Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.2327363052090083356696244667 \pm 3 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +1.27784612 \pm 9.2 \cdot 10^{-4} \) |
\(a_{4}= +0.5 \) | \(a_{5}= -1.95221923 \pm 7.1 \cdot 10^{-4} \) | \(a_{6}= -0.90357365 \pm 9.2 \cdot 10^{-4} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.63289070 \pm 7.2 \cdot 10^{-4} \) |
\(a_{10}= +1.38042745 \pm 7.1 \cdot 10^{-4} \) | \(a_{11}= +1.69191848 \pm 7.3 \cdot 10^{-4} \) | \(a_{12}= +0.63892306 \pm 9.2 \cdot 10^{-4} \) |
\(a_{13}= +0.84174138 \pm 6.8 \cdot 10^{-4} \) | \(a_{14}= +0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -2.49463576 \pm 8.8 \cdot 10^{-4} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -0.07676208 \pm 4.7 \cdot 10^{-4} \) | \(a_{18}= -0.44752131 \pm 7.2 \cdot 10^{-4} \) |
\(a_{19}= +0.58267929 \pm 7.0 \cdot 10^{-4} \) | \(a_{20}= -0.97610961 \pm 7.1 \cdot 10^{-4} \) | \(a_{21}= -0.48298043 \pm 9.2 \cdot 10^{-4} \) |
\(a_{22}= -1.19636703 \pm 7.3 \cdot 10^{-4} \) | \(a_{23}= -0.35641533 \pm 6.4 \cdot 10^{-4} \) | \(a_{24}= -0.45178683 \pm 9.2 \cdot 10^{-4} \) |
\(a_{25}= +2.81115991 \pm 5.5 \cdot 10^{-4} \) | \(a_{26}= -0.59520104 \pm 6.8 \cdot 10^{-4} \) | \(a_{27}= -0.46910919 \pm 6.8 \cdot 10^{-4} \) |
\(a_{28}= -0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -0.71089271 \pm 7.9 \cdot 10^{-4} \) | \(a_{30}= +1.76397386 \pm 1.6 \cdot 10^{-3} \) |
\(a_{31}= -0.89697814 \pm 7.8 \cdot 10^{-4} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +2.16201146 \pm 8.7 \cdot 10^{-4} \) |
\(a_{34}= +0.05427899 \pm 4.7 \cdot 10^{-4} \) | \(a_{35}= +0.73786951 \pm 7.1 \cdot 10^{-4} \) | \(a_{36}= +0.31644535 \pm 7.2 \cdot 10^{-4} \) |
\(a_{37}= -0.34811146 \pm 5.6 \cdot 10^{-4} \) | \(a_{38}= -0.41201648 \pm 7.1 \cdot 10^{-4} \) | \(a_{39}= +1.07561595 \pm 7.9 \cdot 10^{-4} \) |
\(a_{40}= +0.69021373 \pm 7.1 \cdot 10^{-4} \) | \(a_{41}= -0.90762215 \pm 4.6 \cdot 10^{-4} \) | \(a_{42}= +0.34151874 \pm 9.2 \cdot 10^{-4} \) |
\(a_{43}= -0.78019955 \pm 7.2 \cdot 10^{-4} \) | \(a_{44}= +0.84595924 \pm 7.3 \cdot 10^{-4} \) | \(a_{45}= -1.23554139 \pm 6.3 \cdot 10^{-4} \) |
\(a_{46}= +0.25202370 \pm 6.4 \cdot 10^{-4} \) | \(a_{47}= -1.18365848 \pm 5.1 \cdot 10^{-4} \) | \(a_{48}= +0.31946153 \pm 9.2 \cdot 10^{-4} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -1.98779024 \pm 5.5 \cdot 10^{-4} \) | \(a_{51}= -0.09809013 \pm 5.6 \cdot 10^{-4} \) |
\(a_{52}= +0.42087069 \pm 6.8 \cdot 10^{-4} \) | \(a_{53}= -0.35634077 \pm 6.9 \cdot 10^{-4} \) | \(a_{54}= +0.33171029 \pm 6.8 \cdot 10^{-4} \) |
\(a_{55}= -3.30299579 \pm 6.7 \cdot 10^{-4} \) | \(a_{56}= +0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +0.74457447 \pm 1.0 \cdot 10^{-3} \) |
\(a_{58}= +0.50267705 \pm 7.9 \cdot 10^{-4} \) | \(a_{59}= +0.90663004 \pm 7.4 \cdot 10^{-4} \) | \(a_{60}= -1.24731788 \pm 1.6 \cdot 10^{-3} \) |
\(a_{61}= +0.13637112 \pm 4.4 \cdot 10^{-4} \) | \(a_{62}= +0.63425932 \pm 7.8 \cdot 10^{-4} \) | \(a_{63}= -0.23921020 \pm 7.2 \cdot 10^{-4} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -1.64326371 \pm 4.9 \cdot 10^{-4} \) | \(a_{66}= -1.52877297 \pm 1.6 \cdot 10^{-3} \) |
\(a_{67}= -1.12860624 \pm 7.4 \cdot 10^{-4} \) | \(a_{68}= -0.03838104 \pm 4.7 \cdot 10^{-4} \) | \(a_{69}= -0.45544394 \pm 8.4 \cdot 10^{-4} \) |
\(a_{70}= -0.52175254 \pm 7.1 \cdot 10^{-4} \) | \(a_{71}= -0.44582901 \pm 9.7 \cdot 10^{-4} \) | \(a_{72}= -0.22376065 \pm 7.2 \cdot 10^{-4} \) |
\(a_{73}= +0.96890392 \pm 7.1 \cdot 10^{-4} \) | \(a_{74}= +0.24615197 \pm 5.6 \cdot 10^{-4} \) | \(a_{75}= +3.59222978 \pm 6.0 \cdot 10^{-4} \) |
\(a_{76}= +0.29133965 \pm 7.1 \cdot 10^{-4} \) | \(a_{77}= -0.63948508 \pm 7.3 \cdot 10^{-4} \) | \(a_{78}= -0.76057534 \pm 1.6 \cdot 10^{-3} \) |
\(a_{79}= -1.11931403 \pm 8.7 \cdot 10^{-4} \) | \(a_{80}= -0.48805481 \pm 7.1 \cdot 10^{-4} \) | \(a_{81}= -1.23234006 \pm 7.7 \cdot 10^{-4} \) |
\(a_{82}= +0.64178578 \pm 4.6 \cdot 10^{-4} \) | \(a_{83}= +1.10187453 \pm 5.4 \cdot 10^{-4} \) | \(a_{84}= -0.24149022 \pm 9.2 \cdot 10^{-4} \) |
\(a_{85}= +0.14985642 \pm 5.5 \cdot 10^{-4} \) | \(a_{86}= +0.55168439 \pm 7.2 \cdot 10^{-4} \) | \(a_{87}= -0.90841149 \pm 1.0 \cdot 10^{-3} \) |
\(a_{88}= -0.59818352 \pm 7.3 \cdot 10^{-4} \) | \(a_{89}= -0.60256202 \pm 5.0 \cdot 10^{-4} \) | \(a_{90}= +0.87365970 \pm 1.4 \cdot 10^{-3} \) |
\(a_{91}= -0.31814834 \pm 6.8 \cdot 10^{-4} \) | \(a_{92}= -0.17820766 \pm 6.4 \cdot 10^{-4} \) | \(a_{93}= -1.14620003 \pm 1.0 \cdot 10^{-3} \) |
\(a_{94}= +0.83697294 \pm 5.1 \cdot 10^{-4} \) | \(a_{95}= -1.13751772 \pm 6.0 \cdot 10^{-4} \) | \(a_{96}= -0.22589341 \pm 9.2 \cdot 10^{-4} \) |
\(a_{97}= +0.39877209 \pm 5.7 \cdot 10^{-4} \) | \(a_{98}= -0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +1.07079947 \pm 5.7 \cdot 10^{-4} \) |
\(a_{100}= +1.40557996 \pm 5.5 \cdot 10^{-4} \) | \(a_{101}= -1.40570701 \pm 7.7 \cdot 10^{-4} \) | \(a_{102}= +0.06936020 \pm 1.4 \cdot 10^{-3} \) |
\(a_{103}= +1.27607158 \pm 5.4 \cdot 10^{-4} \) | \(a_{104}= -0.29760052 \pm 6.8 \cdot 10^{-4} \) | \(a_{105}= +0.94288369 \pm 1.6 \cdot 10^{-3} \) |
\(a_{106}= +0.25197097 \pm 6.9 \cdot 10^{-4} \) | \(a_{107}= -1.18706029 \pm 5.3 \cdot 10^{-4} \) | \(a_{108}= -0.23455460 \pm 6.8 \cdot 10^{-4} \) |
\(a_{109}= -0.75190250 \pm 5.3 \cdot 10^{-4} \) | \(a_{110}= +2.33557072 \pm 1.4 \cdot 10^{-3} \) | \(a_{111}= -0.44483287 \pm 5.8 \cdot 10^{-4} \) |
\(a_{112}= -0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= -1.72051591 \pm 8.5 \cdot 10^{-4} \) | \(a_{114}= -0.52649366 \pm 1.6 \cdot 10^{-3} \) |
\(a_{115}= +0.69580086 \pm 7.4 \cdot 10^{-4} \) | \(a_{116}= -0.35544635 \pm 7.9 \cdot 10^{-4} \) | \(a_{117}= +0.53273029 \pm 5.8 \cdot 10^{-4} \) |
\(a_{118}= -0.64108425 \pm 7.4 \cdot 10^{-4} \) | \(a_{119}= +0.02901334 \pm 4.7 \cdot 10^{-4} \) | \(a_{120}= +0.88198693 \pm 1.6 \cdot 10^{-3} \) |
\(a_{121}= +1.86258815 \pm 6.4 \cdot 10^{-4} \) | \(a_{122}= -0.09642894 \pm 4.4 \cdot 10^{-4} \) | \(a_{123}= -1.15980144 \pm 5.3 \cdot 10^{-4} \) |
\(a_{124}= -0.44848907 \pm 7.8 \cdot 10^{-4} \) | \(a_{125}= -3.53578120 \pm 5.9 \cdot 10^{-4} \) | \(a_{126}= +0.16914715 \pm 7.2 \cdot 10^{-4} \) |
\(a_{127}= +1.00184272 \pm 6.9 \cdot 10^{-4} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.99697497 \pm 9.0 \cdot 10^{-4} \) |
