Maass form invariants
Level: | \( 14 = 2 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 14.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(9.01223427143471551134852797462 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.32605651 \pm 3.0 \cdot 10^{-7} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.06778317 \pm 2.3 \cdot 10^{-7} \) | \(a_{6}= -0.23055677 \pm 3.1 \cdot 10^{-7} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.89368715 \pm 2.3 \cdot 10^{-7} \) |
\(a_{10}= -0.04792994 \pm 2.4 \cdot 10^{-7} \) | \(a_{11}= +0.91213181 \pm 2.3 \cdot 10^{-7} \) | \(a_{12}= +0.16302826 \pm 3.1 \cdot 10^{-7} \) |
\(a_{13}= +1.66764889 \pm 2.2 \cdot 10^{-7} \) | \(a_{14}= +0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= +0.02210114 \pm 2.8 \cdot 10^{-7} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -1.53705740 \pm 1.5 \cdot 10^{-7} \) | \(a_{18}= +0.63193225 \pm 2.4 \cdot 10^{-7} \) |
\(a_{19}= +0.04254184 \pm 2.3 \cdot 10^{-7} \) | \(a_{20}= +0.03389158 \pm 2.4 \cdot 10^{-7} \) | \(a_{21}= -0.12323778 \pm 3.1 \cdot 10^{-7} \) |
\(a_{22}= -0.64497459 \pm 2.5 \cdot 10^{-7} \) | \(a_{23}= +0.10518264 \pm 2.1 \cdot 10^{-7} \) | \(a_{24}= -0.11527838 \pm 3.1 \cdot 10^{-7} \) |
\(a_{25}= -0.99540544 \pm 1.8 \cdot 10^{-7} \) | \(a_{26}= -1.17920584 \pm 2.3 \cdot 10^{-7} \) | \(a_{27}= -0.61744902 \pm 2.2 \cdot 10^{-7} \) |
\(a_{28}= -0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -0.15169290 \pm 2.5 \cdot 10^{-7} \) | \(a_{30}= -0.01562787 \pm 5.4 \cdot 10^{-7} \) |
\(a_{31}= -0.95062884 \pm 2.5 \cdot 10^{-7} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.29740651 \pm 2.8 \cdot 10^{-7} \) |
\(a_{34}= +1.08686371 \pm 1.6 \cdot 10^{-7} \) | \(a_{35}= -0.02561963 \pm 2.4 \cdot 10^{-7} \) | \(a_{36}= -0.44684358 \pm 2.4 \cdot 10^{-7} \) |
\(a_{37}= -0.06347719 \pm 1.8 \cdot 10^{-7} \) | \(a_{38}= -0.03008162 \pm 2.4 \cdot 10^{-7} \) | \(a_{39}= +0.54374778 \pm 2.6 \cdot 10^{-7} \) |
\(a_{40}= -0.02396497 \pm 2.4 \cdot 10^{-7} \) | \(a_{41}= -1.45557654 \pm 1.5 \cdot 10^{-7} \) | \(a_{42}= +0.08714227 \pm 3.1 \cdot 10^{-7} \) |
\(a_{43}= -1.56575486 \pm 2.3 \cdot 10^{-7} \) | \(a_{44}= +0.45606590 \pm 2.5 \cdot 10^{-7} \) | \(a_{45}= -0.06057695 \pm 2.0 \cdot 10^{-7} \) |
\(a_{46}= -0.07437536 \pm 2.2 \cdot 10^{-7} \) | \(a_{47}= +0.62511989 \pm 1.6 \cdot 10^{-7} \) | \(a_{48}= +0.08151413 \pm 3.1 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.70385794 \pm 1.9 \cdot 10^{-7} \) | \(a_{51}= -0.50116757 \pm 1.8 \cdot 10^{-7} \) |
\(a_{52}= +0.83382445 \pm 2.3 \cdot 10^{-7} \) | \(a_{53}= -0.91106271 \pm 2.2 \cdot 10^{-7} \) | \(a_{54}= +0.43660239 \pm 2.3 \cdot 10^{-7} \) |
\(a_{55}= +0.06182718 \pm 2.2 \cdot 10^{-7} \) | \(a_{56}= +0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +0.01387104 \pm 3.2 \cdot 10^{-7} \) |
