{501}= +0.13012013 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{502}= -1.61621545 \pm 2.2 \cdot 10^{-8} \) | \(a_{503}= +1.70993568 \pm 2.7 \cdot 10^{-8} \) | \(a_{504}= +0.78526041 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{505}= +0.52725233 \pm 3.2 \cdot 10^{-8} \) | \(a_{506}= +1.26909705 \pm 1.7 \cdot 10^{-8} \) | \(a_{507}= -0.19074355 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{508}= +3.17632333 \pm 2.6 \cdot 10^{-8} \) | \(a_{509}= +1.11384226 \pm 2.4 \cdot 10^{-8} \) | \(a_{510}= +0.29940720 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{511}= +1.63438850 \pm 2.4 \cdot 10^{-8} \) | \(a_{512}= -1.19604434 \pm 1.8 \cdot 10^{-8} \) | \(a_{513}= +0.00810785 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{514}= -2.94770504 \pm 2.5 \cdot 10^{-8} \) | \(a_{515}= -0.53582891 \pm 3.3 \cdot 10^{-8} \) | \(a_{516}= +0.87346669 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{517}= +1.69603430 \pm 2.6 \cdot 10^{-8} \) | \(a_{518}= +0.28762205 \pm 2.2 \cdot 10^{-8} \) | \(a_{519}= -0.18867161 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{520}= +0.54154014 \pm 5.3 \cdot 10^{-8} \) | \(a_{521}= -0.21936983 \pm 2.4 \cdot 10^{-8} \) | \(a_{522}= +0.51934523 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{523}= -0.61991693 \pm 2.5 \cdot 10^{-8} \) | \(a_{524}= -0.88628407 \pm 2.6 \cdot 10^{-8} \) | \(a_{525}= +0.18382462 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{526}= +1.91863543 \pm 2.5 \cdot 10^{-8} \) | \(a_{527}= -0.16056007 \pm 1.2 \cdot 10^{-8} \) | \(a_{528}= -0.43864730 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{529}= -0.60812942 \pm 1.7 \cdot 10^{-8} \) | \(a_{530}= -0.24416287 \pm 6.7 \cdot 10^{-8} \) | \(a_{531}= -0.43277444 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{532}= +0.12562248 \pm 2.5 \cdot 10^{-8} \) | \(a_{533}= -1.47437331 \pm 2.5 \cdot 10^{-8} \) | \(a_{534}= +1.19460059 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{535}= +0.02956747 \pm 3.2 \cdot 10^{-8} \) | \(a_{536}= +1.43065138 \pm 1.7 \cdot 10^{-8} \) | \(a_{537}= +0.09685865 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{538}= -2.62797765 \pm 3.0 \cdot 10^{-8} \) | \(a_{539}= -1.83519000 \pm 1.8 \cdot 10^{-8} \) | \(a_{540}= -0.16120497 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{541}= -1.55227537 \pm 3.1 \cdot 10^{-8} \) | \(a_{542}= -2.07930120 \pm 2.5 \cdot 10^{-8} \) | \(a_{543}= -1.13241368 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{544}= +0.27576932 \pm 2.1 \cdot 10^{-8} \) | \(a_{545}= -0.36792904 \pm 3.1 \cdot 10^{-8} \) | \(a_{546}= -1.27484963 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{547}= +0.73997017 \pm 2.8 \cdot 10^{-8} \) | \(a_{548}= +0.14612003 \pm 3.1 \cdot 10^{-8} \) | \(a_{549}= -0.23394505 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{550}= -0.40546512 \pm 6.1 \cdot 10^{-8} \) | \(a_{551}= +0.03872531 \pm 1.7 \cdot 10^{-8} \) | \(a_{552}= -0.53482456 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{553}= +0.47314599 \pm 2.1 \cdot 10^{-8} \) | \(a_{554}= +2.02839332 \pm 3.0 \cdot 10^{-8} \) | \(a_{555}= -0.02752149 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{556}= +0.44551949 \pm 3.5 \cdot 10^{-8} \) | \(a_{557}= +0.33080772 \pm 1.4 \cdot 10^{-8} \) | \(a_{558}= +0.13260166 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{559}= -0.66096230 \pm 2.2 \cdot 10^{-8} \) | \(a_{560}= -0.45224332 \pm 5.7 \cdot 10^{-8} \) | \(a_{561}= +0.47242211 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{562}= +0.98296703 \pm 2.8 \cdot 10^{-8} \) | \(a_{563}= -0.32824419 \pm 1.9 \cdot 10^{-8} \) | \(a_{564}= -1.53343743 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{565}= +0.08466739 \pm 3.8 \cdot 10^{-8} \) | \(a_{566}= +0.12811421 \pm 2.4 \cdot 10^{-8} \) | \(a_{567}= +0.17688532 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{568}= +0.52858360 \pm 1.8 \cdot 10^{-8} \) | \(a_{569}= +1.28307460 \pm 2.3 \cdot 10^{-8} \) | \(a_{570}= -0.01843794 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{571}= +0.28290791 \pm 2.1 \cdot 10^{-8} \) | \(a_{572}= +1.83321564 \pm 1.9 \cdot 10^{-8} \) | \(a_{573}= +0.03151463 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{574}= +4.86179927 \pm 2.4 \cdot 10^{-8} \) | \(a_{575}= -0.12519913 \pm 2.8 \cdot 10^{-8} \) | \(a_{576}= -0.43948882 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{577}= -0.96004524 \pm 2.7 \cdot 10^{-8} \) | \(a_{578}= -0.90168756 \pm 2.6 \cdot 10^{-8} \) | \(a_{579}= -0.49530738 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{580}= -0.76995871 \pm 5.3 \cdot 10^{-8} \) | \(a_{581}= -0.02853702 \pm 1.6 \cdot 10^{-8} \) | \(a_{582}= -1.27588550 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{583}= -0.38525439 \pm 2.2 \cdot 10^{-8} \) | \(a_{584}= +1.51922337 \pm 2.3 \cdot 10^{-8} \) | \(a_{585}= +0.12198565 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{586}= -1.16829974 \pm 2.4 \cdot 10^{-8} \) | \(a_{587}= +0.39174715 \pm 2.4 \cdot 10^{-8} \) | \(a_{588}= +1.65925243 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{589}= +0.00988753 \pm 1.3 \cdot 10^{-8} \) | \(a_{590}= +0.98416547 \pm 5.7 \cdot 10^{-8} \) | \(a_{591}= +0.96942071 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{592}= +0.06770807 \pm 1.5 \cdot 10^{-8} \) | \(a_{593}= -0.48890663 \pm 1.5 \cdot 10^{-8} \) | \(a_{594}= -0.39015900 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{595}= +0.48706499 \pm 5.5 \cdot 10^{-8} \) | \(a_{596}= -1.99838467 \pm 2.1 \cdot 10^{-8} \) | \(a_{597}= +0.73662300 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{598}= +0.86827362 \pm 1.2 \cdot 10^{-8} \) | \(a_{599}= -1.58268541 \pm 1.9 \cdot 10^{-8} \) | \(a_{600}= +0.17087165 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{601}= -1.46434155 \pm 2.4 \cdot 10^{-8} \) | \(a_{602}= +2.17954706 \pm 2.3 \cdot 10^{-8} \) | \(a_{603}= +0.32226409 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{604}= -0.67214892 \pm 3.7 \cdot 10^{-8} \) | \(a_{605}= -0.19255288 \pm 3.3 \cdot 10^{-8} \) | \(a_{606}= -1.15375380 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{607}= -0.50602526 \pm 3.2 \cdot 10^{-8} \) | \(a_{608}= -0.01698228 \pm 1.9 \cdot 10^{-8} \) | \(a_{609}= +0.84485236 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{610}= +0.53201071 \pm 6.2 \cdot 10^{-8} \) | \(a_{611}= +1.16036976 \pm 2.4 \cdot 10^{-8} \) | \(a_{612}= -0.42713154 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{613}= +1.58056706 \pm 2.5 \cdot 10^{-8} \) | \(a_{614}= -2.69907849 \pm 3.3 \cdot 10^{-8} \) | \(a_{615}= -0.46520762 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{616}= -2.81765748 \pm 1.7 \cdot 10^{-8} \) | \(a_{617}= -1.41321418 \pm 1.5 \cdot 10^{-8} \) | \(a_{618}= +1.17252142 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{619}= -0.35660280 \pm 1.8 \cdot 10^{-8} \) | \(a_{620}= -0.19658947 \pm 5.0 \cdot 10^{-8} \) | \(a_{621}= -0.12047292 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{622}= +0.53410293 \pm 2.2 \cdot 10^{-8} \) | \(a_{623}= +1.94333378 \pm 2.1 \cdot 10^{-8} \) | \(a_{624}= -0.30010777 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{625}= +0.04 \) | \(a_{626}= +0.91393567 \pm 2.7 \cdot 10^{-8} \) | \(a_{627}= -0.02909245 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{628}= -0.45966023 \pm 2.3 \cdot 10^{-8} \) | \(a_{629}= -0.07292143 \pm 1.7 \cdot 10^{-8} \) | \(a_{630}= -0.40225210 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{631}= +1.28376442 \pm 2.4 \cdot 10^{-8} \) | \(a_{632}= +0.43980635 \pm 2.2 \cdot 10^{-8} \) | \(a_{633}= +0.36537433 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{634}= +0.35671174 \pm 3.4 \cdot 10^{-8} \) | \(a_{635}= -0.75839315 \pm 3.0 \cdot 10^{-8} \) | \(a_{636}= +0.34832049 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{637}= -1.25557542 \pm 1.5 \cdot 10^{-8} \) | \(a_{638}= -1.86350536 \pm 2.4 \cdot 10^{-8} \) | \(a_{639}= +0.11906710 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{640}= +0.81916457 \pm 3.7 \cdot 10^{-8} \) | \(a_{641}= -1.89764395 \pm 2.1 \cdot 10^{-8} \) | \(a_{642}= -0.06470067 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{643}= +1.42066132 \pm 1.8 \cdot 10^{-8} \) | \(a_{644}= -1.86659861 \pm 1.7 \cdot 10^{-8} \) | \(a_{645}= -0.20855281 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{646}= -0.04885349 \pm 1.3 \cdot 10^{-8} \) | \(a_{647}= +1.04458735 \pm 1.6 \cdot 10^{-8} \) | \(a_{648}= +0.16442132 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{649}= +1.55287358 \pm 1.8 \cdot 10^{-8} \) | \(a_{650}= -0.27740563 \pm 6.1 \cdot 10^{-8} \) | \(a_{651}= +0.21571167 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{652}= +0.25060984 \pm 2.4 \cdot 10^{-8} \) | \(a_{653}= -0.14806593 \pm 2.2 \cdot 10^{-8} \) | \(a_{654}= +0.80511645 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{655}= +0.21161314 \pm 3.6 \cdot 10^{-8} \) | \(a_{656}= +1.14449868 \pm 2.2 \cdot 10^{-8} \) | \(a_{657}= +0.34221554 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{658}= -3.82636122 \pm 3.6 \cdot 10^{-8} \) | \(a_{659}= +1.72211295 \pm 2.8 \cdot 10^{-8} \) | \(a_{660}= +0.57843280 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{661}= +0.66491759 \pm 2.5 \cdot 10^{-8} \) | \(a_{662}= +0.38088712 \pm 3.2 \cdot 10^{-8} \) | \(a_{663}= +0.32321536 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{664}= -0.02652619 \pm 1.7 \cdot 10^{-8} \) | \(a_{665}= -0.02999419 \pm 5.4 \cdot 10^{-8} \) | \(a_{666}= +0.06022359 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{667}= -0.57541141 \pm 1 \cdot 10^{-8} \) | \(a_{668}= +0.42213407 \pm 2.7 \cdot 10^{-8} \) | \(a_{669}= -0.95071407 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{670}= -0.73285564 \pm 5.8 \cdot 10^{-8} \) | \(a_{671}= +0.83943748 \pm 3.0 \cdot 10^{-8} \) | \(a_{672}= -0.37049472 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{673}= -1.43294830 \pm 2.5 \cdot 10^{-8} \) | \(a_{674}= +0.55408841 \pm 2.2 \cdot 10^{-8} \) | \(a_{675}= +0.03849002 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{676}= -0.61880781 \pm 2.6 \cdot 10^{-8} \) | \(a_{677}= +0.73488447 \pm 2.5 \cdot 10^{-8} \) | \(a_{678}= -0.18527243 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{679}= -2.07556519 \pm 2.0 \cdot 10^{-8} \) | \(a_{680}= +0.45274456 \pm 5.1 \cdot 10^{-8} \) | \(a_{681}= -1.14520831 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{682}= -0.47579893 \pm 1.1 \cdot 10^{-8} \) | \(a_{683}= +0.28046257 \pm 1.7 \cdot 10^{-8} \) | \(a_{684}= +0.02630339 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{685}= -0.03488827 \pm 3.1 \cdot 10^{-8} \) | \(a_{686}= +1.44191620 \pm 2.4 \cdot 10^{-8} \) | \(a_{687}= +0.90145374 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{688}= +0.51307933 \pm 2.3 \cdot 