\(a_{130}= +1.16196291 \pm 1.4 \cdot 10^{-3} \) | \(a_{131}= +0.48823201 \pm 5.7 \cdot 10^{-4} \) | \(a_{132}= +1.08100573 \pm 1.6 \cdot 10^{-3} \) |
\(a_{133}= -0.22023207 \pm 7.1 \cdot 10^{-4} \) | \(a_{134}= +0.79804512 \pm 7.4 \cdot 10^{-4} \) | \(a_{135}= +0.91580399 \pm 5.1 \cdot 10^{-4} \) |
\(a_{136}= +0.02713949 \pm 4.7 \cdot 10^{-4} \) | \(a_{137}= +0.17424026 \pm 8.0 \cdot 10^{-4} \) | \(a_{138}= +0.32204750 \pm 1.5 \cdot 10^{-3} \) |
\(a_{139}= -1.27785991 \pm 6.5 \cdot 10^{-4} \) | \(a_{140}= +0.36893476 \pm 7.1 \cdot 10^{-4} \) | \(a_{141}= -1.51253339 \pm 6.3 \cdot 10^{-4} \) |
\(a_{142}= +0.31524872 \pm 9.7 \cdot 10^{-4} \) | \(a_{143}= +1.42415780 \pm 8.8 \cdot 10^{-4} \) | \(a_{144}= +0.15822267 \pm 7.2 \cdot 10^{-4} \) |
\(a_{145}= +1.38781841 \pm 7.6 \cdot 10^{-4} \) | \(a_{146}= -0.68511853 \pm 7.1 \cdot 10^{-4} \) | \(a_{147}= +0.18254945 \pm 9.2 \cdot 10^{-4} \) |
\(a_{148}= -0.17405573 \pm 5.6 \cdot 10^{-4} \) | \(a_{149}= -1.11280388 \pm 5.0 \cdot 10^{-4} \) | \(a_{150}= -2.54009003 \pm 1.4 \cdot 10^{-3} \) |
\(a_{151}= -0.50503828 \pm 6.1 \cdot 10^{-4} \) | \(a_{152}= -0.20600824 \pm 7.1 \cdot 10^{-4} \) | \(a_{153}= -0.04858201 \pm 5.3 \cdot 10^{-4} \) |
\(a_{154}= +0.45218424 \pm 7.3 \cdot 10^{-4} \) | \(a_{155}= +1.75109797 \pm 8.9 \cdot 10^{-4} \) | \(a_{156}= +0.53780798 \pm 1.6 \cdot 10^{-3} \) |
\(a_{157}= -0.28078314 \pm 6.0 \cdot 10^{-4} \) | \(a_{158}= +0.79147454 \pm 8.7 \cdot 10^{-4} \) | \(a_{159}= -0.45534866 \pm 8.0 \cdot 10^{-4} \) |
\(a_{160}= +0.34510686 \pm 7.1 \cdot 10^{-4} \) | \(a_{161}= +0.13471233 \pm 6.4 \cdot 10^{-4} \) | \(a_{162}= +0.87139601 \pm 7.7 \cdot 10^{-4} \) |
\(a_{163}= +1.77551022 \pm 5.3 \cdot 10^{-4} \) | \(a_{164}= -0.45381108 \pm 4.6 \cdot 10^{-4} \) | \(a_{165}= -4.22072035 \pm 8.5 \cdot 10^{-4} \) |
\(a_{166}= -0.77914295 \pm 5.4 \cdot 10^{-4} \) | \(a_{167}= +0.08790081 \pm 7.9 \cdot 10^{-4} \) | \(a_{168}= +0.17075937 \pm 9.2 \cdot 10^{-4} \) |
\(a_{169}= -0.29147145 \pm 7.2 \cdot 10^{-4} \) | \(a_{170}= -0.10596449 \pm 1.1 \cdot 10^{-3} \) | \(a_{171}= +0.36877231 \pm 9.4 \cdot 10^{-4} \) |
\(a_{172}= -0.39009978 \pm 7.2 \cdot 10^{-4} \) | \(a_{173}= +0.31421572 \pm 8.1 \cdot 10^{-4} \) | \(a_{174}= +0.64234392 \pm 1.7 \cdot 10^{-3} \) |
\(a_{175}= -1.06251857 \pm 5.5 \cdot 10^{-4} \) | \(a_{176}= +0.42297962 \pm 7.3 \cdot 10^{-4} \) | \(a_{177}= +1.15853368 \pm 8.8 \cdot 10^{-4} \) |
\(a_{178}= +0.42607569 \pm 5.0 \cdot 10^{-4} \) | \(a_{179}= +0.54120254 \pm 6.4 \cdot 10^{-4} \) | \(a_{180}= -0.61777070 \pm 1.4 \cdot 10^{-3} \) |
\(a_{181}= +0.99521873 \pm 6.5 \cdot 10^{-4} \) | \(a_{182}= +0.22496485 \pm 6.8 \cdot 10^{-4} \) | \(a_{183}= +0.17426130 \pm 6.0 \cdot 10^{-4} \) |
\(a_{184}= +0.12601185 \pm 6.4 \cdot 10^{-4} \) | \(a_{185}= +0.67958988 \pm 4.7 \cdot 10^{-4} \) | \(a_{186}= +0.81048581 \pm 1.7 \cdot 10^{-3} \) |
\(a_{187}= -0.12987519 \pm 3.9 \cdot 10^{-4} \) | \(a_{188}= -0.59182924 \pm 5.1 \cdot 10^{-4} \) | \(a_{189}= +0.17730661 \pm 6.8 \cdot 10^{-4} \) |
\(a_{190}= +0.80434649 \pm 1.4 \cdot 10^{-3} \) | \(a_{191}= +0.46103685 \pm 5.1 \cdot 10^{-4} \) | \(a_{192}= +0.15973076 \pm 9.2 \cdot 10^{-4} \) |
\(a_{193}= -1.03591592 \pm 5.5 \cdot 10^{-4} \) | \(a_{194}= -0.28197445 \pm 5.7 \cdot 10^{-4} \) | \(a_{195}= -2.09983815 \pm 5.6 \cdot 10^{-4} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= -0.46120653 \pm 9.1 \cdot 10^{-4} \) | \(a_{198}= -0.75716957 \pm 1.4 \cdot 10^{-3} \) |
\(a_{199}= +0.06730175 \pm 6.4 \cdot 10^{-4} \) | \(a_{200}= -0.99389512 \pm 5.5 \cdot 10^{-4} \) | \(a_{201}= -1.44218510 \pm 9.4 \cdot 10^{-4} \) |
\(a_{202}= +0.99398496 \pm 7.7 \cdot 10^{-4} \) | \(a_{203}= +0.26869219 \pm 7.9 \cdot 10^{-4} \) | \(a_{204}= -0.04904507 \pm 1.4 \cdot 10^{-3} \) |
\(a_{205}= +1.77187742 \pm 4.9 \cdot 10^{-4} \) | \(a_{206}= -0.90231887 \pm 5.4 \cdot 10^{-4} \) | \(a_{207}= -0.22557195 \pm 6.4 \cdot 10^{-4} \) |
\(a_{208}= +0.21043534 \pm 6.8 \cdot 10^{-4} \) | \(a_{209}= +0.98584587 \pm 5.7 \cdot 10^{-4} \) | \(a_{210}= -0.66671945 \pm 1.6 \cdot 10^{-3} \) |
\(a_{211}= -1.61106008 \pm 8.5 \cdot 10^{-4} \) | \(a_{212}= -0.17817038 \pm 6.9 \cdot 10^{-4} \) | \(a_{213}= -0.56970088 \pm 1.3 \cdot 10^{-3} \) |
\(a_{214}= +0.83937838 \pm 5.3 \cdot 10^{-4} \) | \(a_{215}= +1.52312056 \pm 6.1 \cdot 10^{-4} \) | \(a_{216}= +0.16585515 \pm 6.8 \cdot 10^{-4} \) |
\(a_{217}= +0.33902587 \pm 7.8 \cdot 10^{-4} \) | \(a_{218}= +0.53167535 \pm 5.3 \cdot 10^{-4} \) | \(a_{219}= +1.23811011 \pm 9.1 \cdot 10^{-4} \) |
\(a_{220}= -1.65149790 \pm 1.4 \cdot 10^{-3} \) | \(a_{221}= -0.06461382 \pm 4.1 \cdot 10^{-4} \) | \(a_{222}= +0.31454434 \pm 1.4 \cdot 10^{-3} \) |
\(a_{223}= +1.00102992 \pm 6.5 \cdot 10^{-4} \) | \(a_{224}= +0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= +1.77915696 \pm 4.6 \cdot 10^{-4} \) |
\(a_{226}= +1.21658847 \pm 8.5 \cdot 10^{-4} \) | \(a_{227}= -1.32992560 \pm 7.6 \cdot 10^{-4} \) | \(a_{228}= +0.37228724 \pm 1.6 \cdot 10^{-3} \) |
\(a_{229}= -1.02163517 \pm 6.2 \cdot 10^{-4} \) | \(a_{230}= -0.49200551 \pm 1.3 \cdot 10^{-3} \) | \(a_{231}= -0.81716352 \pm 1.6 \cdot 10^{-3} \) |
\(a_{232}= +0.25133853 \pm 7.9 \cdot 10^{-4} \) | \(a_{233}= -0.68079159 \pm 5.4 \cdot 10^{-4} \) | \(a_{234}= -0.37669720 \pm 1.4 \cdot 10^{-3} \) |
\(a_{235}= +2.31076084 \pm 5.3 \cdot 10^{-4} \) | \(a_{236}= +0.45331502 \pm 7.4 \cdot 10^{-4} \) | \(a_{237}= -1.43031109 \pm 1.1 \cdot 10^{-3} \) |
\(a_{238}= -0.02051553 \pm 4.7 \cdot 10^{-4} \) | \(a_{239}= -0.80639070 \pm 8.5 \cdot 10^{-4} \) | \(a_{240}= -0.62365894 \pm 1.6 \cdot 10^{-3} \) |
\(a_{241}= +0.32003904 \pm 7.9 \cdot 10^{-4} \) | \(a_{242}= -1.31704871 \pm 6.4 \cdot 10^{-4} \) | \(a_{243}= -1.10563177 \pm 7.4 \cdot 10^{-4} \) |
\(a_{244}= +0.06818556 \pm 4.4 \cdot 10^{-4} \) | \(a_{245}= -0.27888846 \pm 7.1 \cdot 10^{-4} \) | \(a_{246}= +0.82010347 \pm 1.3 \cdot 10^{-3} \) |
\(a_{247}= +0.49046527 \pm 6.7 \cdot 10^{-4} \) | \(a_{248}= +0.31712966 \pm 7.8 \cdot 10^{-4} \) | \(a_{249}= +1.40802609 \pm 6.8 \cdot 10^{-4} \) |
\(a_{250}= +2.50017486 \pm 5.9 \cdot 10^{-4} \) | \(a_{251}= -1.68067768 \pm 6.7 \cdot 10^{-4} \) | \(a_{252}= -0.11960510 \pm 7.2 \cdot 10^{-4} \) |
