Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.0897505881232104433761565336 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.68725087 \pm 1.5 \cdot 10^{-4} \) |
\(a_{4}= +0.5 \) | \(a_{5}= -0.83278044 \pm 1.2 \cdot 10^{-4} \) | \(a_{6}= -0.48595975 \pm 1.5 \cdot 10^{-4} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.52768624 \pm 1.2 \cdot 10^{-4} \) |
\(a_{10}= +0.58886470 \pm 1.2 \cdot 10^{-4} \) | \(a_{11}= -0.70747999 \pm 1.2 \cdot 10^{-4} \) | \(a_{12}= +0.34362544 \pm 1.5 \cdot 10^{-4} \) |
\(a_{13}= -1.62946420 \pm 1.1 \cdot 10^{-4} \) | \(a_{14}= -0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -0.57232909 \pm 1.5 \cdot 10^{-4} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +1.73678067 \pm 8.0 \cdot 10^{-5} \) | \(a_{18}= +0.37313052 \pm 1.2 \cdot 10^{-4} \) |
\(a_{19}= +0.05597363 \pm 1.2 \cdot 10^{-4} \) | \(a_{20}= -0.41639022 \pm 1.2 \cdot 10^{-4} \) | \(a_{21}= +0.25975641 \pm 1.5 \cdot 10^{-4} \) |
\(a_{22}= +0.50026390 \pm 1.2 \cdot 10^{-4} \) | \(a_{23}= +0.65105044 \pm 1.1 \cdot 10^{-4} \) | \(a_{24}= -0.24297988 \pm 1.5 \cdot 10^{-4} \) |
\(a_{25}= -0.30647673 \pm 9.4 \cdot 10^{-5} \) | \(a_{26}= +1.15220518 \pm 1.1 \cdot 10^{-4} \) | \(a_{27}= -1.04990370 \pm 1.1 \cdot 10^{-4} \) |
\(a_{28}= +0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -0.95908650 \pm 1.3 \cdot 10^{-4} \) | \(a_{30}= +0.40469778 \pm 2.7 \cdot 10^{-4} \) |
\(a_{31}= +1.30782099 \pm 1.3 \cdot 10^{-4} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.48621624 \pm 1.4 \cdot 10^{-4} \) |
\(a_{34}= -1.22808939 \pm 8.0 \cdot 10^{-5} \) | \(a_{35}= -0.31476142 \pm 1.2 \cdot 10^{-4} \) | \(a_{36}= -0.26384312 \pm 1.2 \cdot 10^{-4} \) |
\(a_{37}= +0.56864891 \pm 9.5 \cdot 10^{-5} \) | \(a_{38}= -0.03957933 \pm 1.2 \cdot 10^{-4} \) | \(a_{39}= -1.11985069 \pm 1.3 \cdot 10^{-4} \) |
\(a_{40}= +0.29443235 \pm 1.2 \cdot 10^{-4} \) | \(a_{41}= -1.63927394 \pm 7.8 \cdot 10^{-5} \) | \(a_{42}= -0.18367552 \pm 1.5 \cdot 10^{-4} \) |
\(a_{43}= +0.33301611 \pm 1.2 \cdot 10^{-4} \) | \(a_{44}= -0.35373999 \pm 1.2 \cdot 10^{-4} \) | \(a_{45}= +0.43944678 \pm 1.0 \cdot 10^{-4} \) |
\(a_{46}= -0.46036218 \pm 1.1 \cdot 10^{-4} \) | \(a_{47}= -1.03784259 \pm 8.8 \cdot 10^{-5} \) | \(a_{48}= +0.17181272 \pm 1.5 \cdot 10^{-4} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.21671178 \pm 9.4 \cdot 10^{-5} \) | \(a_{51}= +1.19360403 \pm 9.5 \cdot 10^{-5} \) |
\(a_{52}= -0.81473210 \pm 1.1 \cdot 10^{-4} \) | \(a_{53}= +1.70689132 \pm 1.1 \cdot 10^{-4} \) | \(a_{54}= +0.74239403 \pm 1.1 \cdot 10^{-4} \) |
\(a_{55}= +0.58917550 \pm 1.1 \cdot 10^{-4} \) | \(a_{56}= -0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +0.03846793 \pm 1.7 \cdot 10^{-4} \) |
\(a_{58}= +0.67817657 \pm 1.3 \cdot 10^{-4} \) | \(a_{59}= +0.92903825 \pm 1.2 \cdot 10^{-4} \) | \(a_{60}= -0.28616454 \pm 2.7 \cdot 10^{-4} \) |
\(a_{61}= -0.17621004 \pm 7.5 \cdot 10^{-5} \) | \(a_{62}= -0.92476909 \pm 1.3 \cdot 10^{-4} \) | \(a_{63}= -0.19944665 \pm 1.2 \cdot 10^{-4} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +1.35698592 \pm 8.4 \cdot 10^{-5} \) | \(a_{66}= +0.34380680 \pm 2.8 \cdot 10^{-4} \) |
\(a_{67}= +0.39736884 \pm 1.2 \cdot 10^{-4} \) | \(a_{68}= +0.86839034 \pm 8.0 \cdot 10^{-5} \) | \(a_{69}= +0.44743499 \pm 1.4 \cdot 10^{-4} \) |
\(a_{70}= +0.22256994 \pm 1.2 \cdot 10^{-4} \) | \(a_{71}= +1.23535285 \pm 1.6 \cdot 10^{-4} \) | \(a_{72}= +0.18656526 \pm 1.2 \cdot 10^{-4} \) |
\(a_{73}= +1.23732307 \pm 1.2 \cdot 10^{-4} \) | \(a_{74}= -0.40209550 \pm 9.5 \cdot 10^{-5} \) | \(a_{75}= -0.21062640 \pm 1.0 \cdot 10^{-4} \) |
\(a_{76}= +0.02798682 \pm 1.2 \cdot 10^{-4} \) | \(a_{77}= -0.26740230 \pm 1.2 \cdot 10^{-4} \) | \(a_{78}= +0.79185402 \pm 2.7 \cdot 10^{-4} \) |
\(a_{79}= -1.12453589 \pm 1.4 \cdot 10^{-4} \) | \(a_{80}= -0.20819511 \pm 1.2 \cdot 10^{-4} \) | \(a_{81}= -0.19386100 \pm 1.3 \cdot 10^{-4} \) |
\(a_{82}= +1.15914172 \pm 7.8 \cdot 10^{-5} \) | \(a_{83}= +0.50455470 \pm 9.2 \cdot 10^{-5} \) | \(a_{84}= +0.12987821 \pm 1.5 \cdot 10^{-4} \) |
\(a_{85}= -1.44635698 \pm 9.3 \cdot 10^{-5} \) | \(a_{86}= -0.23547795 \pm 1.2 \cdot 10^{-4} \) | \(a_{87}= -0.65913303 \pm 1.8 \cdot 10^{-4} \) |
\(a_{88}= +0.25013195 \pm 1.2 \cdot 10^{-4} \) | \(a_{89}= +1.63143229 \pm 8.6 \cdot 10^{-5} \) | \(a_{90}= -0.31073580 \pm 2.4 \cdot 10^{-4} \) |
\(a_{91}= -0.61587958 \pm 1.1 \cdot 10^{-4} \) | \(a_{92}= +0.32552522 \pm 1.1 \cdot 10^{-4} \) | \(a_{93}= +0.89880112 \pm 1.7 \cdot 10^{-4} \) |
\(a_{94}= +0.73386553 \pm 8.8 \cdot 10^{-5} \) | \(a_{95}= -0.04661375 \pm 1.0 \cdot 10^{-4} \) | \(a_{96}= -0.12148994 \pm 1.5 \cdot 10^{-4} \) |
\(a_{97}= +0.95502920 \pm 9.7 \cdot 10^{-5} \) | \(a_{98}= -0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +0.37332745 \pm 9.8 \cdot 10^{-5} \) |
\(a_{100}= -0.15323837 \pm 9.4 \cdot 10^{-5} \) | \(a_{101}= -0.27755406 \pm 1.3 \cdot 10^{-4} \) | \(a_{102}= -0.84400551 \pm 2.3 \cdot 10^{-4} \) |
\(a_{103}= +0.09070821 \pm 9.2 \cdot 10^{-5} \) | \(a_{104}= +0.57610259 \pm 1.1 \cdot 10^{-4} \) | \(a_{105}= -0.21632006 \pm 2.7 \cdot 10^{-4} \) |
\(a_{106}= -1.20695443 \pm 1.1 \cdot 10^{-4} \) | \(a_{107}= +0.36791929 \pm 9.1 \cdot 10^{-5} \) | \(a_{108}= -0.52495185 \pm 1.1 \cdot 10^{-4} \) |
\(a_{109}= +0.45592493 \pm 9.0 \cdot 10^{-5} \) | \(a_{110}= -0.41660999 \pm 2.4 \cdot 10^{-4} \) | \(a_{111}= +0.39080446 \pm 9.9 \cdot 10^{-5} \) |
\(a_{112}= +0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= +0.12550680 \pm 1.4 \cdot 10^{-4} \) | \(a_{114}= -0.02720093 \pm 2.7 \cdot 10^{-4} \) |
\(a_{115}= -0.54218208 \pm 1.2 \cdot 10^{-4} \) | \(a_{116}= -0.47954325 \pm 1.3 \cdot 10^{-4} \) | \(a_{117}= +0.85984583 \pm 9.8 \cdot 10^{-5} \) |
\(a_{118}= -0.65692925 \pm 1.2 \cdot 10^{-4} \) | \(a_{119}= +0.65644139 \pm 8.0 \cdot 10^{-5} \) | \(a_{120}= +0.20234889 \pm 2.7 \cdot 10^{-4} \) |
\(a_{121}= -0.49947207 \pm 1.0 \cdot 10^{-4} \) | \(a_{122}= +0.12459931 \pm 7.5 \cdot 10^{-5} \) | \(a_{123}= -1.12659245 \pm 9.1 \cdot 10^{-5} \) |
\(a_{124}= +0.65391049 \pm 1.3 \cdot 10^{-4} \) | \(a_{125}= +1.08800827 \pm 1.0 \cdot 10^{-4} \) | \(a_{126}= +0.14103008 \pm 1.2 \cdot 10^{-4} \) |
\(a_{127}= +0.98559383 \pm 1.1 \cdot 10^{-4} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.22886561 \pm 1.5 \cdot 10^{-4} \) |