10^{-8} \) | \(a_{689}= -0.26357813 \pm 2.1 \cdot 10^{-8} \) | \(a_{690}= +0.27396555 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{691}= -1.11330857 \pm 2.6 \cdot 10^{-8} \) | \(a_{692}= -0.61208605 \pm 2.4 \cdot 10^{-8} \) | \(a_{693}= -0.63469678 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{694}= +2.34815152 \pm 3.1 \cdot 10^{-8} \) | \(a_{695}= -0.10637422 \pm 3.6 \cdot 10^{-8} \) | \(a_{696}= +0.78532090 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{697}= -1.23262238 \pm 1.7 \cdot 10^{-8} \) | \(a_{698}= -0.13522454 \pm 3.0 \cdot 10^{-8} \) | \(a_{699}= +0.34403441 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{700}= +0.59636151 \pm 6.1 \cdot 10^{-8} \) | \(a_{701}= +1.48027033 \pm 1.9 \cdot 10^{-8} \) | \(a_{702}= -0.26693369 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{703}= +0.00449061 \pm 1.7 \cdot 10^{-8} \) | \(a_{704}= +1.57696598 \pm 2.2 \cdot 10^{-8} \) | \(a_{705}= +0.36613037 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{706}= +2.85637378 \pm 3.1 \cdot 10^{-8} \) | \(a_{707}= -1.87688567 \pm 2.3 \cdot 10^{-8} \) | \(a_{708}= -1.40400137 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{709}= +0.79658783 \pm 1.1 \cdot 10^{-8} \) | \(a_{710}= -0.27076860 \pm 6.4 \cdot 10^{-8} \) | \(a_{711}= +0.09906941 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{712}= +1.80639921 \pm 1.6 \cdot 10^{-8} \) | \(a_{713}= -0.14691674 \pm 1.1 \cdot 10^{-8} \) | \(a_{714}= -1.06581432 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{715}= -0.43770676 \pm 5.8 \cdot 10^{-8} \) | \(a_{716}= +0.31422761 \pm 2.3 \cdot 10^{-8} \) | \(a_{717}= -0.18975652 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{718}= +2.04723547 \pm 3.0 \cdot 10^{-8} \) | \(a_{719}= +1.15949941 \pm 2.1 \cdot 10^{-8} \) | \(a_{720}= -0.09469272 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{721}= +1.90741616 \pm 2.0 \cdot 10^{-8} \) | \(a_{722}= -1.69199372 \pm 2.1 \cdot 10^{-8} \) | \(a_{723}= -0.18617932 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{724}= -3.67376213 \pm 2.9 \cdot 10^{-8} \) | \(a_{725}= +0.18383878 \pm 2.5 \cdot 10^{-8} \) | \(a_{726}= +0.42135162 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{727}= +1.36964792 \pm 2.3 \cdot 10^{-8} \) | \(a_{728}= -1.92774671 \pm 1.6 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{730}= -0.77822692 \pm 6.0 \cdot 10^{-8} \) | \(a_{731}= -0.55258523 \pm 2.1 \cdot 10^{-8} \) | \(a_{732}= -0.75896157 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{733}= -0.65774172 \pm 3.1 \cdot 10^{-8} \) | \(a_{734}= -1.12870456 \pm 2.4 \cdot 10^{-8} \) | \(a_{735}= -0.39617053 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{736}= +0.25233627 \pm 1.3 \cdot 10^{-8} \) | \(a_{737}= -1.15634230 \pm 1.2 \cdot 10^{-8} \) | \(a_{738}= +1.01798519 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{739}= -1.51195758 \pm 1.3 \cdot 10^{-8} \) | \(a_{740}= -0.08928487 \pm 5.5 \cdot 10^{-8} \) | \(a_{741}= -0.01990408 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{742}= +0.86915839 \pm 2.8 \cdot 10^{-8} \) | \(a_{743}= +0.64600941 \pm 1.9 \cdot 10^{-8} \) | \(a_{744}= +0.20051182 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{745}= +0.47714325 \pm 2.5 \cdot 10^{-8} \) | \(a_{746}= -2.57292129 \pm 2.7 \cdot 10^{-8} \) | \(a_{747}= -0.00597521 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{748}= +1.53262583 \pm 1.5 \cdot 10^{-8} \) | \(a_{749}= -0.10525274 \pm 2.1 \cdot 10^{-8} \) | \(a_{750}= -0.08752954 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{751}= -1.67171795 \pm 1.8 \cdot 