\(a_{253}= -0.60302568 \pm 7.9 \cdot 10^{-4} \) | \(a_{254}= -0.70840978 \pm 6.9 \cdot 10^{-4} \) | \(a_{255}= +0.19149344 \pm 5.2 \cdot 10^{-4} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -1.21134105 \pm 7.7 \cdot 10^{-4} \) | \(a_{258}= +0.70496776 \pm 1.6 \cdot 10^{-3} \) |
\(a_{259}= +0.13157376 \pm 5.6 \cdot 10^{-4} \) | \(a_{260}= -0.82163185 \pm 1.4 \cdot 10^{-3} \) | \(a_{261}= -0.44991738 \pm 7.6 \cdot 10^{-4} \) |
\(a_{262}= -0.34523216 \pm 5.7 \cdot 10^{-4} \) | \(a_{263}= +0.89557846 \pm 7.6 \cdot 10^{-4} \) | \(a_{264}= -0.76438648 \pm 1.6 \cdot 10^{-3} \) |
\(a_{265}= +0.69565529 \pm 7.6 \cdot 10^{-4} \) | \(a_{266}= +0.15572759 \pm 7.1 \cdot 10^{-4} \) | \(a_{267}= -0.76998153 \pm 6.6 \cdot 10^{-4} \) |
\(a_{268}= -0.56430312 \pm 7.4 \cdot 10^{-4} \) | \(a_{269}= +0.15468060 \pm 6.7 \cdot 10^{-4} \) | \(a_{270}= -0.64757121 \pm 1.3 \cdot 10^{-3} \) |
\(a_{271}= +0.79965550 \pm 5.8 \cdot 10^{-4} \) | \(a_{272}= -0.01919052 \pm 4.7 \cdot 10^{-4} \) | \(a_{273}= -0.40654462 \pm 1.6 \cdot 10^{-3} \) |
\(a_{274}= -0.12320647 \pm 8.0 \cdot 10^{-4} \) | \(a_{275}= +4.75625341 \pm 6.2 \cdot 10^{-4} \) | \(a_{276}= -0.22772197 \pm 1.5 \cdot 10^{-3} \) |
\(a_{277}= -1.34925100 \pm 9.6 \cdot 10^{-4} \) | \(a_{278}= +0.90358341 \pm 6.5 \cdot 10^{-4} \) | \(a_{279}= -0.56768912 \pm 6.0 \cdot 10^{-4} \) |
\(a_{280}= -0.26087627 \pm 7.1 \cdot 10^{-4} \) | \(a_{281}= +0.88607093 \pm 6.1 \cdot 10^{-4} \) | \(a_{282}= +1.06952262 \pm 1.4 \cdot 10^{-3} \) |
\(a_{283}= +1.41039796 \pm 7.3 \cdot 10^{-4} \) | \(a_{284}= -0.22291451 \pm 9.7 \cdot 10^{-4} \) | \(a_{285}= -1.45357260 \pm 7.7 \cdot 10^{-4} \) |
\(a_{286}= -1.00703164 \pm 1.4 \cdot 10^{-3} \) | \(a_{287}= +0.34304893 \pm 4.6 \cdot 10^{-4} \) | \(a_{288}= -0.11188033 \pm 7.2 \cdot 10^{-4} \) |
\(a_{289}= -0.99410758 \pm 5.9 \cdot 10^{-4} \) | \(a_{290}= -0.98133581 \pm 1.5 \cdot 10^{-3} \) | \(a_{291}= +0.50956937 \pm 8.9 \cdot 10^{-4} \) |
\(a_{292}= +0.48445196 \pm 7.1 \cdot 10^{-4} \) | \(a_{293}= +0.34716138 \pm 4.9 \cdot 10^{-4} \) | \(a_{294}= -0.12908195 \pm 9.2 \cdot 10^{-4} \) |
\(a_{295}= -1.76994060 \pm 9.3 \cdot 10^{-4} \) | \(a_{296}= +0.12307599 \pm 5.6 \cdot 10^{-4} \) | \(a_{297}= -0.79369452 \pm 7.1 \cdot 10^{-4} \) |
\(a_{298}= +0.78687117 \pm 5.0 \cdot 10^{-4} \) | \(a_{299}= -0.30000953 \pm 5.1 \cdot 10^{-4} \) | \(a_{300}= +1.79611489 \pm 1.4 \cdot 10^{-3} \) |
\(a_{301}= +0.29488771 \pm 7.2 \cdot 10^{-4} \) | \(a_{302}= +0.35711599 \pm 6.1 \cdot 10^{-4} \) | \(a_{303}= -1.79627725 \pm 9.9 \cdot 10^{-4} \) |
\(a_{304}= +0.14566982 \pm 7.1 \cdot 10^{-4} \) | \(a_{305}= -0.26622632 \pm 4.2 \cdot 10^{-4} \) | \(a_{306}= +0.03435267 \pm 1.2 \cdot 10^{-3} \) |
\(a_{307}= +0.42597717 \pm 6.1 \cdot 10^{-4} \) | \(a_{308}= -0.31974254 \pm 7.3 \cdot 10^{-4} \) | \(a_{309}= +1.63062311 \pm 8.4 \cdot 10^{-4} \) |
\(a_{310}= -1.23821325 \pm 1.4 \cdot 10^{-3} \) | \(a_{311}= -0.42317087 \pm 8.0 \cdot 10^{-4} \) | \(a_{312}= -0.38028767 \pm 1.6 \cdot 10^{-3} \) |
\(a_{313}= +0.62949425 \pm 4.4 \cdot 10^{-4} \) | \(a_{314}= +0.19854366 \pm 6.0 \cdot 10^{-4} \) | \(a_{315}= +0.46699075 \pm 1.4 \cdot 10^{-3} \) |
\(a_{316}= -0.55965702 \pm 8.7 \cdot 10^{-4} \) | \(a_{317}= -0.33400194 \pm 7.8 \cdot 10^{-4} \) | \(a_{318}= +0.32198013 \pm 1.6 \cdot 10^{-3} \) |
\(a_{319}= -1.20277251 \pm 6.2 \cdot 10^{-4} \) | \(a_{320}= -0.24402740 \pm 7.1 \cdot 10^{-4} \) | \(a_{321}= -1.51688039 \pm 6.2 \cdot 10^{-4} \) |
\(a_{322}= -0.09525600 \pm 6.4 \cdot 10^{-4} \) | \(a_{323}= -0.04472768 \pm 4.5 \cdot 10^{-4} \) | \(a_{324}= -0.61617003 \pm 7.7 \cdot 10^{-4} \) |
\(a_{325}= +2.36626962 \pm 5.9 \cdot 10^{-4} \) | \(a_{326}= -1.25547532 \pm 5.3 \cdot 10^{-4} \) | \(a_{327}= -0.96081568 \pm 5.9 \cdot 10^{-4} \) |
\(a_{328}= +0.32089289 \pm 4.6 \cdot 10^{-4} \) | \(a_{329}= +0.44738085 \pm 5.1 \cdot 10^{-4} \) | \(a_{330}= +2.98449998 \pm 2.3 \cdot 10^{-3} \) |
\(a_{331}= -0.31938307 \pm 6.4 \cdot 10^{-4} \) | \(a_{332}= +0.55093726 \pm 5.4 \cdot 10^{-4} \) | \(a_{333}= -0.22031650 \pm 3.5 \cdot 10^{-4} \) |
\(a_{334}= -0.06215526 \pm 7.9 \cdot 10^{-4} \) | \(a_{335}= +2.20328680 \pm 5.8 \cdot 10^{-4} \) | \(a_{336}= -0.12074511 \pm 9.2 \cdot 10^{-4} \) |
\(a_{337}= +1.00384666 \pm 7.0 \cdot 10^{-4} \) | \(a_{338}= +0.20610144 \pm 7.2 \cdot 10^{-4} \) | \(a_{339}= -2.19855457 \pm 1.1 \cdot 10^{-3} \) |
\(a_{340}= +0.07492821 \pm 1.1 \cdot 10^{-3} \) | \(a_{341}= -1.51761389 \pm 6.4 \cdot 10^{-4} \) | \(a_{342}= -0.26076140 \pm 1.4 \cdot 10^{-3} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.27584220 \pm 7.2 \cdot 10^{-4} \) | \(a_{345}= +0.88912643 \pm 9.6 \cdot 10^{-4} \) |
\(a_{346}= -0.22218406 \pm 8.1 \cdot 10^{-4} \) | \(a_{347}= +0.40841253 \pm 7.1 \cdot 10^{-4} \) | \(a_{348}= -0.45420574 \pm 1.7 \cdot 10^{-3} \) |
\(a_{349}= +0.69339716 \pm 6.9 \cdot 10^{-4} \) | \(a_{350}= +0.75131409 \pm 5.5 \cdot 10^{-4} \) | \(a_{351}= -0.39486862 \pm 7.4 \cdot 10^{-4} \) |
\(a_{352}= -0.29909176 \pm 7.3 \cdot 10^{-4} \) | \(a_{353}= +0.17434568 \pm 4.5 \cdot 10^{-4} \) | \(a_{354}= -0.81920702 \pm 1.6 \cdot 10^{-3} \) |
\(a_{355}= +0.87035597 \pm 9.3 \cdot 10^{-4} \) | \(a_{356}= -0.30128101 \pm 5.0 \cdot 10^{-4} \) | \(a_{357}= +0.03707458 \pm 1.4 \cdot 10^{-3} \) |
\(a_{358}= -0.38268799 \pm 6.4 \cdot 10^{-4} \) | \(a_{359}= +1.58210079 \pm 9.2 \cdot 10^{-4} \) | \(a_{360}= +0.43682985 \pm 1.4 \cdot 10^{-3} \) |
\(a_{361}= -0.66048484 \pm 6.1 \cdot 10^{-4} \) | \(a_{362}= -0.70372592 \pm 6.5 \cdot 10^{-4} \) | \(a_{363}= +2.38010104 \pm 7.5 \cdot 10^{-4} \) |
\(a_{364}= -0.15907417 \pm 6.8 \cdot 10^{-4} \) | \(a_{365}= -1.89151286 \pm 5.8 \cdot 10^{-4} \) | \(a_{366}= -0.12322135 \pm 1.3 \cdot 10^{-3} \) |
\(a_{367}= +0.79738662 \pm 4.9 \cdot 10^{-4} \) | \(a_{368}= -0.08910383 \pm 6.4 \cdot 10^{-4} \) | \(a_{369}= -0.57442562 \pm 2.8 \cdot 10^{-4} \) |
\(a_{370}= -0.48054261 \pm 1.2 \cdot 10^{-3} \) | \(a_{371}= +0.13468415 \pm 6.9 \cdot 10^{-4} \) | \(a_{372}= -0.57310002 \pm 1.7 \cdot 10^{-3} \) |
\(a_{373}= -0.72074973 \pm 8.8 \cdot 10^{-4} \) | \(a_{374}= +0.09183563 \pm 1.2 \cdot 10^{-3} \) | \(a_{375}= -4.51818428 \pm 7.9 \cdot 10^{-4} \) |
\(a_{376}= +0.41848647 \pm 5.1 \cdot 10^{-4} \) | \(a_{377}= -0.59838781 \pm 5.8 \cdot 10^{-4} \) | \(a_{378}= -0.12537471 \pm 6.8 \cdot 10^{-4} \) |