\(a_{130}= -0.95953394 \pm 2.3 \cdot 10^{-4} \) | \(a_{131}= +0.68534982 \pm 9.7 \cdot 10^{-5} \) | \(a_{132}= -0.24310812 \pm 2.8 \cdot 10^{-4} \) |
\(a_{133}= +0.02115604 \pm 1.2 \cdot 10^{-4} \) | \(a_{134}= -0.28098220 \pm 1.2 \cdot 10^{-4} \) | \(a_{135}= +0.87433927 \pm 8.8 \cdot 10^{-5} \) |
\(a_{136}= -0.61404470 \pm 8.0 \cdot 10^{-5} \) | \(a_{137}= +1.03948104 \pm 1.3 \cdot 10^{-4} \) | \(a_{138}= -0.31638431 \pm 2.6 \cdot 10^{-4} \) |
\(a_{139}= -1.71831481 \pm 1.1 \cdot 10^{-4} \) | \(a_{140}= -0.15738071 \pm 1.2 \cdot 10^{-4} \) | \(a_{141}= -0.71325822 \pm 1.0 \cdot 10^{-4} \) |
\(a_{142}= -0.87352638 \pm 1.6 \cdot 10^{-4} \) | \(a_{143}= +1.15281331 \pm 1.5 \cdot 10^{-4} \) | \(a_{144}= -0.13192156 \pm 1.2 \cdot 10^{-4} \) |
\(a_{145}= +0.79870848 \pm 1.2 \cdot 10^{-4} \) | \(a_{146}= -0.87491953 \pm 1.2 \cdot 10^{-4} \) | \(a_{147}= +0.09817870 \pm 1.5 \cdot 10^{-4} \) |
\(a_{148}= +0.28432445 \pm 9.5 \cdot 10^{-5} \) | \(a_{149}= +1.21141902 \pm 8.6 \cdot 10^{-5} \) | \(a_{150}= +0.14893536 \pm 2.5 \cdot 10^{-4} \) |
\(a_{151}= -0.07969692 \pm 1.0 \cdot 10^{-4} \) | \(a_{152}= -0.01978967 \pm 1.2 \cdot 10^{-4} \) | \(a_{153}= -0.91647526 \pm 9.0 \cdot 10^{-5} \) |
\(a_{154}= +0.18908198 \pm 1.2 \cdot 10^{-4} \) | \(a_{155}= -1.08912774 \pm 1.5 \cdot 10^{-4} \) | \(a_{156}= -0.55992535 \pm 2.7 \cdot 10^{-4} \) |
\(a_{157}= -0.57022564 \pm 1.0 \cdot 10^{-4} \) | \(a_{158}= +0.79516695 \pm 1.4 \cdot 10^{-4} \) | \(a_{159}= +1.17306255 \pm 1.3 \cdot 10^{-4} \) |
\(a_{160}= +0.14721617 \pm 1.2 \cdot 10^{-4} \) | \(a_{161}= +0.24607394 \pm 1.1 \cdot 10^{-4} \) | \(a_{162}= +0.13708042 \pm 1.3 \cdot 10^{-4} \) |
\(a_{163}= -0.11524383 \pm 9.1 \cdot 10^{-5} \) | \(a_{164}= -0.81963697 \pm 7.8 \cdot 10^{-5} \) | \(a_{165}= +0.40491138 \pm 1.4 \cdot 10^{-4} \) |
\(a_{166}= -0.35677405 \pm 9.2 \cdot 10^{-5} \) | \(a_{167}= -0.60210389 \pm 1.3 \cdot 10^{-4} \) | \(a_{168}= -0.09183776 \pm 1.5 \cdot 10^{-4} \) |
\(a_{169}= +1.65515357 \pm 1.2 \cdot 10^{-4} \) | \(a_{170}= +1.02272883 \pm 2.0 \cdot 10^{-4} \) | \(a_{171}= -0.02953651 \pm 1.6 \cdot 10^{-4} \) |
\(a_{172}= +0.16650805 \pm 1.2 \cdot 10^{-4} \) | \(a_{173}= +0.55486559 \pm 1.3 \cdot 10^{-4} \) | \(a_{174}= +0.46607744 \pm 2.9 \cdot 10^{-4} \) |
\(a_{175}= -0.11583732 \pm 9.4 \cdot 10^{-5} \) | \(a_{176}= -0.17687000 \pm 1.2 \cdot 10^{-4} \) | \(a_{177}= +0.63848235 \pm 1.5 \cdot 10^{-4} \) |
\(a_{178}= -1.15359684 \pm 8.6 \cdot 10^{-5} \) | \(a_{179}= -1.28849385 \pm 1.0 \cdot 10^{-4} \) | \(a_{180}= +0.21972339 \pm 2.4 \cdot 10^{-4} \) |
\(a_{181}= +0.22775136 \pm 1.1 \cdot 10^{-4} \) | \(a_{182}= +0.43549263 \pm 1.1 \cdot 10^{-4} \) | \(a_{183}= -0.12110050 \pm 1.0 \cdot 10^{-4} \) |
\(a_{184}= -0.23018109 \pm 1.1 \cdot 10^{-4} \) | \(a_{185}= -0.47355969 \pm 8.1 \cdot 10^{-5} \) | \(a_{186}= -0.63554836 \pm 2.9 \cdot 10^{-4} \) |
\(a_{187}= -1.22873757 \pm 6.7 \cdot 10^{-5} \) | \(a_{188}= -0.51892129 \pm 8.8 \cdot 10^{-5} \) | \(a_{189}= -0.39682630 \pm 1.1 \cdot 10^{-4} \) |
\(a_{190}= +0.03296090 \pm 2.4 \cdot 10^{-4} \) | \(a_{191}= -0.04374958 \pm 8.7 \cdot 10^{-5} \) | \(a_{192}= +0.08590636 \pm 1.5 \cdot 10^{-4} \) |
\(a_{193}= -0.58057099 \pm 9.4 \cdot 10^{-5} \) | \(a_{194}= -0.67530763 \pm 9.7 \cdot 10^{-5} \) | \(a_{195}= +0.93258976 \pm 9.5 \cdot 10^{-5} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= +1.19478350 \pm 1.5 \cdot 10^{-4} \) | \(a_{198}= -0.26398237 \pm 2.4 \cdot 10^{-4} \) |
\(a_{199}= +1.18723658 \pm 1.0 \cdot 10^{-4} \) | \(a_{200}= +0.10835589 \pm 9.4 \cdot 10^{-5} \) | \(a_{201}= +0.27309208 \pm 1.6 \cdot 10^{-4} \) |
\(a_{202}= +0.19626036 \pm 1.3 \cdot 10^{-4} \) | \(a_{203}= -0.36250062 \pm 1.3 \cdot 10^{-4} \) | \(a_{204}= +0.59680202 \pm 2.3 \cdot 10^{-4} \) |
\(a_{205}= +1.36515528 \pm 8.4 \cdot 10^{-5} \) | \(a_{206}= -0.06414039 \pm 9.2 \cdot 10^{-5} \) | \(a_{207}= -0.34355036 \pm 1.1 \cdot 10^{-4} \) |
\(a_{208}= -0.40736605 \pm 1.1 \cdot 10^{-4} \) | \(a_{209}= -0.03960022 \pm 9.7 \cdot 10^{-5} \) | \(a_{210}= +0.15296138 \pm 2.7 \cdot 10^{-4} \) |
\(a_{211}= -0.92013709 \pm 1.4 \cdot 10^{-4} \) | \(a_{212}= +0.85344566 \pm 1.1 \cdot 10^{-4} \) | \(a_{213}= +0.84899732 \pm 2.3 \cdot 10^{-4} \) |
\(a_{214}= -0.26015822 \pm 9.1 \cdot 10^{-5} \) | \(a_{215}= -0.27732930 \pm 1.0 \cdot 10^{-4} \) | \(a_{216}= +0.37119701 \pm 1.1 \cdot 10^{-4} \) |
\(a_{217}= +0.49430987 \pm 1.3 \cdot 10^{-4} \) | \(a_{218}= -0.32238761 \pm 9.0 \cdot 10^{-5} \) | \(a_{219}= +0.85035136 \pm 1.5 \cdot 10^{-4} \) |
\(a_{220}= +0.29458775 \pm 2.4 \cdot 10^{-4} \) | \(a_{221}= -2.83002193 \pm 7.0 \cdot 10^{-5} \) | \(a_{222}= -0.27634048 \pm 2.5 \cdot 10^{-4} \) |
\(a_{223}= +0.53389745 \pm 1.1 \cdot 10^{-4} \) | \(a_{224}= -0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= +0.16172355 \pm 7.9 \cdot 10^{-5} \) |
\(a_{226}= -0.08874671 \pm 1.4 \cdot 10^{-4} \) | \(a_{227}= -1.35233107 \pm 1.3 \cdot 10^{-4} \) | \(a_{228}= +0.01923396 \pm 2.7 \cdot 10^{-4} \) |
\(a_{229}= -1.46550615 \pm 1.0 \cdot 10^{-4} \) | \(a_{230}= +0.38338062 \pm 2.3 \cdot 10^{-4} \) | \(a_{231}= -0.18377246 \pm 2.8 \cdot 10^{-4} \) |
\(a_{232}= +0.33908828 \pm 1.3 \cdot 10^{-4} \) | \(a_{233}= +1.17794635 \pm 9.3 \cdot 10^{-5} \) | \(a_{234}= -0.60800282 \pm 2.4 \cdot 10^{-4} \) |
\(a_{235}= +0.86429501 \pm 9.0 \cdot 10^{-5} \) | \(a_{236}= +0.46451913 \pm 1.2 \cdot 10^{-4} \) | \(a_{237}= -0.77283827 \pm 1.9 \cdot 10^{-4} \) |
\(a_{238}= -0.46417416 \pm 8.0 \cdot 10^{-5} \) | \(a_{239}= +0.07646125 \pm 1.4 \cdot 10^{-4} \) | \(a_{240}= -0.14308227 \pm 2.7 \cdot 10^{-4} \) |
\(a_{241}= -0.49936471 \pm 1.3 \cdot 10^{-4} \) | \(a_{242}= +0.35318008 \pm 1.0 \cdot 10^{-4} \) | \(a_{243}= +0.91667256 \pm 1.2 \cdot 10^{-4} \) |
\(a_{244}= -0.08810502 \pm 7.5 \cdot 10^{-5} \) | \(a_{245}= -0.11896863 \pm 1.2 \cdot 10^{-4} \) | \(a_{246}= +0.79662116 \pm 2.3 \cdot 10^{-4} \) |
\(a_{247}= -0.09120703 \pm 1.1 \cdot 10^{-4} \) | \(a_{248}= -0.46238455 \pm 1.3 \cdot 10^{-4} \) | \(a_{249}= +0.34675566 \pm 1.1 \cdot 10^{-4} \) |
\(a_{250}= -0.76933803 \pm 1.0 \cdot 10^{-4} \) | \(a_{251}= +1.73971321 \pm 1.1 \cdot 10^{-4} \) | \(a_{252}= -0.09972333 \pm 1.2 \cdot 10^{-4} \) |