10^{-8} \) | \(a_{752}= -0.90074993 \pm 2.0 \cdot 10^{-8} \) | \(a_{753}= -0.55051399 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{754}= -1.27494784 \pm 1.8 \cdot 10^{-8} \) | \(a_{755}= +0.16048528 \pm 3.8 \cdot 10^{-8} \) | \(a_{756}= +0.57384913 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{757}= +0.61885945 \pm 2.7 \cdot 10^{-8} \) | \(a_{758}= +1.01280837 \pm 2.8 \cdot 10^{-8} \) | \(a_{759}= +0.43227880 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{760}= -0.02788068 \pm 5.1 \cdot 10^{-8} \) | \(a_{761}= -0.18744153 \pm 2.6 \cdot 10^{-8} \) | \(a_{762}= +1.65954504 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{763}= +1.30973483 \pm 1.8 \cdot 10^{-8} \) | \(a_{764}= +0.10223936 \pm 2.0 \cdot 10^{-8} \) | \(a_{765}= +0.10198384 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{766}= +0.01076837 \pm 2.6 \cdot 10^{-8} \) | \(a_{767}= +1.06242400 \pm 1.5 \cdot 10^{-8} \) | \(a_{768}= -1.03131043 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{769}= +0.71228285 \pm 2.4 \cdot 10^{-8} \) | \(a_{770}= +1.44335385 \pm 8.5 \cdot 10^{-8} \) | \(a_{771}= -1.00404490 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{772}= -1.60686992 \pm 2.4 \cdot 10^{-8} \) | \(a_{773}= -0.81093753 \pm 2.7 \cdot 10^{-8} \) | \(a_{774}= +0.45636327 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{775}= +0.04693858 \pm 2.2 \cdot 10^{-8} \) | \(a_{776}= -1.92931309 \pm 1.4 \cdot 10^{-8} \) | \(a_{777}= +0.09796959 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{778}= +0.35533506 \pm 2.4 \cdot 10^{-8} \) | \(a_{779}= +0.07590672 \pm 1.5 \cdot 10^{-8} \) | \(a_{780}= +0.39574431 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{781}= -0.42723447 \pm 2.0 \cdot 10^{-8} \) | \(a_{782}= +0.72590401 \pm 1.4 \cdot 10^{-8} \) | \(a_{783}= +0.17689895 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{784}= +0.97465438 \pm 1.7 \cdot 10^{-8} \) | \(a_{785}= +0.10975053 \pm 3.1 \cdot 10^{-8} \) | \(a_{786}= -0.46306001 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{787}= -0.72546445 \pm 2.5 \cdot 10^{-8} \) | \(a_{788}= +3.14498242 \pm 1.7 \cdot 10^{-8} \) | \(a_{789}= +0.65352404 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{790}= -0.22529218 \pm 6.1 \cdot 10^{-8} \) | \(a_{791}= -0.30139460 \pm 2.5 \cdot 10^{-8} \) | \(a_{792}= -0.58997367 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{793}= +0.57431496 \pm 2.5 \cdot 10^{-8} \) | \(a_{794}= -0.14373561 \pm 2.0 \cdot 10^{-8} \) | \(a_{795}= -0.08316656 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{796}= +2.38974303 \pm 2.7 \cdot 10^{-8} \) | \(a_{797}= +0.89727760 \pm 2.6 \cdot 10^{-8} \) | \(a_{798}= +0.06563443 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{799}= +0.97010555 \pm 2.1 \cdot 10^{-8} \) | \(a_{800}= -0.08061917 \pm 3.1 \cdot 10^{-8} \) | \(a_{801}= +0.40690388 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{802}= -1.21361972 \pm 1.6 \cdot 10^{-8} \) | \(a_{803}= -1.22793175 \pm 2.2 \cdot 10^{-8} \) | \(a_{804}= +1.04548509 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{805}= +0.44567743 \pm 5.2 \cdot 10^{-8} \) | \(a_{806}= -0.32552566 \pm 1.5 \cdot 10^{-8} \) | \(a_{807}= -0.89513961 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{808}= -1.74463327 \pm 1.5 \cdot 10^{-8} \) | \(a_{809}= -0.52534721 \pm 2.2 \cdot 10^{-8} \) | \(a_{810}= -0.08422534 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{811}= +0.85762373 \pm 2.1 \cdot 10^{-8} \) | \(a_{812}= +2.74085935 \pm 2.0 \cdot 10^{-8} \) | \(a_{813}= -0.70824988 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{814}= -0.21609320 \pm 1.5 \cdot 10^{-8} \) | \(a_{815}= -0.05983673 \pm 3.5 \cdot 10^{-8} \) | \(a_{816}= -0.25089951 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{817}= +0.03402902 \pm 2.1 \cdot 10^{-8} \) | \(a_{818}= +1.91502782 \pm 2.5 \cdot 10^{-8} \) | \(a_{819}= -0.43423824 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{820}= -1.50922067 \pm 5.8 \cdot 10^{-8} \) | \(a_{821}= -0.30568868 \pm 1.5 \cdot 10^{-8} \) | \(a_{822}= +0.07634386 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{823}= -0.37404551 \pm 1.9 \cdot 10^{-8} \) | \(a_{824}= +1.77301248 \pm 2.2 \cdot 10^{-8} \) | \(a_{825}= -0.13810920 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{826}= -3.50338153 \pm 3.2 \cdot 10^{-8} \) | \(a_{827}= +0.24552575 \pm 1.9 \cdot 10^{-8} \) | \(a_{828}= -0.39083673 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{829}= +0.03289096 \pm 1.9 \cdot 10^{-8} \) | \(a_{830}= +0.01358813 \pm 5.3 \cdot 10^{-8} \) | \(a_{831}= +0.69090968 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{832}= +1.07890722 \pm 2.3 \cdot 10^{-8} \) | \(a_{833}= -1.04970047 \pm 2.0 \cdot 10^{-8} \) | \(a_{834}= +0.23277217 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{835}= -0.10079062 \pm 3.8 \cdot 10^{-8} \) | \(a_{836}= -0.09438137 \pm 2.4 \cdot 10^{-8} \) | \(a_{837}= +0.04516667 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{838}= -2.61493107 \pm 3.0 \cdot 10^{-8} \) | \(a_{839}= -1.20492200 \pm 1.8 \cdot 10^{-8} \) | \(a_{840}= -0.60826010 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{841}= -0.15508255 \pm 2.2 \cdot 10^{-8} \) | \(a_{842}= -2.91875672 \pm 3.7 \cdot 10^{-8} \) | \(a_{843}= +0.33481743 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{844}= +1.18534277 \pm 2.7 \cdot 10^{-8} \) | \(a_{845}= +0.14774932 \pm 3.7 \cdot 10^{-8} \) | \(a_{846}= -0.80118055 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{847}= +0.68543983 \pm 1.9 \cdot 10^{-8} \) | \(a_{848}= +0.20460545 \pm 2.6 \cdot 10^{-8} \) | \(a_{849}= +0.04363816 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{850}= -0.23191982 \pm 5.8 \cdot 10^{-8} \) | \(a_{851}= -0.06672505 \pm 1.5 \cdot 10^{-8} \) | \(a_{852}= +0.38627599 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{853}= -0.20683530 \pm 2.7 \cdot 10^{-8} \) | \(a_{854}= -1.89382433 \pm 2.5 \cdot 10^{-8} \) | \(a_{855}= -0.00628032 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{856}= -0.09783624 \pm 1.7 \cdot 10^{-8} \) | \(a_{857}= +1.11169134 \pm 1.4 \cdot 10^{-8} \) | \(a_{858}= +0.95780675 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{859}= -1.70125389 \pm 2.3 \cdot 10^{-8} \) | \(a_{860}= -0.67658439 \pm 6.0 \cdot 10^{-8} \) | \(a_{861}= +1.65602212 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{862}= +1.62808041 \pm 2.5 \cdot 10^{-8} \) | \(a_{863}= -0.14016000 \pm 2.0 \cdot 10^{-8} \) | \(a_{864}= -0.07757584 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{865}= +0.14614440 \pm 2.9 \cdot 10^{-8} \) | \(a_{866}= +2.78666166 \pm 1.9 \cdot 10^{-8} \) | \(a_{867}= -0.30713208 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{868}= +0.69980906 \pm 1.7 \cdot 10^{-8} \) | \(a_{869}= -0.35547912 \pm 2.8 \cdot 10^{-8} \) | \(a_{870}= -0.40228309 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{871}= -0.79113061 \pm 1.7 \cdot 10^{-8} \) | \(a_{872}= +1.21744601 \pm 1.6 \cdot 10^{-8} \) | \(a_{873}= -0.43459108 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{874}= -0.04470225 \pm 1.0 \cdot 10^{-8} \) | \(a_{875}= -0.14238994 \pm 3.4 \cdot 10^{-8} \) | \(a_{876}= +1.11021134 