\(a_{379}= +0.21553156 \pm 8.0 \cdot 10^{-4} \) | \(a_{380}= -0.56875886 \pm 1.4 \cdot 10^{-3} \) | \(a_{381}= +1.28020083 \pm 8.8 \cdot 10^{-4} \) |
\(a_{382}= -0.32600228 \pm 5.1 \cdot 10^{-4} \) | \(a_{383}= -1.36831814 \pm 6.5 \cdot 10^{-4} \) | \(a_{384}= -0.11294671 \pm 9.2 \cdot 10^{-4} \) |
\(a_{385}= +1.24841506 \pm 1.4 \cdot 10^{-3} \) | \(a_{386}= +0.73250317 \pm 5.5 \cdot 10^{-4} \) | \(a_{387}= -0.49378104 \pm 5.9 \cdot 10^{-4} \) |
\(a_{388}= +0.19938605 \pm 5.7 \cdot 10^{-4} \) | \(a_{389}= +1.28801781 \pm 7.2 \cdot 10^{-4} \) | \(a_{390}= +1.48480979 \pm 2.3 \cdot 10^{-3} \) |
\(a_{391}= +0.02735918 \pm 3.8 \cdot 10^{-4} \) | \(a_{392}= -0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= +0.62388537 \pm 7.8 \cdot 10^{-4} \) |
\(a_{394}= +0.32612226 \pm 9.1 \cdot 10^{-4} \) | \(a_{395}= +2.18514637 \pm 8.7 \cdot 10^{-4} \) | \(a_{396}= +0.53539974 \pm 1.4 \cdot 10^{-3} \) |
\(a_{397}= -0.72190846 \pm 5.7 \cdot 10^{-4} \) | \(a_{398}= -0.04758952 \pm 6.4 \cdot 10^{-4} \) | \(a_{399}= -0.28142270 \pm 1.6 \cdot 10^{-3} \) |
\(a_{400}= +0.70278998 \pm 5.5 \cdot 10^{-4} \) | \(a_{401}= -0.48573647 \pm 7.8 \cdot 10^{-4} \) | \(a_{402}= +1.01977886 \pm 1.6 \cdot 10^{-3} \) |
\(a_{403}= -0.75502362 \pm 4.1 \cdot 10^{-4} \) | \(a_{404}= -0.70285351 \pm 7.7 \cdot 10^{-4} \) | \(a_{405}= +2.40579796 \pm 7.1 \cdot 10^{-4} \) |
\(a_{406}= -0.18999407 \pm 7.9 \cdot 10^{-4} \) | \(a_{407}= -0.58897621 \pm 7.5 \cdot 10^{-4} \) | \(a_{408}= +0.03468010 \pm 1.4 \cdot 10^{-3} \) |
\(a_{409}= +1.06891490 \pm 9.1 \cdot 10^{-4} \) | \(a_{410}= -1.25290654 \pm 1.1 \cdot 10^{-3} \) | \(a_{411}= +0.22265224 \pm 1.0 \cdot 10^{-3} \) |
\(a_{412}= +0.63803579 \pm 5.4 \cdot 10^{-4} \) | \(a_{413}= -0.34267395 \pm 7.4 \cdot 10^{-4} \) | \(a_{414}= +0.15950345 \pm 1.3 \cdot 10^{-3} \) |
\(a_{415}= -2.15110064 \pm 4.8 \cdot 10^{-4} \) | \(a_{416}= -0.14880026 \pm 6.8 \cdot 10^{-4} \) | \(a_{417}= -1.63290833 \pm 8.6 \cdot 10^{-4} \) |
\(a_{418}= -0.69709830 \pm 1.4 \cdot 10^{-3} \) | \(a_{419}= -1.46126292 \pm 6.2 \cdot 10^{-4} \) | \(a_{420}= +0.47144185 \pm 1.6 \cdot 10^{-3} \) |
\(a_{421}= +1.36433244 \pm 6.1 \cdot 10^{-4} \) | \(a_{422}= +1.13919151 \pm 8.5 \cdot 10^{-4} \) | \(a_{423}= -0.74912644 \pm 6.8 \cdot 10^{-4} \) |
\(a_{424}= +0.12598549 \pm 6.9 \cdot 10^{-4} \) | \(a_{425}= -0.21579049 \pm 4.9 \cdot 10^{-4} \) | \(a_{426}= +0.40283935 \pm 1.8 \cdot 10^{-3} \) |
\(a_{427}= -0.05154344 \pm 4.4 \cdot 10^{-4} \) | \(a_{428}= -0.59353015 \pm 5.3 \cdot 10^{-4} \) | \(a_{429}= +1.81985451 \pm 9.3 \cdot 10^{-4} \) |
\(a_{430}= -1.07700888 \pm 1.4 \cdot 10^{-3} \) | \(a_{431}= -1.17684924 \pm 6.5 \cdot 10^{-4} \) | \(a_{432}= -0.11727730 \pm 6.8 \cdot 10^{-4} \) |
\(a_{433}= +0.42674567 \pm 9.0 \cdot 10^{-4} \) | \(a_{434}= -0.23972749 \pm 7.8 \cdot 10^{-4} \) | \(a_{435}= +1.77341837 \pm 1.0 \cdot 10^{-3} \) |
\(a_{436}= -0.37595125 \pm 5.3 \cdot 10^{-4} \) | \(a_{437}= -0.20767583 \pm 4.8 \cdot 10^{-4} \) | \(a_{438}= -0.87547606 \pm 1.6 \cdot 10^{-3} \) |
\(a_{439}= +0.40208523 \pm 8.8 \cdot 10^{-4} \) | \(a_{440}= +1.16778536 \pm 1.4 \cdot 10^{-3} \) | \(a_{441}= +0.09041296 \pm 7.2 \cdot 10^{-4} \) |
\(a_{442}= +0.04568887 \pm 1.1 \cdot 10^{-3} \) | \(a_{443}= +0.22837199 \pm 6.8 \cdot 10^{-4} \) | \(a_{444}= -0.22241644 \pm 1.4 \cdot 10^{-3} \) |
\(a_{445}= +1.17633315 \pm 6.2 \cdot 10^{-4} \) | \(a_{446}= -0.70783504 \pm 6.5 \cdot 10^{-4} \) | \(a_{447}= -1.42199211 \pm 6.1 \cdot 10^{-4} \) |
\(a_{448}= -0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= +1.15311303 \pm 6.7 \cdot 10^{-4} \) | \(a_{450}= -1.25805395 \pm 1.2 \cdot 10^{-3} \) |
\(a_{451}= -1.53562270 \pm 5.7 \cdot 10^{-4} \) | \(a_{452}= -0.86025795 \pm 8.5 \cdot 10^{-4} \) | \(a_{453}= -0.64536121 \pm 7.0 \cdot 10^{-4} \) |
\(a_{454}= +0.94039941 \pm 7.6 \cdot 10^{-4} \) | \(a_{455}= +0.62109530 \pm 1.4 \cdot 10^{-3} \) | \(a_{456}= -0.26324683 \pm 1.6 \cdot 10^{-3} \) |
\(a_{457}= -0.98062762 \pm 9.4 \cdot 10^{-4} \) | \(a_{458}= +0.72240516 \pm 6.2 \cdot 10^{-4} \) | \(a_{459}= +0.03600980 \pm 5.3 \cdot 10^{-4} \) |
\(a_{460}= +0.34790043 \pm 1.3 \cdot 10^{-3} \) | \(a_{461}= -0.00169301 \pm 4.5 \cdot 10^{-4} \) | \(a_{462}= +0.57782187 \pm 1.6 \cdot 10^{-3} \) |
\(a_{463}= -0.51164289 \pm 8.6 \cdot 10^{-4} \) | \(a_{464}= -0.17772318 \pm 7.9 \cdot 10^{-4} \) | \(a_{465}= +2.23763374 \pm 1.1 \cdot 10^{-3} \) |
\(a_{466}= +0.48139235 \pm 5.4 \cdot 10^{-4} \) | \(a_{467}= -0.55970806 \pm 8.3 \cdot 10^{-4} \) | \(a_{468}= +0.26636515 \pm 1.4 \cdot 10^{-3} \) |
\(a_{469}= +0.42657306 \pm 7.4 \cdot 10^{-4} \) | \(a_{470}= -1.63395466 \pm 1.2 \cdot 10^{-3} \) | \(a_{471}= -0.35879765 \pm 7.4 \cdot 10^{-4} \) |
\(a_{472}= -0.32054212 \pm 7.4 \cdot 10^{-4} \) | \(a_{473}= -1.32003404 \pm 6.3 \cdot 10^{-4} \) | \(a_{474}= +1.01138267 \pm 1.7 \cdot 10^{-3} \) |
\(a_{475}= +1.63800467 \pm 4.9 \cdot 10^{-4} \) | \(a_{476}= +0.01450667 \pm 4.7 \cdot 10^{-4} \) | \(a_{477}= -0.22552476 \pm 5.5 \cdot 10^{-4} \) |
\(a_{478}= +0.57020433 \pm 8.5 \cdot 10^{-4} \) | \(a_{479}= -0.18575699 \pm 7.7 \cdot 10^{-4} \) | \(a_{480}= +0.44099347 \pm 1.6 \cdot 10^{-3} \) |
\(a_{481}= -0.29301982 \pm 7.5 \cdot 10^{-4} \) | \(a_{482}= -0.22630178 \pm 7.9 \cdot 10^{-4} \) | \(a_{483}= +0.17214163 \pm 1.5 \cdot 10^{-3} \) |
\(a_{484}= +0.93129408 \pm 6.4 \cdot 10^{-4} \) | \(a_{485}= -0.77849055 \pm 4.2 \cdot 10^{-4} \) | \(a_{486}= +0.78179972 \pm 7.4 \cdot 10^{-4} \) |
\(a_{487}= +0.69535069 \pm 6.0 \cdot 10^{-4} \) | \(a_{488}= -0.04821447 \pm 4.4 \cdot 10^{-4} \) | \(a_{489}= +2.26882884 \pm 6.5 \cdot 10^{-4} \) |
\(a_{490}= +0.19720392 \pm 7.1 \cdot 10^{-4} \) | \(a_{491}= -0.27337810 \pm 8.5 \cdot 10^{-4} \) | \(a_{492}= -0.57990072 \pm 1.3 \cdot 10^{-3} \) |
\(a_{493}= +0.05456961 \pm 4.7 \cdot 10^{-4} \) | \(a_{494}= -0.34681132 \pm 1.3 \cdot 10^{-3} \) | \(a_{495}= -2.09043532 \pm 5.6 \cdot 10^{-4} \) |
\(a_{496}= -0.22424453 \pm 7.8 \cdot 10^{-4} \) | \(a_{497}= +0.16850753 \pm 9.7 \cdot 10^{-4} \) | \(a_{498}= -0.99562480 \pm 1.4 \cdot 10^{-3} \) |
\(a_{499}= +1.22503786 \pm 1.0 \cdot 10^{-3} \) | \(a_{500}= -1.76789060 \pm 5.9 \cdot 10^{-4} \) | \(a_{501}= +0.11232371 \pm 9.0 \cdot 10^{-4} \) |