\(a_{253}= -0.46060516 \pm 1.3 \cdot 10^{-4} \) | \(a_{254}= -0.69692008 \pm 1.1 \cdot 10^{-4} \) | \(a_{255}= -0.99401010 \pm 8.8 \cdot 10^{-5} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +1.08502394 \pm 1.3 \cdot 10^{-4} \) | \(a_{258}= -0.16183243 \pm 2.8 \cdot 10^{-4} \) |
\(a_{259}= +0.21492908 \pm 9.5 \cdot 10^{-5} \) | \(a_{260}= +0.67849296 \pm 2.3 \cdot 10^{-4} \) | \(a_{261}= +0.50609675 \pm 1.2 \cdot 10^{-4} \) |
\(a_{262}= -0.48461550 \pm 9.7 \cdot 10^{-5} \) | \(a_{263}= +1.54844178 \pm 1.3 \cdot 10^{-4} \) | \(a_{264}= +0.17190340 \pm 2.8 \cdot 10^{-4} \) |
\(a_{265}= -1.42146571 \pm 1.3 \cdot 10^{-4} \) | \(a_{266}= -0.01495958 \pm 1.2 \cdot 10^{-4} \) | \(a_{267}= +1.12120327 \pm 1.1 \cdot 10^{-4} \) |
\(a_{268}= +0.19868442 \pm 1.2 \cdot 10^{-4} \) | \(a_{269}= +0.73376854 \pm 1.1 \cdot 10^{-4} \) | \(a_{270}= -0.61825123 \pm 2.3 \cdot 10^{-4} \) |
\(a_{271}= -1.89083076 \pm 9.8 \cdot 10^{-5} \) | \(a_{272}= +0.43419517 \pm 8.0 \cdot 10^{-5} \) | \(a_{273}= -0.42326378 \pm 2.7 \cdot 10^{-4} \) |
\(a_{274}= -0.73502409 \pm 1.3 \cdot 10^{-4} \) | \(a_{275}= +0.21682616 \pm 1.0 \cdot 10^{-4} \) | \(a_{276}= +0.22371749 \pm 2.6 \cdot 10^{-4} \) |
\(a_{277}= +0.58255572 \pm 1.6 \cdot 10^{-4} \) | \(a_{278}= +1.21503206 \pm 1.1 \cdot 10^{-4} \) | \(a_{279}= -0.69011914 \pm 1.0 \cdot 10^{-4} \) |
\(a_{280}= +0.11128497 \pm 1.2 \cdot 10^{-4} \) | \(a_{281}= -1.66849382 \pm 1.0 \cdot 10^{-4} \) | \(a_{282}= +0.50434973 \pm 2.4 \cdot 10^{-4} \) |
\(a_{283}= -1.83283317 \pm 1.2 \cdot 10^{-4} \) | \(a_{284}= +0.61767642 \pm 1.6 \cdot 10^{-4} \) | \(a_{285}= -0.03203534 \pm 1.3 \cdot 10^{-4} \) |
\(a_{286}= -0.81516211 \pm 2.4 \cdot 10^{-4} \) | \(a_{287}= -0.61958731 \pm 7.8 \cdot 10^{-5} \) | \(a_{288}= +0.09328263 \pm 1.2 \cdot 10^{-4} \) |
\(a_{289}= +2.01640711 \pm 1.0 \cdot 10^{-4} \) | \(a_{290}= -0.56477218 \pm 2.5 \cdot 10^{-4} \) | \(a_{291}= +0.65634465 \pm 1.5 \cdot 10^{-4} \) |
\(a_{292}= +0.61866154 \pm 1.2 \cdot 10^{-4} \) | \(a_{293}= +0.41114851 \pm 8.4 \cdot 10^{-5} \) | \(a_{294}= -0.06942282 \pm 1.5 \cdot 10^{-4} \) |
\(a_{295}= -0.77368489 \pm 1.5 \cdot 10^{-4} \) | \(a_{296}= -0.20104775 \pm 9.5 \cdot 10^{-5} \) | \(a_{297}= +0.74278586 \pm 1.2 \cdot 10^{-4} \) |
\(a_{298}= -0.85660261 \pm 8.6 \cdot 10^{-5} \) | \(a_{299}= -1.06086339 \pm 8.7 \cdot 10^{-5} \) | \(a_{300}= -0.10531320 \pm 2.5 \cdot 10^{-4} \) |
\(a_{301}= +0.12586826 \pm 1.2 \cdot 10^{-4} \) | \(a_{302}= +0.05635424 \pm 1.0 \cdot 10^{-4} \) | \(a_{303}= -0.19074927 \pm 1.6 \cdot 10^{-4} \) |
\(a_{304}= +0.01399341 \pm 1.2 \cdot 10^{-4} \) | \(a_{305}= +0.14674427 \pm 7.2 \cdot 10^{-5} \) | \(a_{306}= +0.64804587 \pm 2.0 \cdot 10^{-4} \) |
\(a_{307}= -1.11846908 \pm 1.0 \cdot 10^{-4} \) | \(a_{308}= -0.13370115 \pm 1.2 \cdot 10^{-4} \) | \(a_{309}= +0.06233930 \pm 1.4 \cdot 10^{-4} \) |
\(a_{310}= +0.77012961 \pm 2.5 \cdot 10^{-4} \) | \(a_{311}= +1.00153621 \pm 1.3 \cdot 10^{-4} \) | \(a_{312}= +0.39592701 \pm 2.7 \cdot 10^{-4} \) |
\(a_{313}= +0.72583369 \pm 7.6 \cdot 10^{-5} \) | \(a_{314}= +0.40321042 \pm 1.0 \cdot 10^{-4} \) | \(a_{315}= +0.16609527 \pm 2.4 \cdot 10^{-4} \) |
\(a_{316}= -0.56226795 \pm 1.4 \cdot 10^{-4} \) | \(a_{317}= +0.23372182 \pm 1.3 \cdot 10^{-4} \) | \(a_{318}= -0.82948048 \pm 2.7 \cdot 10^{-4} \) |
\(a_{319}= +0.67853451 \pm 1.0 \cdot 10^{-4} \) | \(a_{320}= -0.10409756 \pm 1.2 \cdot 10^{-4} \) | \(a_{321}= +0.25285285 \pm 1.0 \cdot 10^{-4} \) |
\(a_{322}= -0.17400055 \pm 1.1 \cdot 10^{-4} \) | \(a_{323}= +0.09721392 \pm 7.7 \cdot 10^{-5} \) | \(a_{324}= -0.09693050 \pm 1.3 \cdot 10^{-4} \) |
\(a_{325}= +0.49939286 \pm 1.0 \cdot 10^{-4} \) | \(a_{326}= +0.08148969 \pm 9.1 \cdot 10^{-5} \) | \(a_{327}= +0.31333481 \pm 1.0 \cdot 10^{-4} \) |
\(a_{328}= +0.57957086 \pm 7.8 \cdot 10^{-5} \) | \(a_{329}= -0.39226763 \pm 8.8 \cdot 10^{-5} \) | \(a_{330}= -0.28631558 \pm 4.0 \cdot 10^{-4} \) |
\(a_{331}= -0.46962003 \pm 1.0 \cdot 10^{-4} \) | \(a_{332}= +0.25227735 \pm 9.2 \cdot 10^{-5} \) | \(a_{333}= -0.30006820 \pm 6.0 \cdot 10^{-5} \) |
\(a_{334}= +0.42575174 \pm 1.3 \cdot 10^{-4} \) | \(a_{335}= -0.33092100 \pm 1.0 \cdot 10^{-4} \) | \(a_{336}= +0.06493910 \pm 1.5 \cdot 10^{-4} \) |
\(a_{337}= +1.00403733 \pm 1.2 \cdot 10^{-4} \) | \(a_{338}= -1.17037031 \pm 1.2 \cdot 10^{-4} \) | \(a_{339}= +0.08625466 \pm 1.9 \cdot 10^{-4} \) |
\(a_{340}= -0.72317849 \pm 2.0 \cdot 10^{-4} \) | \(a_{341}= -0.92525718 \pm 1.0 \cdot 10^{-4} \) | \(a_{342}= +0.02088547 \pm 2.4 \cdot 10^{-4} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.11773897 \pm 1.2 \cdot 10^{-4} \) | \(a_{345}= -0.37261511 \pm 1.6 \cdot 10^{-4} \) |
\(a_{346}= -0.39234922 \pm 1.3 \cdot 10^{-4} \) | \(a_{347}= -0.28212664 \pm 1.2 \cdot 10^{-4} \) | \(a_{348}= -0.32956652 \pm 2.9 \cdot 10^{-4} \) |
\(a_{349}= +0.04814033 \pm 1.1 \cdot 10^{-4} \) | \(a_{350}= +0.08190935 \pm 9.4 \cdot 10^{-5} \) | \(a_{351}= +1.71078049 \pm 1.2 \cdot 10^{-4} \) |
\(a_{352}= +0.12506597 \pm 1.2 \cdot 10^{-4} \) | \(a_{353}= -1.13142258 \pm 7.7 \cdot 10^{-5} \) | \(a_{354}= -0.45147520 \pm 2.8 \cdot 10^{-4} \) |
\(a_{355}= -1.02877769 \pm 1.5 \cdot 10^{-4} \) | \(a_{356}= +0.81571615 \pm 8.6 \cdot 10^{-5} \) | \(a_{357}= +0.45113992 \pm 2.3 \cdot 10^{-4} \) |
\(a_{358}= +0.91110274 \pm 1.0 \cdot 10^{-4} \) | \(a_{359}= -0.36183879 \pm 1.5 \cdot 10^{-4} \) | \(a_{360}= -0.15536790 \pm 2.4 \cdot 10^{-4} \) |
\(a_{361}= -0.99686695 \pm 1.0 \cdot 10^{-4} \) | \(a_{362}= -0.16104453 \pm 1.1 \cdot 10^{-4} \) | \(a_{363}= -0.34326261 \pm 1.2 \cdot 10^{-4} \) |
\(a_{364}= -0.30793979 \pm 1.1 \cdot 10^{-4} \) | \(a_{365}= -1.03041846 \pm 9.9 \cdot 10^{-5} \) | \(a_{366}= +0.08563099 \pm 2.3 \cdot 10^{-4} \) |
\(a_{367}= -0.86880099 \pm 8.3 \cdot 10^{-5} \) | \(a_{368}= +0.16276261 \pm 1.1 \cdot 10^{-4} \) | \(a_{369}= +0.86502230 \pm 4.8 \cdot 10^{-5} \) |
\(a_{370}= +0.33485727 \pm 2.1 \cdot 10^{-4} \) | \(a_{371}= +0.64514428 \pm 1.1 \cdot 10^{-4} \) | \(a_{372}= +0.44940056 \pm 2.9 \cdot 10^{-4} \) |
\(a_{373}= +1.59809549 \pm 1.5 \cdot 10^{-4} \) | \(a_{374}= +0.86884867 \pm 2.0 \cdot 10^{-4} \) | \(a_{375}= +0.74773463 \pm 1.3 \cdot 10^{-4} \) |
\(a_{376}= +0.36693276 \pm 8.8 \cdot 10^{-5} \) | \(a_{377}= +1.56279711 \pm 9.8 \cdot 10^{-5} \) | \(a_{378}= +0.28059857 \pm 1.1 \cdot 10^{-4} \) |