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{877}= +0.33263979 \pm 1.8 \cdot 10^{-8} \) | \(a_{878}= +1.48978472 \pm 2.5 \cdot 10^{-8} \) | \(a_{879}= -0.39794531 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{880}= +0.33977474 \pm 5.7 \cdot 10^{-8} \) | \(a_{881}= +0.09936867 \pm 2.1 \cdot 10^{-8} \) | \(a_{882}= +0.86691557 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{883}= +0.20127012 \pm 2.3 \cdot 10^{-8} \) | \(a_{884}= +1.04857117 \pm 2.5 \cdot 10^{-8} \) | \(a_{885}= +0.33522564 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{886}= +0.83160331 \pm 2.2 \cdot 10^{-8} \) | \(a_{887}= +0.59163384 \pm 2.7 \cdot 10^{-8} \) | \(a_{888}= +0.09106628 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{889}= +2.69968888 \pm 2.2 \cdot 10^{-8} \) | \(a_{890}= -0.92533364 \pm 5.9 \cdot 10^{-8} \) | \(a_{891}= -0.13289564 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{892}= -3.08429457 \pm 2.7 \cdot 10^{-8} \) | \(a_{893}= -0.05974054 \pm 2.8 \cdot 10^{-8} \) | \(a_{894}= -1.04410320 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{895}= -0.07502639 \pm 3.1 \cdot 10^{-8} \) | \(a_{896}= -2.91601984 \pm 2.8 \cdot 10^{-8} \) | \(a_{897}= +0.29575065 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{898}= -0.48623951 \pm 2.1 \cdot 10^{-8} \) | \(a_{899}= +0.21572829 \pm 1 \cdot 10^{-8} \) | \(a_{900}= +0.12486883 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{901}= -0.22035959 \pm 2.1 \cdot 10^{-8} \) | \(a_{902}= -3.65271640 \pm 3.3 \cdot 10^{-8} \) | \(a_{903}= +0.74239555 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{904}= -0.28015721 \pm 1.8 \cdot 10^{-8} \) | \(a_{905}= +0.87716387 \pm 3.1 \cdot 10^{-8} \) | \(a_{906}= -0.35118005 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{907}= +1.09687285 \pm 1.7 \cdot 10^{-8} \) | \(a_{908}= -3.71527031 \pm 2.3 \cdot 10^{-8} \) | \(a_{909}= -0.39299068 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{910}= +0.98749428 \pm 8.5 \cdot 10^{-8} \) | \(a_{911}= -0.49773536 \pm 2.4 \cdot 10^{-8} \) | \(a_{912}= +0.01545076 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{913}= +0.02144014 \pm 1.5 \cdot 10^{-8} \) | \(a_{914}= +0.54289964 \pm 3.0 \cdot 10^{-8} \) | \(a_{915}= +0.18121306 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{916}= +2.92448483 \pm 3.7 \cdot 10^{-8} \) | \(a_{917}= -0.75328957 \pm 2.3 \cdot 10^{-8} \) | \(a_{918}= -0.22316495 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{919}= +1.90452463 \pm 1.5 \cdot 10^{-8} \) | \(a_{920}= +0.41427333 \pm 4.8 \cdot 10^{-8} \) | \(a_{921}= -0.91935792 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{922}= +2.00702242 \pm 1.9 \cdot 10^{-8} \) | \(a_{923}= -0.29229949 \pm 1.6 \cdot 10^{-8} \) | \(a_{924}= -2.05907528 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{925}= +0.02131806 \pm 2.8 \cdot 10^{-8} \) | \(a_{926}= +3.13690756 \pm 2.6 \cdot 10^{-8} \) | \(a_{927}= +0.39938329 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{928}= -0.37052327 \pm 1.6 \cdot 10^{-8} \) | \(a_{929}= +0.67815685 \pm 2.8 \cdot 10^{-8} \) | \(a_{930}= -0.10271280 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{931}= +0.06464211 \pm 1.1 \cdot 10^{-8} \) | \(a_{932}= +1.11611209 \pm 3.5 \cdot 10^{-8} \) | \(a_{933}= +0.18192571 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{934}= -0.53553024 \pm 2.7 \cdot 10^{-8} \) | \(a_{935}= -0.36593659 \pm 5.5 \cdot 10^{-8} \) | \(a_{936}= -0.40364019 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{937}= -0.99478012 \pm 2.4 \cdot 10^{-8} \) | \(a_{938}= +2.60878175 \pm 2.7 \cdot 10^{-8} \) | \(a_{939}= +0.31130402 