\(a_{502}= +1.18841858 \pm 6.7 \cdot 10^{-4} \) | \(a_{503}= -1.39832789 \pm 7.2 \cdot 10^{-4} \) | \(a_{504}= +0.08457358 \pm 7.2 \cdot 10^{-4} \) |
\(a_{505}= +2.74424826 \pm 8.3 \cdot 10^{-4} \) | \(a_{506}= +0.42640355 \pm 1.3 \cdot 10^{-3} \) | \(a_{507}= -0.37245566 \pm 8.0 \cdot 10^{-4} \) |
\(a_{508}= +0.50092136 \pm 6.9 \cdot 10^{-4} \) | \(a_{509}= -0.11682596 \pm 6.2 \cdot 10^{-4} \) | \(a_{510}= -0.13540631 \pm 2.1 \cdot 10^{-3} \) |
\(a_{511}= -0.36621126 \pm 7.1 \cdot 10^{-4} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.27334021 \pm 8.5 \cdot 10^{-4} \) |
\(a_{514}= +0.85654747 \pm 7.7 \cdot 10^{-4} \) | \(a_{515}= -2.49117148 \pm 3.2 \cdot 10^{-4} \) | \(a_{516}= -0.49848748 \pm 1.6 \cdot 10^{-3} \) |
\(a_{517}= -2.00265366 \pm 4.9 \cdot 10^{-4} \) | \(a_{518}= -0.09303670 \pm 5.6 \cdot 10^{-4} \) | \(a_{519}= +0.40151934 \pm 1.1 \cdot 10^{-3} \) |
\(a_{520}= +0.58098145 \pm 1.4 \cdot 10^{-3} \) | \(a_{521}= +0.63599313 \pm 6.6 \cdot 10^{-4} \) | \(a_{522}= +0.31813963 \pm 1.5 \cdot 10^{-3} \) |
\(a_{523}= -0.96966329 \pm 7.1 \cdot 10^{-4} \) | \(a_{524}= +0.24411600 \pm 5.7 \cdot 10^{-4} \) | \(a_{525}= -1.35773523 \pm 1.4 \cdot 10^{-3} \) |
\(a_{526}= -0.63326960 \pm 7.6 \cdot 10^{-4} \) | \(a_{527}= +0.06885391 \pm 3.3 \cdot 10^{-4} \) | \(a_{528}= +0.54050287 \pm 1.6 \cdot 10^{-3} \) |
\(a_{529}= -0.87296811 \pm 6.2 \cdot 10^{-4} \) | \(a_{530}= -0.49190258 \pm 1.4 \cdot 10^{-3} \) | \(a_{531}= +0.57379772 \pm 5.7 \cdot 10^{-4} \) |
\(a_{532}= -0.11011604 \pm 7.1 \cdot 10^{-4} \) | \(a_{533}= -0.76398312 \pm 4.1 \cdot 10^{-4} \) | \(a_{534}= +0.54445916 \pm 1.4 \cdot 10^{-3} \) |
\(a_{535}= +2.31740193 \pm 4.0 \cdot 10^{-4} \) | \(a_{536}= +0.39902256 \pm 7.4 \cdot 10^{-4} \) | \(a_{537}= +0.69157357 \pm 7.8 \cdot 10^{-4} \) |
\(a_{538}= -0.10937570 \pm 6.7 \cdot 10^{-4} \) | \(a_{539}= +0.24170264 \pm 7.3 \cdot 10^{-4} \) | \(a_{540}= +0.45790199 \pm 1.3 \cdot 10^{-3} \) |
\(a_{541}= -1.15346138 \pm 5.1 \cdot 10^{-4} \) | \(a_{542}= -0.56544182 \pm 5.8 \cdot 10^{-4} \) | \(a_{543}= +1.27173639 \pm 7.4 \cdot 10^{-4} \) |
\(a_{544}= +0.01356975 \pm 4.7 \cdot 10^{-4} \) | \(a_{545}= +1.46787851 \pm 6.2 \cdot 10^{-4} \) | \(a_{546}= +0.28747046 \pm 1.6 \cdot 10^{-3} \) |
\(a_{547}= -0.14047825 \pm 6.2 \cdot 10^{-4} \) | \(a_{548}= +0.08712013 \pm 8.0 \cdot 10^{-4} \) | \(a_{549}= +0.08630801 \pm 5.2 \cdot 10^{-4} \) |
\(a_{550}= -3.36317904 \pm 1.2 \cdot 10^{-3} \) | \(a_{551}= -0.41422246 \pm 7.6 \cdot 10^{-4} \) | \(a_{552}= +0.16102375 \pm 1.5 \cdot 10^{-3} \) |
\(a_{553}= +0.42306094 \pm 8.7 \cdot 10^{-4} \) | \(a_{554}= +0.95406453 \pm 9.6 \cdot 10^{-4} \) | \(a_{555}= +0.86841129 \pm 4.6 \cdot 10^{-4} \) |
\(a_{556}= -0.63892996 \pm 6.5 \cdot 10^{-4} \) | \(a_{557}= +0.60249489 \pm 7.8 \cdot 10^{-4} \) | \(a_{558}= +0.40141683 \pm 1.5 \cdot 10^{-3} \) |
\(a_{559}= -0.65672625 \pm 7.3 \cdot 10^{-4} \) | \(a_{560}= +0.18446738 \pm 7.1 \cdot 10^{-4} \) | \(a_{561}= -0.16596050 \pm 4.8 \cdot 10^{-4} \) |
\(a_{562}= -0.62654676 \pm 6.1 \cdot 10^{-4} \) | \(a_{563}= -0.33063529 \pm 5.3 \cdot 10^{-4} \) | \(a_{564}= -0.75626670 \pm 1.4 \cdot 10^{-3} \) |
\(a_{565}= +3.35882424 \pm 8.9 \cdot 10^{-4} \) | \(a_{566}= -0.99730197 \pm 7.3 \cdot 10^{-4} \) | \(a_{567}= +0.46578076 \pm 7.7 \cdot 10^{-4} \) |
\(a_{568}= +0.15762436 \pm 9.7 \cdot 10^{-4} \) | \(a_{569}= -1.05041155 \pm 6.5 \cdot 10^{-4} \) | \(a_{570}= +1.02783104 \pm 2.3 \cdot 10^{-3} \) |
\(a_{571}= +0.75920052 \pm 6.2 \cdot 10^{-4} \) | \(a_{572}= +0.71207890 \pm 1.4 \cdot 10^{-3} \) | \(a_{573}= +0.58913414 \pm 6.6 \cdot 10^{-4} \) |
\(a_{574}= -0.24257222 \pm 4.6 \cdot 10^{-4} \) | \(a_{575}= -1.00194048 \pm 5.4 \cdot 10^{-4} \) | \(a_{576}= +0.07911134 \pm 7.2 \cdot 10^{-4} \) |
\(a_{577}= +1.91110299 \pm 6.0 \cdot 10^{-4} \) | \(a_{578}= +0.70294021 \pm 5.9 \cdot 10^{-4} \) | \(a_{579}= -1.32374114 \pm 7.5 \cdot 10^{-4} \) |
\(a_{580}= +0.69390921 \pm 1.5 \cdot 10^{-3} \) | \(a_{581}= -0.41646943 \pm 5.4 \cdot 10^{-4} \) | \(a_{582}= -0.36031996 \pm 1.5 \cdot 10^{-3} \) |
\(a_{583}= -0.60289953 \pm 5.3 \cdot 10^{-4} \) | \(a_{584}= -0.34255927 \pm 7.1 \cdot 10^{-4} \) | \(a_{585}= -1.04000632 \pm 4.8 \cdot 10^{-4} \) |
\(a_{586}= -0.24548016 \pm 4.9 \cdot 10^{-4} \) | \(a_{587}= -0.27391939 \pm 8.1 \cdot 10^{-4} \) | \(a_{588}= +0.09127472 \pm 9.2 \cdot 10^{-4} \) |
\(a_{589}= -0.52265059 \pm 7.4 \cdot 10^{-4} \) | \(a_{590}= +1.25153700 \pm 1.4 \cdot 10^{-3} \) | \(a_{591}= -0.58935097 \pm 1.1 \cdot 10^{-3} \) |
\(a_{592}= -0.08702786 \pm 5.6 \cdot 10^{-4} \) | \(a_{593}= +0.87928257 \pm 8.9 \cdot 10^{-4} \) | \(a_{594}= +0.56122677 \pm 1.4 \cdot 10^{-3} \) |
\(a_{595}= -0.05664040 \pm 1.1 \cdot 10^{-3} \) | \(a_{596}= -0.55640194 \pm 5.0 \cdot 10^{-4} \) | \(a_{597}= +0.08600128 \pm 9.0 \cdot 10^{-4} \) |
\(a_{598}= +0.21213877 \pm 1.3 \cdot 10^{-3} \) | \(a_{599}= +0.07237770 \pm 7.0 \cdot 10^{-4} \) | \(a_{600}= -1.27004502 \pm 1.4 \cdot 10^{-3} \) |
\(a_{601}= -0.83356454 \pm 7.7 \cdot 10^{-4} \) | \(a_{602}= -0.20851710 \pm 7.2 \cdot 10^{-4} \) | \(a_{603}= -0.71428439 \pm 6.9 \cdot 10^{-4} \) |
\(a_{604}= -0.25251914 \pm 6.1 \cdot 10^{-4} \) | \(a_{605}= -3.63618041 \pm 5.1 \cdot 10^{-4} \) | \(a_{606}= +1.27015982 \pm 1.7 \cdot 10^{-3} \) |
\(a_{607}= -1.83367769 \pm 7.8 \cdot 10^{-4} \) | \(a_{608}= -0.10300412 \pm 7.1 \cdot 10^{-4} \) | \(a_{609}= +0.34334727 \pm 1.7 \cdot 10^{-3} \) |
\(a_{610}= +0.18825043 \pm 1.1 \cdot 10^{-3} \) | \(a_{611}= -0.99633432 \pm 4.8 \cdot 10^{-4} \) | \(a_{612}= -0.02429100 \pm 1.2 \cdot 10^{-3} \) |
\(a_{613}= -1.44104638 \pm 6.4 \cdot 10^{-4} \) | \(a_{614}= -0.30121135 \pm 6.1 \cdot 10^{-4} \) | \(a_{615}= +2.26418668 \pm 6.0 \cdot 10^{-4} \) |
\(a_{616}= +0.22609212 \pm 7.3 \cdot 10^{-4} \) | \(a_{617}= +1.84930461 \pm 6.6 \cdot 10^{-4} \) | \(a_{618}= -1.15302466 \pm 1.4 \cdot 10^{-3} \) |
\(a_{619}= +1.48321072 \pm 5.3 \cdot 10^{-4} \) | \(a_{620}= +0.87554898 \pm 1.4 \cdot 10^{-3} \) | \(a_{621}= +0.16719771 \pm 6.2 \cdot 10^{-4} \) |
\(a_{622}= +0.29922699 \pm 8.0 \cdot 10^{-4} \) | \(a_{623}= +0.22774703 \pm 5.0 \cdot 10^{-4} \) | \(a_{624}= +0.26890399 \pm 1.6 \cdot 10^{-3} \) |
\(a_{625}= +4.09146013 \pm 5.6 \cdot 10^{-4} \) | \(a_{626}= -0.44511966 \pm 4.4 \cdot 10^{-4} \) | \(a_{627}= +1.25975931 \pm 7.2 \cdot 10^{-4} \) |