\(a_{379}= -0.78132742 \pm 1.3 \cdot 10^{-4} \) | \(a_{380}= -0.02330687 \pm 2.4 \cdot 10^{-4} \) | \(a_{381}= +0.67735022 \pm 1.5 \cdot 10^{-4} \) |
\(a_{382}= +0.03093562 \pm 8.7 \cdot 10^{-5} \) | \(a_{383}= -0.89223447 \pm 1.1 \cdot 10^{-4} \) | \(a_{384}= -0.06074497 \pm 1.5 \cdot 10^{-4} \) |
\(a_{385}= +0.22268741 \pm 2.4 \cdot 10^{-4} \) | \(a_{386}= +0.41052568 \pm 9.4 \cdot 10^{-5} \) | \(a_{387}= -0.17572802 \pm 1.0 \cdot 10^{-4} \) |
\(a_{388}= +0.47751460 \pm 9.7 \cdot 10^{-5} \) | \(a_{389}= -1.38463445 \pm 1.2 \cdot 10^{-4} \) | \(a_{390}= -0.65944054 \pm 3.9 \cdot 10^{-4} \) |
\(a_{391}= +1.13073183 \pm 6.5 \cdot 10^{-5} \) | \(a_{392}= -0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= +0.47100726 \pm 1.3 \cdot 10^{-4} \) |
\(a_{394}= -0.84483952 \pm 1.5 \cdot 10^{-4} \) | \(a_{395}= +0.93649150 \pm 1.4 \cdot 10^{-4} \) | \(a_{396}= +0.18666373 \pm 2.4 \cdot 10^{-4} \) |
\(a_{397}= -1.63704119 \pm 9.7 \cdot 10^{-5} \) | \(a_{398}= -0.83950304 \pm 1.0 \cdot 10^{-4} \) | \(a_{399}= +0.01453951 \pm 2.7 \cdot 10^{-4} \) |
\(a_{400}= -0.07661918 \pm 9.4 \cdot 10^{-5} \) | \(a_{401}= -0.83848248 \pm 1.3 \cdot 10^{-4} \) | \(a_{402}= -0.19310526 \pm 2.8 \cdot 10^{-4} \) |
\(a_{403}= -2.13104748 \pm 7.1 \cdot 10^{-5} \) | \(a_{404}= -0.13877703 \pm 1.3 \cdot 10^{-4} \) | \(a_{405}= +0.16144365 \pm 1.2 \cdot 10^{-4} \) |
\(a_{406}= +0.25632665 \pm 1.3 \cdot 10^{-4} \) | \(a_{407}= -0.40230772 \pm 1.2 \cdot 10^{-4} \) | \(a_{408}= -0.42200275 \pm 2.3 \cdot 10^{-4} \) |
\(a_{409}= +1.81901588 \pm 1.5 \cdot 10^{-4} \) | \(a_{410}= -0.96531056 \pm 2.0 \cdot 10^{-4} \) | \(a_{411}= +0.71438425 \pm 1.7 \cdot 10^{-4} \) |
\(a_{412}= +0.04535411 \pm 9.2 \cdot 10^{-5} \) | \(a_{413}= +0.35114345 \pm 1.2 \cdot 10^{-4} \) | \(a_{414}= +0.24292679 \pm 2.3 \cdot 10^{-4} \) |
\(a_{415}= -0.42018329 \pm 8.1 \cdot 10^{-5} \) | \(a_{416}= +0.28805130 \pm 1.1 \cdot 10^{-4} \) | \(a_{417}= -1.18091335 \pm 1.4 \cdot 10^{-4} \) |
\(a_{418}= +0.02800159 \pm 2.4 \cdot 10^{-4} \) | \(a_{419}= +1.94034703 \pm 1.0 \cdot 10^{-4} \) | \(a_{420}= -0.10816003 \pm 2.7 \cdot 10^{-4} \) |
\(a_{421}= -0.44404865 \pm 1.0 \cdot 10^{-4} \) | \(a_{422}= +0.65063518 \pm 1.4 \cdot 10^{-4} \) | \(a_{423}= +0.54765525 \pm 1.1 \cdot 10^{-4} \) |
\(a_{424}= -0.60347721 \pm 1.1 \cdot 10^{-4} \) | \(a_{425}= -0.53228287 \pm 8.4 \cdot 10^{-5} \) | \(a_{426}= -0.60033176 \pm 3.2 \cdot 10^{-4} \) |
\(a_{427}= -0.06660113 \pm 7.5 \cdot 10^{-5} \) | \(a_{428}= +0.18395964 \pm 9.1 \cdot 10^{-5} \) | \(a_{429}= +0.79227195 \pm 1.5 \cdot 10^{-4} \) |
\(a_{430}= +0.19610143 \pm 2.4 \cdot 10^{-4} \) | \(a_{431}= +0.35045946 \pm 1.1 \cdot 10^{-4} \) | \(a_{432}= -0.26247593 \pm 1.1 \cdot 10^{-4} \) |
\(a_{433}= -0.30746568 \pm 1.5 \cdot 10^{-4} \) | \(a_{434}= -0.34952986 \pm 1.3 \cdot 10^{-4} \) | \(a_{435}= +0.54891310 \pm 1.7 \cdot 10^{-4} \) |
\(a_{436}= +0.22796246 \pm 9.0 \cdot 10^{-5} \) | \(a_{437}= +0.03644166 \pm 8.2 \cdot 10^{-5} \) | \(a_{438}= -0.60128921 \pm 2.7 \cdot 10^{-4} \) |
\(a_{439}= -0.02702629 \pm 1.4 \cdot 10^{-4} \) | \(a_{440}= -0.20830500 \pm 2.4 \cdot 10^{-4} \) | \(a_{441}= -0.07538375 \pm 1.2 \cdot 10^{-4} \) |
\(a_{442}= +2.00112770 \pm 1.9 \cdot 10^{-4} \) | \(a_{443}= -0.69703786 \pm 1.1 \cdot 10^{-4} \) | \(a_{444}= +0.19540223 \pm 2.5 \cdot 10^{-4} \) |
\(a_{445}= -1.35862491 \pm 1.0 \cdot 10^{-4} \) | \(a_{446}= -0.37752250 \pm 1.1 \cdot 10^{-4} \) | \(a_{447}= +0.83254878 \pm 1.0 \cdot 10^{-4} \) |
\(a_{448}= +0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= -0.72234310 \pm 1.1 \cdot 10^{-4} \) | \(a_{450}= -0.11435582 \pm 2.1 \cdot 10^{-4} \) |
\(a_{451}= +1.15975351 \pm 9.8 \cdot 10^{-5} \) | \(a_{452}= +0.06275340 \pm 1.4 \cdot 10^{-4} \) | \(a_{453}= -0.05477178 \pm 1.2 \cdot 10^{-4} \) |
\(a_{454}= +0.95624247 \pm 1.3 \cdot 10^{-4} \) | \(a_{455}= +0.51289247 \pm 2.3 \cdot 10^{-4} \) | \(a_{456}= -0.01360047 \pm 2.7 \cdot 10^{-4} \) |
\(a_{457}= +0.03364138 \pm 1.6 \cdot 10^{-4} \) | \(a_{458}= +1.03626934 \pm 1.0 \cdot 10^{-4} \) | \(a_{459}= -1.82345246 \pm 9.0 \cdot 10^{-5} \) |
\(a_{460}= -0.27109104 \pm 2.3 \cdot 10^{-4} \) | \(a_{461}= +0.39498369 \pm 7.7 \cdot 10^{-5} \) | \(a_{462}= +0.12994676 \pm 2.8 \cdot 10^{-4} \) |
\(a_{463}= +1.80020263 \pm 1.4 \cdot 10^{-4} \) | \(a_{464}= -0.23977162 \pm 1.3 \cdot 10^{-4} \) | \(a_{465}= -0.74850399 \pm 1.9 \cdot 10^{-4} \) |
\(a_{466}= -0.83293385 \pm 9.3 \cdot 10^{-5} \) | \(a_{467}= +0.25977774 \pm 1.4 \cdot 10^{-4} \) | \(a_{468}= +0.42992292 \pm 2.4 \cdot 10^{-4} \) |
\(a_{469}= +0.15019130 \pm 1.2 \cdot 10^{-4} \) | \(a_{470}= -0.61114886 \pm 2.0 \cdot 10^{-4} \) | \(a_{471}= -0.39188807 \pm 1.2 \cdot 10^{-4} \) |
\(a_{472}= -0.32846462 \pm 1.2 \cdot 10^{-4} \) | \(a_{473}= -0.23560223 \pm 1.0 \cdot 10^{-4} \) | \(a_{474}= +0.54647918 \pm 3.0 \cdot 10^{-4} \) |
\(a_{475}= -0.01715462 \pm 8.3 \cdot 10^{-5} \) | \(a_{476}= +0.32822070 \pm 8.0 \cdot 10^{-5} \) | \(a_{477}= -0.90070306 \pm 9.4 \cdot 10^{-5} \) |
\(a_{478}= -0.05406627 \pm 1.4 \cdot 10^{-4} \) | \(a_{479}= +0.95186857 \pm 1.3 \cdot 10^{-4} \) | \(a_{480}= +0.10117444 \pm 2.7 \cdot 10^{-4} \) |
\(a_{481}= -0.92659303 \pm 1.2 \cdot 10^{-4} \) | \(a_{482}= +0.35310417 \pm 1.3 \cdot 10^{-4} \) | \(a_{483}= +0.16911453 \pm 2.6 \cdot 10^{-4} \) |
\(a_{484}= -0.24973603 \pm 1.0 \cdot 10^{-4} \) | \(a_{485}= -0.79532964 \pm 7.1 \cdot 10^{-5} \) | \(a_{486}= -0.64818538 \pm 1.2 \cdot 10^{-4} \) |
\(a_{487}= -0.14879770 \pm 1.0 \cdot 10^{-4} \) | \(a_{488}= +0.06229966 \pm 7.5 \cdot 10^{-5} \) | \(a_{489}= -0.07920142 \pm 1.1 \cdot 10^{-4} \) |
\(a_{490}= +0.08412353 \pm 1.2 \cdot 10^{-4} \) | \(a_{491}= +1.13933527 \pm 1.4 \cdot 10^{-4} \) | \(a_{492}= -0.56329622 \pm 2.3 \cdot 10^{-4} \) |
\(a_{493}= -1.66572289 \pm 8.0 \cdot 10^{-5} \) | \(a_{494}= +0.06449311 \pm 2.3 \cdot 10^{-4} \) | \(a_{495}= -0.31089980 \pm 9.6 \cdot 10^{-5} \) |
\(a_{496}= +0.32695525 \pm 1.3 \cdot 10^{-4} \) | \(a_{497}= +0.46691949 \pm 1.6 \cdot 10^{-4} \) | \(a_{498}= -0.24519328 \pm 2.4 \cdot 10^{-4} \) |
\(a_{499}= -0.50416113 \pm 1.7 \cdot 10^{-4} \) | \(a_{500}= +0.54400414 \pm 1.0 \cdot 10^{-4} \) | \(a_{501}= -0.41379642 \pm 1.5 \cdot 10^{-4} \) |