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{940}= +1.18779553 \pm 6.5 \cdot 10^{-8} \) | \(a_{941}= -0.61204581 \pm 2.3 \cdot 10^{-8} \) | \(a_{942}= -0.24016033 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{943}= -1.12788229 \pm 1.2 \cdot 10^{-8} \) | \(a_{944}= -0.82471844 \pm 1 \cdot 10^{-8} \) | \(a_{945}= -0.13701478 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{946}= -1.63751460 \pm 2.3 \cdot 10^{-8} \) | \(a_{947}= -0.16039631 \pm 2.8 \cdot 10^{-8} \) | \(a_{948}= +0.32139974 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{949}= -0.84010970 \pm 2.1 \cdot 10^{-8} \) | \(a_{950}= +0.01428197 \pm 5.8 \cdot 10^{-8} \) | \(a_{951}= +0.12150286 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{952}= -1.61165677 \pm 2.1 \cdot 10^{-8} \) | \(a_{953}= +1.33711498 \pm 2.8 \cdot 10^{-8} \) | \(a_{954}= +0.18198826 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{955}= -0.02441113 \pm 2.7 \cdot 10^{-8} \) | \(a_{956}= -0.61560570 \pm 1.7 \cdot 10^{-8} \) | \(a_{957}= -0.63474568 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{958}= +1.20448050 \pm 2.2 \cdot 10^{-8} \) | \(a_{959}= +0.12419347 \pm 2.4 \cdot 10^{-8} \) | \(a_{960}= +0.34042657 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{961}= -0.94491924 \pm 2.0 \cdot 10^{-8} \) | \(a_{962}= -0.14784372 \pm 2.0 \cdot 10^{-8} \) | \(a_{963}= -0.02203829 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{964}= -0.60400060 \pm 2.5 \cdot 10^{-8} \) | \(a_{965}= +0.38366344 \pm 2.8 \cdot 10^{-8} \) | \(a_{966}= -0.97524847 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{967}= -0.71210568 \pm 2.5 \cdot 10^{-8} \) | \(a_{968}= +0.63714118 \pm 1.7 \cdot 10^{-8} \) | \(a_{969}= -0.01664044 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{970}= +0.98829666 \pm 5.8 \cdot 10^{-8} \) | \(a_{971}= +1.80853295 \pm 1.9 \cdot 10^{-8} \) | \(a_{972}= +0.12015509 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{973}= +0.37866549 \pm 2.4 \cdot 10^{-8} \) | \(a_{974}= +0.18224216 \pm 2.0 \cdot 10^{-8} \) | \(a_{975}= -0.09448968 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{976}= -0.44581837 \pm 2.4 \cdot 10^{-8} \) | \(a_{977}= -1.23700866 \pm 3.0 \cdot 10^{-8} \) | \(a_{978}= +0.13093702 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{979}= -1.46004530 \pm 2.1 \cdot 10^{-8} \) | \(a_{980}= -1.28525141 \pm 5.5 \cdot 10^{-8} \) | \(a_{981}= +0.27423811 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{982}= -0.13531956 \pm 3.4 \cdot 10^{-8} \) | \(a_{983}= +1.47358125 \pm 2.4 \cdot 10^{-8} \) | \(a_{984}= +1.53933260 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{985}= -0.75091006 \pm 2.3 \cdot 10^{-8} \) | \(a_{986}= -1.06589642 \pm 1.3 \cdot 10^{-8} \) | \(a_{987}= -1.30333205 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{988}= -0.06457257 \pm 2.0 \cdot 10^{-8} \) | \(a_{989}= -0.50563020 \pm 1.9 \cdot 10^{-8} \) | \(a_{990}= +0.30221586 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{991}= -1.24647493 \pm 3.2 \cdot 10^{-8} \) | \(a_{992}= -0.09460374 \pm 1.3 \cdot 10^{-8} \) | \(a_{993}= +0.12973746 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{994}= +0.96386812 \pm 2.3 \cdot 10^{-8} \) | \(a_{995}= -0.57058573 \pm 3.4 \cdot 10^{-8} \) | \(a_{996}= -0.01938470 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{997}= -0.55408669 \pm 2.1 \cdot 10^{-8} \) | \(a_{998}= -2.85242646 \pm 3.0 \cdot 10^{-8} \) | \(a_{999}= +0.02051331 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{1000}= -0.13235661 \pm 3.0 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000