\(a_{628}= -0.14039157 \pm 6.0 \cdot 10^{-4} \) | \(a_{629}= +0.02672176 \pm 4.4 \cdot 10^{-4} \) | \(a_{630}= -0.33021233 \pm 1.4 \cdot 10^{-3} \) |
\(a_{631}= -1.29261757 \pm 5.0 \cdot 10^{-4} \) | \(a_{632}= +0.39573727 \pm 8.7 \cdot 10^{-4} \) | \(a_{633}= -2.05868687 \pm 1.1 \cdot 10^{-3} \) |
\(a_{634}= +0.23617504 \pm 7.8 \cdot 10^{-4} \) | \(a_{635}= -1.95581662 \pm 8.9 \cdot 10^{-4} \) | \(a_{636}= -0.22767433 \pm 1.6 \cdot 10^{-3} \) |
\(a_{637}= +0.12024877 \pm 6.8 \cdot 10^{-4} \) | \(a_{638}= +0.85048860 \pm 1.5 \cdot 10^{-3} \) | \(a_{639}= -0.28216104 \pm 1.1 \cdot 10^{-3} \) |
\(a_{640}= +0.17255343 \pm 7.1 \cdot 10^{-4} \) | \(a_{641}= -0.80436824 \pm 1.0 \cdot 10^{-3} \) | \(a_{642}= +1.07259641 \pm 1.4 \cdot 10^{-3} \) |
\(a_{643}= -0.96844491 \pm 6.3 \cdot 10^{-4} \) | \(a_{644}= +0.06735617 \pm 6.4 \cdot 10^{-4} \) | \(a_{645}= +1.94631370 \pm 7.5 \cdot 10^{-4} \) |
\(a_{646}= +0.03162724 \pm 1.1 \cdot 10^{-3} \) | \(a_{647}= +1.80433526 \pm 6.9 \cdot 10^{-4} \) | \(a_{648}= +0.43569801 \pm 7.7 \cdot 10^{-4} \) |
\(a_{649}= +1.53394412 \pm 6.9 \cdot 10^{-4} \) | \(a_{650}= -1.67320530 \pm 1.2 \cdot 10^{-3} \) | \(a_{651}= +0.43322289 \pm 1.7 \cdot 10^{-3} \) |
\(a_{652}= +0.88775511 \pm 5.3 \cdot 10^{-4} \) | \(a_{653}= -1.53656693 \pm 7.7 \cdot 10^{-4} \) | \(a_{654}= +0.67939929 \pm 1.4 \cdot 10^{-3} \) |
\(a_{655}= -0.95313591 \pm 4.5 \cdot 10^{-4} \) | \(a_{656}= -0.22690554 \pm 4.6 \cdot 10^{-4} \) | \(a_{657}= +0.61321028 \pm 7.7 \cdot 10^{-4} \) |
\(a_{658}= -0.31634604 \pm 5.1 \cdot 10^{-4} \) | \(a_{659}= +0.35515706 \pm 6.2 \cdot 10^{-4} \) | \(a_{660}= -2.11036018 \pm 2.3 \cdot 10^{-3} \) |
\(a_{661}= +0.17067359 \pm 8.0 \cdot 10^{-4} \) | \(a_{662}= +0.22583794 \pm 6.4 \cdot 10^{-4} \) | \(a_{663}= -0.08256652 \pm 4.4 \cdot 10^{-4} \) |
\(a_{664}= -0.38957148 \pm 5.4 \cdot 10^{-4} \) | \(a_{665}= +0.42994129 \pm 1.4 \cdot 10^{-3} \) | \(a_{666}= +0.15578729 \pm 1.2 \cdot 10^{-3} \) |
\(a_{667}= +0.25337306 \pm 5.6 \cdot 10^{-4} \) | \(a_{668}= +0.04395041 \pm 7.9 \cdot 10^{-4} \) | \(a_{669}= +1.27916219 \pm 9.6 \cdot 10^{-4} \) |
\(a_{670}= -1.55795904 \pm 1.4 \cdot 10^{-3} \) | \(a_{671}= +0.23072881 \pm 5.2 \cdot 10^{-4} \) | \(a_{672}= +0.08537969 \pm 9.2 \cdot 10^{-4} \) |
\(a_{673}= -0.05207451 \pm 5.2 \cdot 10^{-4} \) | \(a_{674}= -0.70982678 \pm 7.0 \cdot 10^{-4} \) | \(a_{675}= -1.31874096 \pm 5.8 \cdot 10^{-4} \) |
\(a_{676}= -0.14573572 \pm 7.2 \cdot 10^{-4} \) | \(a_{677}= -0.42857856 \pm 7.1 \cdot 10^{-4} \) | \(a_{678}= +1.55461285 \pm 1.7 \cdot 10^{-3} \) |
\(a_{679}= -0.15072168 \pm 5.7 \cdot 10^{-4} \) | \(a_{680}= -0.05298224 \pm 1.1 \cdot 10^{-3} \) | \(a_{681}= -1.69944026 \pm 1.0 \cdot 10^{-3} \) |
\(a_{682}= +1.07311507 \pm 1.5 \cdot 10^{-3} \) | \(a_{683}= +0.11627243 \pm 4.5 \cdot 10^{-4} \) | \(a_{684}= +0.18438615 \pm 1.4 \cdot 10^{-3} \) |
\(a_{685}= -0.34015518 \pm 7.9 \cdot 10^{-4} \) | \(a_{686}= +0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= -1.30549254 \pm 8.7 \cdot 10^{-4} \) |
\(a_{688}= -0.19504989 \pm 7.2 \cdot 10^{-4} \) | \(a_{689}= -0.29994677 \pm 5.7 \cdot 10^{-4} \) | \(a_{690}= -0.62870732 \pm 2.2 \cdot 10^{-3} \) |
\(a_{691}= +1.66957554 \pm 4.9 \cdot 10^{-4} \) | \(a_{692}= +0.15710786 \pm 8.1 \cdot 10^{-4} \) | \(a_{693}= -0.40472416 \pm 1.4 \cdot 10^{-3} \) |
\(a_{694}= -0.28879127 \pm 7.1 \cdot 10^{-4} \) | \(a_{695}= +2.49466269 \pm 5.0 \cdot 10^{-4} \) | \(a_{696}= +0.32117196 \pm 1.7 \cdot 10^{-3} \) |
\(a_{697}= +0.06967097 \pm 2.7 \cdot 10^{-4} \) | \(a_{698}= -0.49030583 \pm 6.9 \cdot 10^{-4} \) | \(a_{699}= -0.86994689 \pm 6.2 \cdot 10^{-4} \) |
\(a_{700}= -0.53125929 \pm 5.5 \cdot 10^{-4} \) | \(a_{701}= -0.93415392 \pm 5.3 \cdot 10^{-4} \) | \(a_{702}= +0.27921428 \pm 1.3 \cdot 10^{-3} \) |
\(a_{703}= -0.20283734 \pm 4.4 \cdot 10^{-4} \) | \(a_{704}= +0.21148981 \pm 7.3 \cdot 10^{-4} \) | \(a_{705}= +2.95279677 \pm 4.6 \cdot 10^{-4} \) |
\(a_{706}= -0.12328101 \pm 4.5 \cdot 10^{-4} \) | \(a_{707}= +0.53130731 \pm 7.7 \cdot 10^{-4} \) | \(a_{708}= +0.57926684 \pm 1.6 \cdot 10^{-3} \) |
\(a_{709}= +1.08158746 \pm 7.8 \cdot 10^{-4} \) | \(a_{710}= -0.61543461 \pm 1.6 \cdot 10^{-3} \) | \(a_{711}= -0.70840344 \pm 7.5 \cdot 10^{-4} \) |
\(a_{712}= +0.21303784 \pm 5.0 \cdot 10^{-4} \) | \(a_{713}= +0.31969676 \pm 7.4 \cdot 10^{-4} \) | \(a_{714}= -0.02621569 \pm 1.4 \cdot 10^{-3} \) |
\(a_{715}= -2.78026824 \pm 4.4 \cdot 10^{-4} \) | \(a_{716}= +0.27060127 \pm 6.4 \cdot 10^{-4} \) | \(a_{717}= -1.03044323 \pm 1.1 \cdot 10^{-3} \) |
\(a_{718}= -1.11871420 \pm 9.2 \cdot 10^{-4} \) | \(a_{719}= -0.96366904 \pm 7.7 \cdot 10^{-4} \) | \(a_{720}= -0.30888535 \pm 1.4 \cdot 10^{-3} \) |
\(a_{721}= -0.48230972 \pm 5.4 \cdot 10^{-4} \) | \(a_{722}= +0.46703331 \pm 6.1 \cdot 10^{-4} \) | \(a_{723}= +0.40896065 \pm 9.8 \cdot 10^{-4} \) |
\(a_{724}= +0.49760937 \pm 6.5 \cdot 10^{-4} \) | \(a_{725}= -1.99843308 \pm 3.6 \cdot 10^{-4} \) | \(a_{726}= -1.68298559 \pm 1.5 \cdot 10^{-3} \) |
\(a_{727}= +1.70260340 \pm 4.9 \cdot 10^{-4} \) | \(a_{728}= +0.11248242 \pm 6.8 \cdot 10^{-4} \) | \(a_{729}= -0.18048720 \pm 6.4 \cdot 10^{-4} \) |
\(a_{730}= +1.33750157 \pm 1.4 \cdot 10^{-3} \) | \(a_{731}= +0.05988974 \pm 4.9 \cdot 10^{-4} \) | \(a_{732}= +0.08713065 \pm 1.3 \cdot 10^{-3} \) |
\(a_{733}= +0.82576573 \pm 6.5 \cdot 10^{-4} \) | \(a_{734}= -0.56383749 \pm 4.9 \cdot 10^{-4} \) | \(a_{735}= -0.35637654 \pm 1.6 \cdot 10^{-3} \) |
\(a_{736}= +0.06300592 \pm 6.4 \cdot 10^{-4} \) | \(a_{737}= -1.90950976 \pm 7.5 \cdot 10^{-4} \) | \(a_{738}= +0.40618025 \pm 1.1 \cdot 10^{-3} \) |
\(a_{739}= +1.97190365 \pm 4.8 \cdot 10^{-4} \) | \(a_{740}= +0.33979494 \pm 1.2 \cdot 10^{-3} \) | \(a_{741}= +0.62673914 \pm 8.8 \cdot 10^{-4} \) |
\(a_{742}= -0.09523608 \pm 6.9 \cdot 10^{-4} \) | \(a_{743}= +0.70121491 \pm 8.1 \cdot 10^{-4} \) | \(a_{744}= +0.40524291 \pm 1.7 \cdot 10^{-3} \) |
\(a_{745}= +2.17243712 \pm 5.7 \cdot 10^{-4} \) | \(a_{746}= +0.50964702 \pm 8.8 \cdot 10^{-4} \) | \(a_{747}= +0.69736614 \pm 5.0 \cdot 10^{-4} \) |
\(a_{748}= -0.06493759 \pm 1.2 \cdot 10^{-3} \) | \(a_{749}= +0.44866662 \pm 5.3 \cdot 10^{-4} \) | \(a_{750}= +3.19483874 \pm 1.5 \cdot 10^{-3} \) |
\(a_{751}= +0.86332040 \pm 7.2 \cdot 10^{-4} \) | \(a_{752}= -0.29591462 \pm 5.1 \cdot 10^{-4} \) | \(a_{753}= -2.14764745 \pm 9.6 \cdot 10^{-4} \) |