\(a_{502}= -1.23016301 \pm 1.1 \cdot 10^{-4} \) | \(a_{503}= +1.01531427 \pm 1.2 \cdot 10^{-4} \) | \(a_{504}= +0.07051504 \pm 1.2 \cdot 10^{-4} \) |
\(a_{505}= +0.23114160 \pm 1.4 \cdot 10^{-4} \) | \(a_{506}= +0.32569703 \pm 2.3 \cdot 10^{-4} \) | \(a_{507}= +1.13750574 \pm 1.3 \cdot 10^{-4} \) |
\(a_{508}= +0.49279691 \pm 1.1 \cdot 10^{-4} \) | \(a_{509}= -1.87955203 \pm 1.0 \cdot 10^{-4} \) | \(a_{510}= +0.70287128 \pm 3.5 \cdot 10^{-4} \) |
\(a_{511}= +0.46766416 \pm 1.2 \cdot 10^{-4} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.05876692 \pm 1.4 \cdot 10^{-4} \) |
\(a_{514}= -0.76722778 \pm 1.3 \cdot 10^{-4} \) | \(a_{515}= -0.07554003 \pm 5.6 \cdot 10^{-5} \) | \(a_{516}= +0.11443281 \pm 2.8 \cdot 10^{-4} \) |
\(a_{517}= +0.73425286 \pm 8.4 \cdot 10^{-5} \) | \(a_{518}= -0.15197781 \pm 9.5 \cdot 10^{-5} \) | \(a_{519}= +0.38133186 \pm 1.9 \cdot 10^{-4} \) |
\(a_{520}= -0.47976697 \pm 2.3 \cdot 10^{-4} \) | \(a_{521}= +0.99039788 \pm 1.1 \cdot 10^{-4} \) | \(a_{522}= -0.35786444 \pm 2.5 \cdot 10^{-4} \) |
\(a_{523}= +0.33738726 \pm 1.2 \cdot 10^{-4} \) | \(a_{524}= +0.34267491 \pm 9.7 \cdot 10^{-5} \) | \(a_{525}= -0.07960930 \pm 2.5 \cdot 10^{-4} \) |
\(a_{526}= -1.09491368 \pm 1.3 \cdot 10^{-4} \) | \(a_{527}= +2.27139822 \pm 5.7 \cdot 10^{-5} \) | \(a_{528}= -0.12155406 \pm 2.8 \cdot 10^{-4} \) |
\(a_{529}= -0.57613332 \pm 1.0 \cdot 10^{-4} \) | \(a_{530}= +1.00512804 \pm 2.3 \cdot 10^{-4} \) | \(a_{531}= -0.49024070 \pm 9.8 \cdot 10^{-5} \) |
\(a_{532}= +0.01057802 \pm 1.2 \cdot 10^{-4} \) | \(a_{533}= +2.67113819 \pm 7.0 \cdot 10^{-5} \) | \(a_{534}= -0.79281043 \pm 2.4 \cdot 10^{-4} \) |
\(a_{535}= -0.30639599 \pm 6.8 \cdot 10^{-5} \) | \(a_{536}= -0.14049110 \pm 1.2 \cdot 10^{-4} \) | \(a_{537}= -0.88551852 \pm 1.3 \cdot 10^{-4} \) |
\(a_{538}= -0.51885271 \pm 1.1 \cdot 10^{-4} \) | \(a_{539}= -0.10106857 \pm 1.2 \cdot 10^{-4} \) | \(a_{540}= +0.43716963 \pm 2.3 \cdot 10^{-4} \) |
\(a_{541}= -0.74347132 \pm 8.7 \cdot 10^{-5} \) | \(a_{542}= +1.33701926 \pm 9.8 \cdot 10^{-5} \) | \(a_{543}= +0.15652232 \pm 1.2 \cdot 10^{-4} \) |
\(a_{544}= -0.30702235 \pm 8.0 \cdot 10^{-5} \) | \(a_{545}= -0.37968537 \pm 1.0 \cdot 10^{-4} \) | \(a_{546}= +0.29929269 \pm 2.7 \cdot 10^{-4} \) |
\(a_{547}= +0.47992562 \pm 1.0 \cdot 10^{-4} \) | \(a_{548}= +0.51974052 \pm 1.3 \cdot 10^{-4} \) | \(a_{549}= +0.09298361 \pm 8.9 \cdot 10^{-5} \) |
\(a_{550}= -0.15331924 \pm 2.1 \cdot 10^{-4} \) | \(a_{551}= -0.05368355 \pm 1.2 \cdot 10^{-4} \) | \(a_{552}= -0.15819216 \pm 2.6 \cdot 10^{-4} \) |
\(a_{553}= -0.42503462 \pm 1.4 \cdot 10^{-4} \) | \(a_{554}= -0.41192910 \pm 1.6 \cdot 10^{-4} \) | \(a_{555}= -0.32545431 \pm 7.8 \cdot 10^{-5} \) |
\(a_{556}= -0.85915741 \pm 1.1 \cdot 10^{-4} \) | \(a_{557}= -1.34521792 \pm 1.3 \cdot 10^{-4} \) | \(a_{558}= +0.48798792 \pm 2.5 \cdot 10^{-4} \) |
\(a_{559}= -0.54263783 \pm 1.2 \cdot 10^{-4} \) | \(a_{560}= -0.07869036 \pm 1.2 \cdot 10^{-4} \) | \(a_{561}= -0.84445097 \pm 8.3 \cdot 10^{-5} \) |
\(a_{562}= +1.17980330 \pm 1.0 \cdot 10^{-4} \) | \(a_{563}= +0.52944207 \pm 9.1 \cdot 10^{-5} \) | \(a_{564}= -0.35662911 \pm 2.4 \cdot 10^{-4} \) |
\(a_{565}= -0.10451961 \pm 1.5 \cdot 10^{-4} \) | \(a_{566}= +1.29600877 \pm 1.2 \cdot 10^{-4} \) | \(a_{567}= -0.07327257 \pm 1.3 \cdot 10^{-4} \) |
\(a_{568}= -0.43676319 \pm 1.6 \cdot 10^{-4} \) | \(a_{569}= -1.91525736 \pm 1.1 \cdot 10^{-4} \) | \(a_{570}= +0.02265240 \pm 4.0 \cdot 10^{-4} \) |
\(a_{571}= -0.82866873 \pm 1.0 \cdot 10^{-4} \) | \(a_{572}= +0.57640666 \pm 2.4 \cdot 10^{-4} \) | \(a_{573}= -0.03006693 \pm 1.1 \cdot 10^{-4} \) |
\(a_{574}= +0.43811439 \pm 7.8 \cdot 10^{-5} \) | \(a_{575}= -0.19953181 \pm 9.2 \cdot 10^{-5} \) | \(a_{576}= -0.06596078 \pm 1.2 \cdot 10^{-4} \) |
\(a_{577}= +1.65049045 \pm 1.0 \cdot 10^{-4} \) | \(a_{578}= -1.42581514 \pm 1.0 \cdot 10^{-4} \) | \(a_{579}= -0.39899792 \pm 1.2 \cdot 10^{-4} \) |
\(a_{580}= +0.39935424 \pm 2.5 \cdot 10^{-4} \) | \(a_{581}= +0.19070375 \pm 9.2 \cdot 10^{-5} \) | \(a_{582}= -0.46410576 \pm 2.5 \cdot 10^{-4} \) |
\(a_{583}= -1.20759145 \pm 9.1 \cdot 10^{-5} \) | \(a_{584}= -0.43745977 \pm 1.2 \cdot 10^{-4} \) | \(a_{585}= -0.71606279 \pm 8.3 \cdot 10^{-5} \) |
\(a_{586}= -0.29072590 \pm 8.4 \cdot 10^{-5} \) | \(a_{587}= +0.02923133 \pm 1.3 \cdot 10^{-4} \) | \(a_{588}= +0.04908935 \pm 1.5 \cdot 10^{-4} \) |
\(a_{589}= +0.07320349 \pm 1.2 \cdot 10^{-4} \) | \(a_{590}= +0.54707783 \pm 2.4 \cdot 10^{-4} \) | \(a_{591}= +0.82111600 \pm 1.9 \cdot 10^{-4} \) |
\(a_{592}= +0.14216223 \pm 9.5 \cdot 10^{-5} \) | \(a_{593}= +0.99478862 \pm 1.5 \cdot 10^{-4} \) | \(a_{594}= -0.52522892 \pm 2.4 \cdot 10^{-4} \) |
\(a_{595}= -0.54667155 \pm 2.0 \cdot 10^{-4} \) | \(a_{596}= +0.60570951 \pm 8.6 \cdot 10^{-5} \) | \(a_{597}= +0.81592938 \pm 1.5 \cdot 10^{-4} \) |
\(a_{598}= +0.75014370 \pm 2.2 \cdot 10^{-4} \) | \(a_{599}= +1.79270315 \pm 1.1 \cdot 10^{-4} \) | \(a_{600}= +0.07446768 \pm 2.5 \cdot 10^{-4} \) |
\(a_{601}= +0.17152147 \pm 1.3 \cdot 10^{-4} \) | \(a_{602}= -0.08900230 \pm 1.2 \cdot 10^{-4} \) | \(a_{603}= -0.20968607 \pm 1.1 \cdot 10^{-4} \) |
\(a_{604}= -0.03984846 \pm 1.0 \cdot 10^{-4} \) | \(a_{605}= +0.41595057 \pm 8.7 \cdot 10^{-5} \) | \(a_{606}= +0.13488010 \pm 2.9 \cdot 10^{-4} \) |
\(a_{607}= +0.30116554 \pm 1.3 \cdot 10^{-4} \) | \(a_{608}= -0.00989483 \pm 1.2 \cdot 10^{-4} \) | \(a_{609}= -0.24912887 \pm 2.9 \cdot 10^{-4} \) |
\(a_{610}= -0.10376387 \pm 1.9 \cdot 10^{-4} \) | \(a_{611}= +1.69112734 \pm 8.2 \cdot 10^{-5} \) | \(a_{612}= -0.45823763 \pm 2.0 \cdot 10^{-4} \) |
\(a_{613}= -0.57339765 \pm 1.0 \cdot 10^{-4} \) | \(a_{614}= +0.79087707 \pm 1.0 \cdot 10^{-4} \) | \(a_{615}= +0.93820416 \pm 1.0 \cdot 10^{-4} \) |
\(a_{616}= +0.09454099 \pm 1.2 \cdot 10^{-4} \) | \(a_{617}= -0.70467167 \pm 1.1 \cdot 10^{-4} \) | \(a_{618}= -0.04408054 \pm 2.5 \cdot 10^{-4} \) |
\(a_{619}= -0.17547614 \pm 9.0 \cdot 10^{-5} \) | \(a_{620}= -0.54456387 \pm 2.5 \cdot 10^{-4} \) | \(a_{621}= -0.68354027 \pm 1.0 \cdot 10^{-4} \) |
\(a_{622}= -0.70819305 \pm 1.3 \cdot 10^{-4} \) | \(a_{623}= +0.61662345 \pm 8.6 \cdot 10^{-5} \) | \(a_{624}= -0.27996267 \pm 2.7 \cdot 10^{-4} \) |
\(a_{625}= -0.59959528 \pm 9.6 \cdot 10^{-5} \) | \(a_{626}= -0.51324192 \pm 7.6 \cdot 10^{-5} \) | \(a_{627}= -0.02721529 \pm 1.2 \cdot 10^{-4} \) |
\(a_{628}= -0.28511282 \pm 1.0 \cdot 10^{-4} \) | \(a_{629}= +0.98761843 \pm 7.5 \cdot 10^{-5} \) | \(a_{630}= -0.11744709 \pm 2.4 \cdot 10^{-4} \) |
\(a_{631}= +0.93066300 \pm 8.6 \cdot 10^{-5} \) | \(a_{632}= +0.39758348 \pm 1.4 \cdot 10^{-4} \) | \(a_{633}= -0.63236502 \pm 1.9 \cdot 10^{-4} \) |
\(a_{634}= -0.16526629 \pm 1.3 \cdot 10^{-4} \) | \(a_{635}= -0.82078326 \pm 1.5 \cdot 10^{-4} \) | \(a_{636}= +0.58653127 \pm 2.7 \cdot 10^{-4} \) |
\(a_{637}= -0.23278060 \pm 1.1 \cdot 10^{-4} \) | \(a_{638}= -0.47979635 \pm 2.5 \cdot 10^{-4} \) | \(a_{639}= -0.65187870 \pm 1.9 \cdot 10^{-4} \) |
\(a_{640}= +0.07360809 \pm 1.2 \cdot 10^{-4} \) | \(a_{641}= +0.10195451 \pm 1.7 \cdot 10^{-4} \) | \(a_{642}= -0.17879397 \pm 2.4 \cdot 10^{-4} \) |
\(a_{643}= -0.24826946 \pm 1.0 \cdot 10^{-4} \) | \(a_{644}= +0.12303697 \pm 1.1 \cdot 10^{-4} \) | \(a_{645}= -0.19059481 \pm 1.2 \cdot 10^{-4} \) |
\(a_{646}= -0.06874062 \pm 2.0 \cdot 10^{-4} \) | \(a_{647}= +0.21239635 \pm 1.1 \cdot 10^{-4} \) | \(a_{648}= +0.06854021 \pm 1.3 \cdot 10^{-4} \) |
\(a_{649}= -0.65727597 \pm 1.1 \cdot 10^{-4} \) | \(a_{650}= -0.35312408 \pm 2.1 \cdot 10^{-4} \) | \(a_{651}= +0.33971489 \pm 2.9 \cdot 10^{-4} \) |
\(a_{652}= -0.05762192 \pm 9.1 \cdot 10^{-5} \) | \(a_{653}= +0.08035965 \pm 1.3 \cdot 10^{-4} \) | \(a_{654}= -0.22156117 \pm 2.4 \cdot 10^{-4} \) |
\(a_{655}= -0.57074593 \pm 7.6 \cdot 10^{-5} \) | \(a_{656}= -0.40981848 \pm 7.8 \cdot 10^{-5} \) | \(a_{657}= -0.65291836 \pm 1.3 \cdot 10^{-4} \) |
\(a_{658}= +0.27737510 \pm 8.8 \cdot 10^{-5} \) | \(a_{659}= +1.53966141 \pm 1.0 \cdot 10^{-4} \) | \(a_{660}= +0.20245569 \pm 4.0 \cdot 10^{-4} \) |
\(a_{661}= +0.32795194 \pm 1.3 \cdot 10^{-4} \) | \(a_{662}= +0.33207151 \pm 1.0 \cdot 10^{-4} \) | \(a_{663}= -1.94493504 \pm 7.5 \cdot 10^{-5} \) |
\(a_{664}= -0.17838703 \pm 9.2 \cdot 10^{-5} \) | \(a_{665}= -0.01761834 \pm 2.4 \cdot 10^{-4} \) | \(a_{666}= +0.21218026 \pm 2.1 \cdot 10^{-4} \) |
\(a_{667}= -0.62441369 \pm 9.6 \cdot 10^{-5} \) | \(a_{668}= -0.30105194 \pm 1.3 \cdot 10^{-4} \) | \(a_{669}= +0.36692149 \pm 1.6 \cdot 10^{-4} \) |
\(a_{670}= +0.23399648 \pm 2.4 \cdot 10^{-4} \) | \(a_{671}= +0.12466508 \pm 8.9 \cdot 10^{-5} \) | \(a_{672}= -0.04591888 \pm 1.5 \cdot 10^{-4} \) |
\(a_{673}= +1.11933090 \pm 8.8 \cdot 10^{-5} \) | \(a_{674}= -0.70996161 \pm 1.2 \cdot 10^{-4} \) | \(a_{675}= +0.32177106 \pm 9.9 \cdot 10^{-5} \) |
\(a_{676}= +0.82757679 \pm 1.2 \cdot 10^{-4} \) | \(a_{677}= +0.85091502 \pm 1.2 \cdot 10^{-4} \) | \(a_{678}= -0.06099126 \pm 3.0 \cdot 10^{-4} \) |
\(a_{679}= +0.36096711 \pm 9.7 \cdot 10^{-5} \) | \(a_{680}= +0.51136441 \pm 2.0 \cdot 10^{-4} \) | \(a_{681}= -0.92939071 \pm 1.8 \cdot 10^{-4} \) |
\(a_{682}= +0.65425563 \pm 2.5 \cdot 10^{-4} \) | \(a_{683}= +1.81234296 \pm 7.6 \cdot 10^{-5} \) | \(a_{684}= -0.01476826 \pm 2.4 \cdot 10^{-4} \) |
\(a_{685}= -0.86565948 \pm 1.3 \cdot 10^{-4} \) | \(a_{686}= -0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= -1.00717038 \pm 1.4 \cdot 10^{-4} \) |
\(a_{688}= +0.08325403 \pm 1.2 \cdot 10^{-4} \) | \(a_{689}= -2.78131829 \pm 9.8 \cdot 10^{-5} \) | \(a_{690}= +0.26347867 \pm 3.8 \cdot 10^{-4} \) |
\(a_{691}= +1.11271310 \pm 8.4 \cdot 10^{-5} \) | \(a_{692}= +0.27743280 \pm 1.3 \cdot 10^{-4} \) | \(a_{693}= +0.14110451 \pm 2.4 \cdot 10^{-4} \) |
\(a_{694}= +0.19949366 \pm 1.2 \cdot 10^{-4} \) | \(a_{695}= +1.43097897 \pm 8.5 \cdot 10^{-5} \) | \(a_{696}= +0.23303872 \pm 2.9 \cdot 10^{-4} \) |
\(a_{697}= -2.84705930 \pm 4.5 \cdot 10^{-5} \) | \(a_{698}= -0.03404036 \pm 1.1 \cdot 10^{-4} \) | \(a_{699}= +0.80954465 \pm 1.0 \cdot 10^{-4} \) |
\(a_{700}= -0.05791866 \pm 9.4 \cdot 10^{-5} \) | \(a_{701}= -0.12107739 \pm 9.1 \cdot 10^{-5} \) | \(a_{702}= -1.20970449 \pm 2.3 \cdot 10^{-4} \) |
\(a_{703}= +0.03182934 \pm 7.6 \cdot 10^{-5} \) | \(a_{704}= -0.08843500 \pm 1.2 \cdot 10^{-4} \) | \(a_{705}= +0.59398750 \pm 7.8 \cdot 10^{-5} \) |
\(a_{706}= +0.80003658 \pm 7.7 \cdot 10^{-5} \) | \(a_{707}= -0.10490558 \pm 1.3 \cdot 10^{-4} \) | \(a_{708}= +0.31924117 \pm 2.8 \cdot 10^{-4} \) |
\(a_{709}= +0.87317017 \pm 1.3 \cdot 10^{-4} \) | \(a_{710}= +0.72745568 \pm 2.8 \cdot 10^{-4} \) | \(a_{711}= +0.59340211 \pm 1.2 \cdot 10^{-4} \) |
\(a_{712}= -0.57679842 \pm 8.6 \cdot 10^{-5} \) | \(a_{713}= +0.85145744 \pm 1.2 \cdot 10^{-4} \) | \(a_{714}= -0.31900410 \pm 2.3 \cdot 10^{-4} \) |
\(a_{715}= -0.96004038 \pm 7.6 \cdot 10^{-5} \) | \(a_{716}= -0.64424692 \pm 1.0 \cdot 10^{-4} \) | \(a_{717}= +0.05254806 \pm 2.0 \cdot 10^{-4} \) |
\(a_{718}= +0.25585866 \pm 1.5 \cdot 10^{-4} \) | \(a_{719}= +0.08479351 \pm 1.3 \cdot 10^{-4} \) | \(a_{720}= +0.10986169 \pm 2.4 \cdot 10^{-4} \) |
\(a_{721}= +0.03428448 \pm 9.2 \cdot 10^{-5} \) | \(a_{722}= +0.70489138 \pm 1.0 \cdot 10^{-4} \) | \(a_{723}= -0.34318883 \pm 1.6 \cdot 10^{-4} \) |
\(a_{724}= +0.11387568 \pm 1.1 \cdot 10^{-4} \) | \(a_{725}= +0.29393770 \pm 6.1 \cdot 10^{-5} \) | \(a_{726}= +0.24272332 \pm 2.6 \cdot 10^{-4} \) |
\(a_{727}= -0.26141881 \pm 8.4 \cdot 10^{-5} \) | \(a_{728}= +0.21774631 \pm 1.1 \cdot 10^{-4} \) | \(a_{729}= +0.82384501 \pm 1.0 \cdot 10^{-4} \) |
\(a_{730}= +0.72861588 \pm 2.4 \cdot 10^{-4} \) | \(a_{731}= +0.57837594 \pm 8.3 \cdot 10^{-5} \) | \(a_{732}= -0.06055025 \pm 2.3 \cdot 10^{-4} \) |
\(a_{733}= +0.75040802 \pm 1.1 \cdot 10^{-4} \) | \(a_{734}= +0.61433507 \pm 8.3 \cdot 10^{-5} \) | \(a_{735}= -0.08176130 \pm 2.7 \cdot 10^{-4} \) |
\(a_{736}= -0.11509055 \pm 1.1 \cdot 10^{-4} \) | \(a_{737}= -0.28113050 \pm 1.2 \cdot 10^{-4} \) | \(a_{738}= -0.61166313 \pm 2.0 \cdot 10^{-4} \) |
\(a_{739}= -1.08760717 \pm 8.1 \cdot 10^{-5} \) | \(a_{740}= -0.23677984 \pm 2.1 \cdot 10^{-4} \) | \(a_{741}= -0.06268211 \pm 1.4 \cdot 10^{-4} \) |
\(a_{742}= -0.45618589 \pm 1.1 \cdot 10^{-4} \) | \(a_{743}= -1.24614533 \pm 1.3 \cdot 10^{-4} \) | \(a_{744}= -0.31777418 \pm 2.9 \cdot 10^{-4} \) |
\(a_{745}= -1.00884607 \pm 9.7 \cdot 10^{-5} \) | \(a_{746}= -1.13002416 \pm 1.5 \cdot 10^{-4} \) | \(a_{747}= -0.26624657 \pm 8.6 \cdot 10^{-5} \) |
\(a_{748}= -0.61436879 \pm 2.0 \cdot 10^{-4} \) | \(a_{749}= +0.13906042 \pm 9.1 \cdot 10^{-5} \) | \(a_{750}= -0.52872823 \pm 2.5 \cdot 10^{-4} \) |
\(a_{751}= +0.29917031 \pm 1.2 \cdot 10^{-4} \) | \(a_{752}= -0.25946065 \pm 8.8 \cdot 10^{-5} \) | \(a_{753}= +1.19561942 \pm 1.6 \cdot 10^{-4} \) |