\(a_{754}= +0.42312408 \pm 1.4 \cdot 10^{-3} \) | \(a_{755}= +0.98594544 \pm 4.3 \cdot 10^{-4} \) | \(a_{756}= +0.08865330 \pm 6.8 \cdot 10^{-4} \) |
\(a_{757}= -1.67847111 \pm 5.5 \cdot 10^{-4} \) | \(a_{758}= -0.15240383 \pm 8.0 \cdot 10^{-4} \) | \(a_{759}= -0.77057403 \pm 9.9 \cdot 10^{-4} \) |
\(a_{760}= +0.40217325 \pm 1.4 \cdot 10^{-3} \) | \(a_{761}= -0.78606773 \pm 1.0 \cdot 10^{-3} \) | \(a_{762}= -0.90523869 \pm 1.6 \cdot 10^{-3} \) |
\(a_{763}= +0.28419243 \pm 5.3 \cdot 10^{-4} \) | \(a_{764}= +0.23051842 \pm 5.1 \cdot 10^{-4} \) | \(a_{765}= +0.09484273 \pm 4.8 \cdot 10^{-4} \) |
\(a_{766}= +0.96754704 \pm 6.5 \cdot 10^{-4} \) | \(a_{767}= +0.76314802 \pm 5.1 \cdot 10^{-4} \) | \(a_{768}= +0.07986538 \pm 9.2 \cdot 10^{-4} \) |
\(a_{769}= -1.50213123 \pm 8.5 \cdot 10^{-4} \) | \(a_{770}= -0.88276276 \pm 1.4 \cdot 10^{-3} \) | \(a_{771}= -1.54790746 \pm 1.0 \cdot 10^{-3} \) |
\(a_{772}= -0.51795796 \pm 5.5 \cdot 10^{-4} \) | \(a_{773}= +1.56506636 \pm 4.3 \cdot 10^{-4} \) | \(a_{774}= +0.34915592 \pm 1.4 \cdot 10^{-3} \) |
\(a_{775}= -2.52154898 \pm 5.2 \cdot 10^{-4} \) | \(a_{776}= -0.14098723 \pm 5.7 \cdot 10^{-4} \) | \(a_{777}= +0.16813102 \pm 1.4 \cdot 10^{-3} \) |
\(a_{778}= -0.91076613 \pm 7.2 \cdot 10^{-4} \) | \(a_{779}= -0.52885263 \pm 2.8 \cdot 10^{-4} \) | \(a_{780}= -1.04991907 \pm 2.3 \cdot 10^{-3} \) |
\(a_{781}= -0.75430635 \pm 8.9 \cdot 10^{-4} \) | \(a_{782}= -0.01934586 \pm 1.1 \cdot 10^{-3} \) | \(a_{783}= +0.33348630 \pm 4.9 \cdot 10^{-4} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= +0.54815025 \pm 7.6 \cdot 10^{-4} \) | \(a_{786}= -0.44115358 \pm 1.5 \cdot 10^{-3} \) |
\(a_{787}= +1.33567157 \pm 7.9 \cdot 10^{-4} \) | \(a_{788}= -0.23060326 \pm 9.1 \cdot 10^{-4} \) | \(a_{789}= +1.14441146 \pm 1.0 \cdot 10^{-3} \) |
\(a_{790}= -1.54513182 \pm 1.5 \cdot 10^{-3} \) | \(a_{791}= +0.65029389 \pm 8.5 \cdot 10^{-4} \) | \(a_{792}= -0.37858478 \pm 1.4 \cdot 10^{-3} \) |
\(a_{793}= +0.11478921 \pm 4.6 \cdot 10^{-4} \) | \(a_{794}= +0.51046637 \pm 5.7 \cdot 10^{-4} \) | \(a_{795}= +0.88894042 \pm 7.7 \cdot 10^{-4} \) |
\(a_{796}= +0.03365087 \pm 6.4 \cdot 10^{-4} \) | \(a_{797}= -0.93591436 \pm 6.2 \cdot 10^{-4} \) | \(a_{798}= +0.19899590 \pm 1.6 \cdot 10^{-3} \) |
\(a_{799}= +0.09086009 \pm 5.6 \cdot 10^{-4} \) | \(a_{800}= -0.49694756 \pm 5.5 \cdot 10^{-4} \) | \(a_{801}= -0.38135590 \pm 5.4 \cdot 10^{-4} \) |
\(a_{802}= +0.34346755 \pm 7.8 \cdot 10^{-4} \) | \(a_{803}= +1.63930645 \pm 6.8 \cdot 10^{-4} \) | \(a_{804}= -0.72109255 \pm 1.6 \cdot 10^{-3} \) |
\(a_{805}= -0.26298800 \pm 1.3 \cdot 10^{-3} \) | \(a_{806}= +0.53388232 \pm 1.4 \cdot 10^{-3} \) | \(a_{807}= +0.19765801 \pm 8.5 \cdot 10^{-4} \) |
\(a_{808}= +0.49699248 \pm 7.7 \cdot 10^{-4} \) | \(a_{809}= +1.24852304 \pm 8.6 \cdot 10^{-4} \) | \(a_{810}= -1.70115605 \pm 1.4 \cdot 10^{-3} \) |
\(a_{811}= -1.30336052 \pm 6.5 \cdot 10^{-4} \) | \(a_{812}= +0.13434609 \pm 7.9 \cdot 10^{-4} \) | \(a_{813}= +1.02183667 \pm 7.6 \cdot 10^{-4} \) |
\(a_{814}= +0.41646907 \pm 1.2 \cdot 10^{-3} \) | \(a_{815}= -3.46618519 \pm 5.3 \cdot 10^{-4} \) | \(a_{816}= -0.02452253 \pm 1.4 \cdot 10^{-3} \) |
\(a_{817}= -0.45460612 \pm 7.5 \cdot 10^{-4} \) | \(a_{818}= -0.75583697 \pm 9.1 \cdot 10^{-4} \) | \(a_{819}= -0.20135312 \pm 1.4 \cdot 10^{-3} \) |
\(a_{820}= +0.88593871 \pm 1.1 \cdot 10^{-3} \) | \(a_{821}= -0.41380988 \pm 8.6 \cdot 10^{-4} \) | \(a_{822}= -0.15743891 \pm 1.7 \cdot 10^{-3} \) |
\(a_{823}= -0.84140445 \pm 3.8 \cdot 10^{-4} \) | \(a_{824}= -0.45115943 \pm 5.4 \cdot 10^{-4} \) | \(a_{825}= +6.07775996 \pm 6.9 \cdot 10^{-4} \) |
\(a_{826}= +0.24230707 \pm 7.4 \cdot 10^{-4} \) | \(a_{827}= -0.21206980 \pm 6.0 \cdot 10^{-4} \) | \(a_{828}= -0.11278597 \pm 1.3 \cdot 10^{-3} \) |
\(a_{829}= -1.17888636 \pm 9.3 \cdot 10^{-4} \) | \(a_{830}= +1.52105785 \pm 1.2 \cdot 10^{-3} \) | \(a_{831}= -1.72413515 \pm 1.3 \cdot 10^{-3} \) |
\(a_{832}= +0.10521767 \pm 6.8 \cdot 10^{-4} \) | \(a_{833}= -0.01096601 \pm 4.7 \cdot 10^{-4} \) | \(a_{834}= +1.15464055 \pm 1.5 \cdot 10^{-3} \) |
\(a_{835}= -0.17160165 \pm 8.9 \cdot 10^{-4} \) | \(a_{836}= +0.49292293 \pm 1.4 \cdot 10^{-3} \) | \(a_{837}= +0.42078069 \pm 3.8 \cdot 10^{-4} \) |
\(a_{838}= +1.03326892 \pm 6.2 \cdot 10^{-4} \) | \(a_{839}= +0.04808488 \pm 7.3 \cdot 10^{-4} \) | \(a_{840}= -0.33335973 \pm 1.6 \cdot 10^{-3} \) |
\(a_{841}= -0.49463156 \pm 7.9 \cdot 10^{-4} \) | \(a_{842}= -0.96472872 \pm 6.1 \cdot 10^{-4} \) | \(a_{843}= +1.13226229 \pm 7.9 \cdot 10^{-4} \) |
\(a_{844}= -0.80553004 \pm 8.5 \cdot 10^{-4} \) | \(a_{845}= +0.56901617 \pm 5.2 \cdot 10^{-4} \) | \(a_{846}= +0.52971239 \pm 1.2 \cdot 10^{-3} \) |
\(a_{847}= -0.70399215 \pm 6.4 \cdot 10^{-4} \) | \(a_{848}= -0.08908519 \pm 6.9 \cdot 10^{-4} \) | \(a_{849}= +1.80227156 \pm 9.3 \cdot 10^{-4} \) |
\(a_{850}= +0.15258692 \pm 1.0 \cdot 10^{-3} \) | \(a_{851}= +0.12407226 \pm 4.7 \cdot 10^{-4} \) | \(a_{852}= -0.28485044 \pm 1.8 \cdot 10^{-3} \) |
\(a_{853}= +0.73471849 \pm 4.3 \cdot 10^{-4} \) | \(a_{854}= +0.03644671 \pm 4.4 \cdot 10^{-4} \) | \(a_{855}= -0.71992439 \pm 6.6 \cdot 10^{-4} \) |
\(a_{856}= +0.41968919 \pm 5.3 \cdot 10^{-4} \) | \(a_{857}= -1.53925676 \pm 6.5 \cdot 10^{-4} \) | \(a_{858}= -1.28683147 \pm 2.3 \cdot 10^{-3} \) |
\(a_{859}= +1.58508110 \pm 3.6 \cdot 10^{-4} \) | \(a_{860}= +0.76156028 \pm 1.4 \cdot 10^{-3} \) | \(a_{861}= +0.43836374 \pm 1.3 \cdot 10^{-3} \) |
\(a_{862}= +0.83215808 \pm 6.5 \cdot 10^{-4} \) | \(a_{863}= +1.23650607 \pm 5.2 \cdot 10^{-4} \) | \(a_{864}= +0.08292757 \pm 6.8 \cdot 10^{-4} \) |
\(a_{865}= -0.61341797 \pm 8.1 \cdot 10^{-4} \) | \(a_{866}= -0.30175476 \pm 9.0 \cdot 10^{-4} \) | \(a_{867}= -1.27031651 \pm 6.8 \cdot 10^{-4} \) |
\(a_{868}= +0.16951293 \pm 7.8 \cdot 10^{-4} \) | \(a_{869}= -1.89378810 \pm 6.9 \cdot 10^{-4} \) | \(a_{870}= -1.25399615 \pm 2.4 \cdot 10^{-3} \) |
\(a_{871}= -0.94999457 \pm 8.5 \cdot 10^{-4} \) | \(a_{872}= +0.26583768 \pm 5.3 \cdot 10^{-4} \) | \(a_{873}= +0.25237915 \pm 9.5 \cdot 10^{-4} \) |
\(a_{874}= +0.14684899 \pm 1.3 \cdot 10^{-3} \) | \(a_{875}= +1.33639968 \pm 5.9 \cdot 10^{-4} \) | \(a_{876}= +0.61905506 \pm 1.6 \cdot 10^{-3} \) |