\(a_{754}= -1.10506444 \pm 2.5 \cdot 10^{-4} \) | \(a_{755}= +0.06637004 \pm 7.4 \cdot 10^{-5} \) | \(a_{756}= -0.19841315 \pm 1.1 \cdot 10^{-4} \) |
\(a_{757}= -1.37244227 \pm 9.5 \cdot 10^{-5} \) | \(a_{758}= +0.55248192 \pm 1.3 \cdot 10^{-4} \) | \(a_{759}= -0.31655130 \pm 1.6 \cdot 10^{-4} \) |
\(a_{760}= +0.01648045 \pm 2.4 \cdot 10^{-4} \) | \(a_{761}= +1.61561679 \pm 1.7 \cdot 10^{-4} \) | \(a_{762}= -0.47895893 \pm 2.7 \cdot 10^{-4} \) |
\(a_{763}= +0.17232343 \pm 9.0 \cdot 10^{-5} \) | \(a_{764}= -0.02187479 \pm 8.7 \cdot 10^{-5} \) | \(a_{765}= +0.76322267 \pm 8.3 \cdot 10^{-5} \) |
\(a_{766}= +0.63090505 \pm 1.1 \cdot 10^{-4} \) | \(a_{767}= -1.51383457 \pm 8.8 \cdot 10^{-5} \) | \(a_{768}= +0.04295318 \pm 1.5 \cdot 10^{-4} \) |
\(a_{769}= -1.01284674 \pm 1.4 \cdot 10^{-4} \) | \(a_{770}= -0.15746378 \pm 2.4 \cdot 10^{-4} \) | \(a_{771}= +0.74568365 \pm 1.7 \cdot 10^{-4} \) |
\(a_{772}= -0.29028550 \pm 9.4 \cdot 10^{-5} \) | \(a_{773}= +1.48454526 \pm 7.4 \cdot 10^{-5} \) | \(a_{774}= +0.12425847 \pm 2.4 \cdot 10^{-4} \) |
\(a_{775}= -0.40081670 \pm 8.9 \cdot 10^{-5} \) | \(a_{776}= -0.33765381 \pm 9.7 \cdot 10^{-5} \) | \(a_{777}= +0.14771020 \pm 2.5 \cdot 10^{-4} \) |
\(a_{778}= +0.97908441 \pm 1.2 \cdot 10^{-4} \) | \(a_{779}= -0.09175611 \pm 4.8 \cdot 10^{-5} \) | \(a_{780}= +0.46629488 \pm 3.9 \cdot 10^{-4} \) |
\(a_{781}= -0.87398742 \pm 1.5 \cdot 10^{-4} \) | \(a_{782}= -0.79954814 \pm 1.9 \cdot 10^{-4} \) | \(a_{783}= +1.00694846 \pm 8.4 \cdot 10^{-5} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= +0.47487276 \pm 1.3 \cdot 10^{-4} \) | \(a_{786}= -0.33305243 \pm 2.5 \cdot 10^{-4} \) |
\(a_{787}= +1.93967363 \pm 1.3 \cdot 10^{-4} \) | \(a_{788}= +0.59739175 \pm 1.5 \cdot 10^{-4} \) | \(a_{789}= +1.06416796 \pm 1.7 \cdot 10^{-4} \) |
\(a_{790}= -0.66219949 \pm 2.6 \cdot 10^{-4} \) | \(a_{791}= +0.04743711 \pm 1.4 \cdot 10^{-4} \) | \(a_{792}= -0.13199119 \pm 2.4 \cdot 10^{-4} \) |
\(a_{793}= +0.28712795 \pm 7.9 \cdot 10^{-5} \) | \(a_{794}= +1.15756293 \pm 9.7 \cdot 10^{-5} \) | \(a_{795}= -0.97690355 \pm 1.3 \cdot 10^{-4} \) |
\(a_{796}= +0.59361829 \pm 1.0 \cdot 10^{-4} \) | \(a_{797}= -0.20066870 \pm 1.0 \cdot 10^{-4} \) | \(a_{798}= -0.01028099 \pm 2.7 \cdot 10^{-4} \) |
\(a_{799}= -1.80250494 \pm 9.5 \cdot 10^{-5} \) | \(a_{800}= +0.05417794 \pm 9.4 \cdot 10^{-5} \) | \(a_{801}= -0.86088437 \pm 9.2 \cdot 10^{-5} \) |
\(a_{802}= +0.59289665 \pm 1.3 \cdot 10^{-4} \) | \(a_{803}= -0.87538131 \pm 1.1 \cdot 10^{-4} \) | \(a_{804}= +0.13654604 \pm 2.8 \cdot 10^{-4} \) |
\(a_{805}= -0.20492556 \pm 2.3 \cdot 10^{-4} \) | \(a_{806}= +1.50687812 \pm 2.5 \cdot 10^{-4} \) | \(a_{807}= +0.50428307 \pm 1.4 \cdot 10^{-4} \) |
\(a_{808}= +0.09813018 \pm 1.3 \cdot 10^{-4} \) | \(a_{809}= +1.52466969 \pm 1.4 \cdot 10^{-4} \) | \(a_{810}= -0.11415790 \pm 2.5 \cdot 10^{-4} \) |
\(a_{811}= +0.59718767 \pm 1.1 \cdot 10^{-4} \) | \(a_{812}= -0.18125031 \pm 1.3 \cdot 10^{-4} \) | \(a_{813}= -1.29947509 \pm 1.2 \cdot 10^{-4} \) |
\(a_{814}= +0.28447452 \pm 2.2 \cdot 10^{-4} \) | \(a_{815}= +0.09597281 \pm 9.1 \cdot 10^{-5} \) | \(a_{816}= +0.29840101 \pm 2.3 \cdot 10^{-4} \) |
\(a_{817}= +0.01864012 \pm 1.2 \cdot 10^{-4} \) | \(a_{818}= -1.28623846 \pm 1.5 \cdot 10^{-4} \) | \(a_{819}= +0.32499118 \pm 2.4 \cdot 10^{-4} \) |
\(a_{820}= +0.68257764 \pm 2.0 \cdot 10^{-4} \) | \(a_{821}= -0.23043318 \pm 1.4 \cdot 10^{-4} \) | \(a_{822}= -0.50514595 \pm 2.9 \cdot 10^{-4} \) |
\(a_{823}= +1.25765174 \pm 6.6 \cdot 10^{-5} \) | \(a_{824}= -0.03207020 \pm 9.2 \cdot 10^{-5} \) | \(a_{825}= +0.14901396 \pm 1.1 \cdot 10^{-4} \) |
\(a_{826}= -0.24829592 \pm 1.2 \cdot 10^{-4} \) | \(a_{827}= -1.16548561 \pm 1.0 \cdot 10^{-4} \) | \(a_{828}= -0.17177518 \pm 2.3 \cdot 10^{-4} \) |
\(a_{829}= +0.19716944 \pm 1.5 \cdot 10^{-4} \) | \(a_{830}= +0.29711445 \pm 2.1 \cdot 10^{-4} \) | \(a_{831}= +0.40036193 \pm 2.2 \cdot 10^{-4} \) |
\(a_{832}= -0.20368302 \pm 1.1 \cdot 10^{-4} \) | \(a_{833}= +0.24811152 \pm 8.0 \cdot 10^{-5} \) | \(a_{834}= +0.83503184 \pm 2.6 \cdot 10^{-4} \) |
\(a_{835}= +0.50142034 \pm 1.5 \cdot 10^{-4} \) | \(a_{836}= -0.01980011 \pm 2.4 \cdot 10^{-4} \) | \(a_{837}= -1.37308610 \pm 6.5 \cdot 10^{-5} \) |
\(a_{838}= -1.37203254 \pm 1.0 \cdot 10^{-4} \) | \(a_{839}= -0.20789666 \pm 1.2 \cdot 10^{-4} \) | \(a_{840}= +0.07648069 \pm 2.7 \cdot 10^{-4} \) |
\(a_{841}= -0.08015309 \pm 1.3 \cdot 10^{-4} \) | \(a_{842}= +0.31398981 \pm 1.0 \cdot 10^{-4} \) | \(a_{843}= -1.14667383 \pm 1.3 \cdot 10^{-4} \) |
\(a_{844}= -0.46006855 \pm 1.4 \cdot 10^{-4} \) | \(a_{845}= -1.37837953 \pm 8.9 \cdot 10^{-5} \) | \(a_{846}= -0.38725074 \pm 2.1 \cdot 10^{-4} \) |
\(a_{847}= -0.18878270 \pm 1.0 \cdot 10^{-4} \) | \(a_{848}= +0.42672283 \pm 1.1 \cdot 10^{-4} \) | \(a_{849}= -1.25961620 \pm 1.5 \cdot 10^{-4} \) |
\(a_{850}= +0.37638082 \pm 1.7 \cdot 10^{-4} \) | \(a_{851}= +0.37021912 \pm 8.0 \cdot 10^{-5} \) | \(a_{852}= +0.42449866 \pm 3.2 \cdot 10^{-4} \) |
\(a_{853}= +0.97123560 \pm 7.3 \cdot 10^{-5} \) | \(a_{854}= +0.04709411 \pm 7.5 \cdot 10^{-5} \) | \(a_{855}= +0.02459743 \pm 1.1 \cdot 10^{-4} \) |
\(a_{856}= -0.13007911 \pm 9.1 \cdot 10^{-5} \) | \(a_{857}= -1.15206671 \pm 1.1 \cdot 10^{-4} \) | \(a_{858}= -0.56022087 \pm 3.9 \cdot 10^{-4} \) |
\(a_{859}= -0.09094463 \pm 6.2 \cdot 10^{-5} \) | \(a_{860}= -0.13866465 \pm 2.4 \cdot 10^{-4} \) | \(a_{861}= -0.42581192 \pm 2.3 \cdot 10^{-4} \) |
\(a_{862}= -0.24781226 \pm 1.1 \cdot 10^{-4} \) | \(a_{863}= +0.75525349 \pm 9.0 \cdot 10^{-5} \) | \(a_{864}= +0.18559851 \pm 1.1 \cdot 10^{-4} \) |
\(a_{865}= -0.46208122 \pm 1.3 \cdot 10^{-4} \) | \(a_{866}= +0.21741107 \pm 1.5 \cdot 10^{-4} \) | \(a_{867}= +1.38577754 \pm 1.1 \cdot 10^{-4} \) |
\(a_{868}= +0.24715494 \pm 1.3 \cdot 10^{-4} \) | \(a_{869}= +0.79558664 \pm 1.1 \cdot 10^{-4} \) | \(a_{870}= -0.38814017 \pm 4.1 \cdot 10^{-4} \) |
\(a_{871}= -0.64749830 \pm 1.4 \cdot 10^{-4} \) | \(a_{872}= -0.16119380 \pm 9.0 \cdot 10^{-5} \) | \(a_{873}= -0.50395577 \pm 1.6 \cdot 10^{-4} \) |
\(a_{874}= -0.02576814 \pm 2.3 \cdot 10^{-4} \) | \(a_{875}= +0.41122847 \pm 1.0 \cdot 10^{-4} \) | \(a_{876}= +0.42517568 \pm 2.7 \cdot 10^{-4} \) |
\(a_{877}= +0.16963378 \pm 1.2 \cdot 10^{-4} \) | \(a_{878}= +0.01911047 \pm 1.4 \cdot 10^{-4} \) | \(a_{879}= +0.28256217 \pm 1.0 \cdot 10^{-4} \) |
\(a_{880}= +0.14729387 \pm 2.4 \cdot 10^{-4} \) | \(a_{881}= +1.37641963 \pm 1.0 \cdot 10^{-4} \) | \(a_{882}= +0.05330436 \pm 1.2 \cdot 10^{-4} \) |
\(a_{883}= -1.50245535 \pm 1.0 \cdot 10^{-4} \) | \(a_{884}= -1.41501096 \pm 1.9 \cdot 10^{-4} \) | \(a_{885}= -0.53171561 \pm 1.7 \cdot 10^{-4} \) |
\(a_{886}= +0.49288020 \pm 1.1 \cdot 10^{-4} \) | \(a_{887}= +1.81387550 \pm 1.2 \cdot 10^{-4} \) | \(a_{888}= -0.13817024 \pm 2.5 \cdot 10^{-4} \) |
\(a_{889}= +0.37251945 \pm 1.1 \cdot 10^{-4} \) | \(a_{890}= +0.96069289 \pm 2.0 \cdot 10^{-4} \) | \(a_{891}= +0.13715277 \pm 1.3 \cdot 10^{-4} \) |
\(a_{892}= +0.26694872 \pm 1.1 \cdot 10^{-4} \) | \(a_{893}= -0.05809182 \pm 9.7 \cdot 10^{-5} \) | \(a_{894}= -0.58870089 \pm 2.4 \cdot 10^{-4} \) |
\(a_{895}= +1.07303248 \pm 1.2 \cdot 10^{-4} \) | \(a_{896}= -0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= -0.72907929 \pm 1.0 \cdot 10^{-4} \) |
\(a_{898}= +0.51077371 \pm 1.1 \cdot 10^{-4} \) | \(a_{899}= -1.25431345 \pm 1.6 \cdot 10^{-4} \) | \(a_{900}= +0.08086178 \pm 2.1 \cdot 10^{-4} \) |
\(a_{901}= +2.96449586 \pm 1.0 \cdot 10^{-4} \) | \(a_{902}= -0.82006957 \pm 2.0 \cdot 10^{-4} \) | \(a_{903}= +0.08650307 \pm 2.8 \cdot 10^{-4} \) |
\(a_{904}= -0.04437336 \pm 1.4 \cdot 10^{-4} \) | \(a_{905}= -0.18966688 \pm 1.2 \cdot 10^{-4} \) | \(a_{906}= +0.03872950 \pm 2.6 \cdot 10^{-4} \) |
\(a_{907}= +1.21249113 \pm 1.3 \cdot 10^{-4} \) | \(a_{908}= -0.67616553 \pm 1.3 \cdot 10^{-4} \) | \(a_{909}= +0.14646146 \pm 1.0 \cdot 10^{-4} \) |
\(a_{910}= -0.36266974 \pm 2.3 \cdot 10^{-4} \) | \(a_{911}= +1.01846493 \pm 9.2 \cdot 10^{-5} \) | \(a_{912}= +0.00961698 \pm 2.7 \cdot 10^{-4} \) |
\(a_{913}= -0.35696236 \pm 1.0 \cdot 10^{-4} \) | \(a_{914}= -0.02378805 \pm 1.6 \cdot 10^{-4} \) | \(a_{915}= +0.10085013 \pm 1.0 \cdot 10^{-4} \) |
\(a_{916}= -0.73275307 \pm 1.0 \cdot 10^{-4} \) | \(a_{917}= +0.25903788 \pm 9.7 \cdot 10^{-5} \) | \(a_{918}= +1.28937560 \pm 1.9 \cdot 10^{-4} \) |
\(a_{919}= -0.31037536 \pm 1.3 \cdot 10^{-4} \) | \(a_{920}= +0.19169031 \pm 2.3 \cdot 10^{-4} \) | \(a_{921}= -0.76866885 \pm 1.3 \cdot 10^{-4} \) |
\(a_{922}= -0.27929565 \pm 7.7 \cdot 10^{-5} \) | \(a_{923}= -2.01296324 \pm 1.3 \cdot 10^{-4} \) | \(a_{924}= -0.09188623 \pm 2.8 \cdot 10^{-4} \) |
\(a_{925}= -0.17427766 \pm 9.2 \cdot 10^{-5} \) | \(a_{926}= -1.27293549 \pm 1.4 \cdot 10^{-4} \) | \(a_{927}= -0.04786548 \pm 1.5 \cdot 10^{-4} \) |
\(a_{928}= +0.16954414 \pm 1.3 \cdot 10^{-4} \) | \(a_{929}= -0.62019031 \pm 1.3 \cdot 10^{-4} \) | \(a_{930}= +0.52927225 \pm 4.1 \cdot 10^{-4} \) |
\(a_{931}= +0.00799623 \pm 1.2 \cdot 10^{-4} \) | \(a_{932}= +0.58897317 \pm 9.3 \cdot 10^{-5} \) | \(a_{933}= +0.68830664 \pm 1.6 \cdot 10^{-4} \) |
\(a_{934}= -0.18369060 \pm 1.4 \cdot 10^{-4} \) | \(a_{935}= +1.02326862 \pm 6.8 \cdot 10^{-5} \) | \(a_{936}= -0.30400141 \pm 2.4 \cdot 10^{-4} \) |
\(a_{937}= +0.36738725 \pm 1.2 \cdot 10^{-4} \) | \(a_{938}= -0.10620129 \pm 1.2 \cdot 10^{-4} \) | \(a_{939}= +0.49882983 \pm 1.0 \cdot 10^{-4} \) |
\(a_{940}= +0.43214750 \pm 2.0 \cdot 10^{-4} \) | \(a_{941}= +0.55486601 \pm 1.2 \cdot 10^{-4} \) | \(a_{942}= +0.27710671 \pm 2.6 \cdot 10^{-4} \) |
\(a_{943}= -1.06725003 \pm 9.0 \cdot 10^{-5} \) | \(a_{944}= +0.23225956 \pm 1.2 \cdot 10^{-4} \) | \(a_{945}= +0.33046918 \pm 2.3 \cdot 10^{-4} \) |
\(a_{946}= +0.16659594 \pm 2.4 \cdot 10^{-4} \) | \(a_{947}= -1.36832386 \pm 7.0 \cdot 10^{-5} \) | \(a_{948}= -0.38641914 \pm 3.0 \cdot 10^{-4} \) |
\(a_{949}= -2.01617364 \pm 1.3 \cdot 10^{-4} \) | \(a_{950}= +0.01213014 \pm 2.1 \cdot 10^{-4} \) | \(a_{951}= +0.16062553 \pm 1.6 \cdot 10^{-4} \) |
\(a_{952}= -0.23208708 \pm 8.0 \cdot 10^{-5} \) | \(a_{953}= -1.82009650 \pm 1.1 \cdot 10^{-4} \) | \(a_{954}= +0.63689324 \pm 2.4 \cdot 10^{-4} \) |
\(a_{955}= +0.03643379 \pm 9.5 \cdot 10^{-5} \) | \(a_{956}= +0.03823062 \pm 1.4 \cdot 10^{-4} \) | \(a_{957}= +0.46632343 \pm 1.3 \cdot 10^{-4} \) |
\(a_{958}= -0.67307272 \pm 1.3 \cdot 10^{-4} \) | \(a_{959}= +0.39288690 \pm 1.3 \cdot 10^{-4} \) | \(a_{960}= -0.07154114 \pm 2.7 \cdot 10^{-4} \) |
\(a_{961}= +0.71039574 \pm 1.4 \cdot 10^{-4} \) | \(a_{962}= +0.65520022 \pm 2.1 \cdot 10^{-4} \) | \(a_{963}= -0.19414595 \pm 7.8 \cdot 10^{-5} \) |
\(a_{964}= -0.24968235 \pm 1.3 \cdot 10^{-4} \) | \(a_{965}= +0.48348817 \pm 8.5 \cdot 10^{-5} \) | \(a_{966}= -0.11958203 \pm 2.6 \cdot 10^{-4} \) |
\(a_{967}= +0.19654216 \pm 1.5 \cdot 10^{-4} \) | \(a_{968}= +0.17659004 \pm 1.0 \cdot 10^{-4} \) | \(a_{969}= +0.06681035 \pm 1.0 \cdot 10^{-4} \) |
\(a_{970}= +0.56238298 \pm 2.1 \cdot 10^{-4} \) | \(a_{971}= +0.40500818 \pm 1.6 \cdot 10^{-4} \) | \(a_{972}= +0.45833628 \pm 1.2 \cdot 10^{-4} \) |
\(a_{973}= -0.64946195 \pm 1.1 \cdot 10^{-4} \) | \(a_{974}= +0.10521586 \pm 1.0 \cdot 10^{-4} \) | \(a_{975}= +0.34320818 \pm 9.7 \cdot 10^{-5} \) |
\(a_{976}= -0.04405251 \pm 7.5 \cdot 10^{-5} \) | \(a_{977}= +0.15330151 \pm 1.6 \cdot 10^{-4} \) | \(a_{978}= +0.05600386 \pm 2.4 \cdot 10^{-4} \) |
\(a_{979}= -1.15420570 \pm 1.0 \cdot 10^{-4} \) | \(a_{980}= -0.05948432 \pm 1.2 \cdot 10^{-4} \) | \(a_{981}= -0.24058531 \pm 8.7 \cdot 10^{-5} \) |
\(a_{982}= -0.80563170 \pm 1.4 \cdot 10^{-4} \) | \(a_{983}= -0.37957240 \pm 1.1 \cdot 10^{-4} \) | \(a_{984}= +0.39831058 \pm 2.3 \cdot 10^{-4} \) |
\(a_{985}= -0.99499234 \pm 1.3 \cdot 10^{-4} \) | \(a_{986}= +1.17784395 \pm 2.1 \cdot 10^{-4} \) | \(a_{987}= -0.26958627 \pm 2.4 \cdot 10^{-4} \) |
\(a_{988}= -0.04560351 \pm 2.3 \cdot 10^{-4} \) | \(a_{989}= +0.21681029 \pm 7.3 \cdot 10^{-5} \) | \(a_{990}= +0.21983936 \pm 3.6 \cdot 10^{-4} \) |
\(a_{991}= -0.55912363 \pm 1.1 \cdot 10^{-4} \) | \(a_{992}= -0.23119227 \pm 1.3 \cdot 10^{-4} \) | \(a_{993}= -0.32274677 \pm 1.6 \cdot 10^{-4} \) |
\(a_{994}= -0.33016194 \pm 1.6 \cdot 10^{-4} \) | \(a_{995}= -0.98870741 \pm 1.1 \cdot 10^{-4} \) | \(a_{996}= +0.17337783 \pm 2.4 \cdot 10^{-4} \) |
\(a_{997}= +0.97661215 \pm 7.6 \cdot 10^{-5} \) | \(a_{998}= +0.35649575 \pm 1.7 \cdot 10^{-4} \) | \(a_{999}= -0.59702659 \pm 9.6 \cdot 10^{-5} \) |
\(a_{1000}= -0.38466901 \pm 1.0 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000