\(a_{877}= +0.62495573 \pm 7.1 \cdot 10^{-4} \) | \(a_{878}= -0.28431719 \pm 8.8 \cdot 10^{-4} \) | \(a_{879}= +0.44361882 \pm 5.9 \cdot 10^{-4} \) |
\(a_{880}= -0.82574895 \pm 1.4 \cdot 10^{-3} \) | \(a_{881}= -0.34413392 \pm 6.2 \cdot 10^{-4} \) | \(a_{882}= -0.06393162 \pm 7.2 \cdot 10^{-4} \) |
\(a_{883}= +0.68876929 \pm 6.3 \cdot 10^{-4} \) | \(a_{884}= -0.03230691 \pm 1.1 \cdot 10^{-3} \) | \(a_{885}= -2.26171172 \pm 1.0 \cdot 10^{-3} \) |
\(a_{886}= -0.16148338 \pm 6.8 \cdot 10^{-4} \) | \(a_{887}= +1.26549395 \pm 7.3 \cdot 10^{-4} \) | \(a_{888}= +0.15727217 \pm 1.4 \cdot 10^{-3} \) |
\(a_{889}= -0.37866096 \pm 6.9 \cdot 10^{-4} \) | \(a_{890}= -0.83179315 \pm 1.2 \cdot 10^{-3} \) | \(a_{891}= -2.08501893 \pm 7.6 \cdot 10^{-4} \) |
\(a_{892}= +0.50051496 \pm 6.5 \cdot 10^{-4} \) | \(a_{893}= -0.68969329 \pm 5.7 \cdot 10^{-4} \) | \(a_{894}= +1.00550027 \pm 1.4 \cdot 10^{-3} \) |
\(a_{895}= -1.05654601 \pm 7.5 \cdot 10^{-4} \) | \(a_{896}= +0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= -0.38336601 \pm 6.3 \cdot 10^{-4} \) |
\(a_{898}= -0.81537404 \pm 6.7 \cdot 10^{-4} \) | \(a_{899}= +0.63765522 \pm 9.9 \cdot 10^{-4} \) | \(a_{900}= +0.88957848 \pm 1.2 \cdot 10^{-3} \) |
\(a_{901}= +0.02735346 \pm 6.3 \cdot 10^{-4} \) | \(a_{902}= +1.08584922 \pm 1.1 \cdot 10^{-3} \) | \(a_{903}= +0.37682112 \pm 1.6 \cdot 10^{-3} \) |
\(a_{904}= +0.60829423 \pm 8.5 \cdot 10^{-4} \) | \(a_{905}= -1.94288515 \pm 7.2 \cdot 10^{-4} \) | \(a_{906}= +0.45633929 \pm 1.5 \cdot 10^{-3} \) |
\(a_{907}= -1.19305995 \pm 8.1 \cdot 10^{-4} \) | \(a_{908}= -0.66496280 \pm 7.6 \cdot 10^{-4} \) | \(a_{909}= -0.88965889 \pm 6.4 \cdot 10^{-4} \) |
\(a_{910}= -0.43918070 \pm 1.4 \cdot 10^{-3} \) | \(a_{911}= +1.00795841 \pm 5.4 \cdot 10^{-4} \) | \(a_{912}= +0.18614362 \pm 1.6 \cdot 10^{-3} \) |
\(a_{913}= +1.86428188 \pm 6.4 \cdot 10^{-4} \) | \(a_{914}= +0.69340844 \pm 9.4 \cdot 10^{-4} \) | \(a_{915}= -0.34019627 \pm 6.0 \cdot 10^{-4} \) |
\(a_{916}= -0.51081759 \pm 6.2 \cdot 10^{-4} \) | \(a_{917}= -0.18453435 \pm 5.7 \cdot 10^{-4} \) | \(a_{918}= -0.02546277 \pm 1.1 \cdot 10^{-3} \) |
\(a_{919}= +1.42745645 \pm 8.0 \cdot 10^{-4} \) | \(a_{920}= -0.24600275 \pm 1.3 \cdot 10^{-3} \) | \(a_{921}= +0.54433327 \pm 8.1 \cdot 10^{-4} \) |
\(a_{922}= +0.00119714 \pm 4.5 \cdot 10^{-4} \) | \(a_{923}= -0.37527273 \pm 7.8 \cdot 10^{-4} \) | \(a_{924}= -0.40858176 \pm 1.6 \cdot 10^{-3} \) |
\(a_{925}= -0.97859697 \pm 5.4 \cdot 10^{-4} \) | \(a_{926}= +0.36178616 \pm 8.6 \cdot 10^{-4} \) | \(a_{927}= +0.80761384 \pm 9.3 \cdot 10^{-4} \) |
\(a_{928}= +0.12566926 \pm 7.9 \cdot 10^{-4} \) | \(a_{929}= +1.12593454 \pm 7.7 \cdot 10^{-4} \) | \(a_{930}= -1.58224599 \pm 2.4 \cdot 10^{-3} \) |
\(a_{931}= +0.08323990 \pm 7.1 \cdot 10^{-4} \) | \(a_{932}= -0.34039579 \pm 5.4 \cdot 10^{-4} \) | \(a_{933}= -0.54074725 \pm 9.5 \cdot 10^{-4} \) |
\(a_{934}= +0.39577336 \pm 8.3 \cdot 10^{-4} \) | \(a_{935}= +0.25354484 \pm 4.0 \cdot 10^{-4} \) | \(a_{936}= -0.18834860 \pm 1.4 \cdot 10^{-3} \) |
\(a_{937}= +0.71721637 \pm 7.0 \cdot 10^{-4} \) | \(a_{938}= -0.30163271 \pm 7.4 \cdot 10^{-4} \) | \(a_{939}= +0.80439679 \pm 6.2 \cdot 10^{-4} \) |
\(a_{940}= +1.15538042 \pm 1.2 \cdot 10^{-3} \) | \(a_{941}= +1.43777179 \pm 7.1 \cdot 10^{-4} \) | \(a_{942}= +0.25370825 \pm 1.5 \cdot 10^{-3} \) |
\(a_{943}= +0.32349045 \pm 5.3 \cdot 10^{-4} \) | \(a_{944}= +0.22665751 \pm 7.4 \cdot 10^{-4} \) | \(a_{945}= -0.34614137 \pm 1.3 \cdot 10^{-3} \) |
\(a_{946}= +0.93340502 \pm 1.4 \cdot 10^{-3} \) | \(a_{947}= +0.66834563 \pm 4.1 \cdot 10^{-4} \) | \(a_{948}= -0.71515554 \pm 1.7 \cdot 10^{-3} \) |
\(a_{949}= +0.81556652 \pm 7.9 \cdot 10^{-4} \) | \(a_{950}= -1.15824421 \pm 1.2 \cdot 10^{-3} \) | \(a_{951}= -0.42680309 \pm 9.5 \cdot 10^{-4} \) |
\(a_{952}= -0.01025776 \pm 4.7 \cdot 10^{-4} \) | \(a_{953}= +0.55637228 \pm 6.9 \cdot 10^{-4} \) | \(a_{954}= +0.15947008 \pm 1.4 \cdot 10^{-3} \) |
\(a_{955}= -0.90004500 \pm 5.6 \cdot 10^{-4} \) | \(a_{956}= -0.40319535 \pm 8.5 \cdot 10^{-4} \) | \(a_{957}= -1.53695818 \pm 8.0 \cdot 10^{-4} \) |
\(a_{958}= +0.13135002 \pm 7.7 \cdot 10^{-4} \) | \(a_{959}= -0.06585663 \pm 8.0 \cdot 10^{-4} \) | \(a_{960}= -0.31182947 \pm 1.6 \cdot 10^{-3} \) |
\(a_{961}= -0.19543022 \pm 8.4 \cdot 10^{-4} \) | \(a_{962}= +0.20719630 \pm 1.2 \cdot 10^{-3} \) | \(a_{963}= -0.75127942 \pm 4.6 \cdot 10^{-4} \) |
\(a_{964}= +0.16001952 \pm 7.9 \cdot 10^{-4} \) | \(a_{965}= +2.02233498 \pm 5.0 \cdot 10^{-4} \) | \(a_{966}= -0.12172251 \pm 1.5 \cdot 10^{-3} \) |
\(a_{967}= -0.84205158 \pm 9.3 \cdot 10^{-4} \) | \(a_{968}= -0.65852436 \pm 6.4 \cdot 10^{-4} \) | \(a_{969}= -0.05715509 \pm 6.2 \cdot 10^{-4} \) |
\(a_{970}= +0.55047595 \pm 1.2 \cdot 10^{-3} \) | \(a_{971}= -0.32859979 \pm 9.4 \cdot 10^{-4} \) | \(a_{972}= -0.55281588 \pm 7.4 \cdot 10^{-4} \) |
\(a_{973}= +0.48298565 \pm 6.5 \cdot 10^{-4} \) | \(a_{974}= -0.49168719 \pm 6.0 \cdot 10^{-4} \) | \(a_{975}= +3.02372845 \pm 5.7 \cdot 10^{-4} \) |
\(a_{976}= +0.03409278 \pm 4.4 \cdot 10^{-4} \) | \(a_{977}= -1.84248552 \pm 9.5 \cdot 10^{-4} \) | \(a_{978}= -1.60430426 \pm 1.4 \cdot 10^{-3} \) |
\(a_{979}= -1.01948581 \pm 5.9 \cdot 10^{-4} \) | \(a_{980}= -0.13944423 \pm 7.1 \cdot 10^{-4} \) | \(a_{981}= -0.47587210 \pm 5.1 \cdot 10^{-4} \) |
\(a_{982}= +0.19330751 \pm 8.5 \cdot 10^{-4} \) | \(a_{983}= +0.98675583 \pm 6.5 \cdot 10^{-4} \) | \(a_{984}= +0.41005173 \pm 1.3 \cdot 10^{-3} \) |
\(a_{985}= +0.90037625 \pm 7.8 \cdot 10^{-4} \) | \(a_{986}= -0.03858654 \pm 1.2 \cdot 10^{-3} \) | \(a_{987}= +0.57168389 \pm 1.4 \cdot 10^{-3} \) |
\(a_{988}= +0.24523264 \pm 1.3 \cdot 10^{-3} \) | \(a_{989}= +0.27807508 \pm 4.2 \cdot 10^{-4} \) | \(a_{990}= +1.47816099 \pm 2.1 \cdot 10^{-3} \) |
\(a_{991}= -1.89338286 \pm 6.7 \cdot 10^{-4} \) | \(a_{992}= +0.15856483 \pm 7.8 \cdot 10^{-4} \) | \(a_{993}= -0.40812242 \pm 9.6 \cdot 10^{-4} \) |
\(a_{994}= -0.11915282 \pm 9.7 \cdot 10^{-4} \) | \(a_{995}= -0.13138776 \pm 6.5 \cdot 10^{-4} \) | \(a_{996}= +0.70401304 \pm 1.4 \cdot 10^{-3} \) |
\(a_{997}= +0.83462435 \pm 4.4 \cdot 10^{-4} \) | \(a_{998}= -0.86623258 \pm 1.0 \cdot 10^{-3} \) | \(a_{999}= +0.16330228 \pm 5.6 \cdot 10^{-4} \) |
\(a_{1000}= +1.25008743 \pm 5.9 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000