\(a_{58}= +0.10726307 \pm 2.6 \cdot 10^{-7} \) | \(a_{59}= -0.88868345 \pm 2.4 \cdot 10^{-7} \) | \(a_{60}= +0.01105057 \pm 5.4 \cdot 10^{-7} \) |
\(a_{61}= -0.25131453 \pm 1.4 \cdot 10^{-7} \) | \(a_{62}= +0.67219610 \pm 2.6 \cdot 10^{-7} \) | \(a_{63}= +0.33778199 \pm 2.4 \cdot 10^{-7} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +0.11303853 \pm 1.6 \cdot 10^{-7} \) | \(a_{66}= -0.21029816 \pm 5.5 \cdot 10^{-7} \) |
\(a_{67}= -0.91461466 \pm 2.4 \cdot 10^{-7} \) | \(a_{68}= -0.76852870 \pm 1.6 \cdot 10^{-7} \) | \(a_{69}= +0.03429548 \pm 2.7 \cdot 10^{-7} \) |
\(a_{70}= +0.01811581 \pm 2.4 \cdot 10^{-7} \) | \(a_{71}= +0.47678942 \pm 3.1 \cdot 10^{-7} \) | \(a_{72}= +0.31596612 \pm 2.4 \cdot 10^{-7} \) |
\(a_{73}= -0.34952798 \pm 2.3 \cdot 10^{-7} \) | \(a_{74}= +0.04488515 \pm 1.9 \cdot 10^{-7} \) | \(a_{75}= -0.32455842 \pm 1.9 \cdot 10^{-7} \) |
\(a_{76}= +0.02127092 \pm 2.4 \cdot 10^{-7} \) | \(a_{77}= -0.34475342 \pm 2.5 \cdot 10^{-7} \) | \(a_{78}= -0.38448774 \pm 5.3 \cdot 10^{-7} \) |
\(a_{79}= +1.65246801 \pm 2.8 \cdot 10^{-7} \) | \(a_{80}= +0.01694579 \pm 2.4 \cdot 10^{-7} \) | \(a_{81}= +0.69236388 \pm 2.5 \cdot 10^{-7} \) |
\(a_{82}= +1.02924804 \pm 1.6 \cdot 10^{-7} \) | \(a_{83}= -0.97857632 \pm 1.7 \cdot 10^{-7} \) | \(a_{84}= -0.06161889 \pm 3.1 \cdot 10^{-7} \) |
\(a_{85}= -0.10418662 \pm 1.8 \cdot 10^{-7} \) | \(a_{86}= +1.10715588 \pm 2.4 \cdot 10^{-7} \) | \(a_{87}= -0.04946046 \pm 3.5 \cdot 10^{-7} \) |
\(a_{88}= -0.32248729 \pm 2.5 \cdot 10^{-7} \) | \(a_{89}= -0.70780292 \pm 1.6 \cdot 10^{-7} \) | \(a_{90}= +0.04283437 \pm 4.8 \cdot 10^{-7} \) |
\(a_{91}= -0.63031203 \pm 2.3 \cdot 10^{-7} \) | \(a_{92}= +0.05259132 \pm 2.2 \cdot 10^{-7} \) | \(a_{93}= -0.30995872 \pm 3.3 \cdot 10^{-7} \) |
\(a_{94}= -0.44202651 \pm 1.8 \cdot 10^{-7} \) | \(a_{95}= +0.00288362 \pm 1.9 \cdot 10^{-7} \) | \(a_{96}= -0.05763919 \pm 3.1 \cdot 10^{-7} \) |
\(a_{97}= +0.75741152 \pm 1.8 \cdot 10^{-7} \) | \(a_{98}= -0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= -0.81516048 \pm 1.8 \cdot 10^{-7} \) |
\(a_{100}= -0.49770272 \pm 1.9 \cdot 10^{-7} \) | \(a_{101}= -1.72571617 \pm 2.5 \cdot 10^{-7} \) | \(a_{102}= +0.35437899 \pm 4.6 \cdot 10^{-7} \) |
\(a_{103}= +1.16454576 \pm 1.7 \cdot 10^{-7} \) | \(a_{104}= -0.58960292 \pm 2.3 \cdot 10^{-7} \) | \(a_{105}= -0.00835345 \pm 5.4 \cdot 10^{-7} \) |
\(a_{106}= +0.64421862 \pm 2.3 \cdot 10^{-7} \) | \(a_{107}= +1.76377018 \pm 1.7 \cdot 10^{-7} \) | \(a_{108}= -0.30872451 \pm 2.3 \cdot 10^{-7} \) |
\(a_{109}= +1.00010104 \pm 1.7 \cdot 10^{-7} \) | \(a_{110}= -0.04371842 \pm 4.8 \cdot 10^{-7} \) | \(a_{111}= -0.02069715 \pm 1.9 \cdot 10^{-7} \) |
\(a_{112}= -0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= +0.86601901 \pm 2.7 \cdot 10^{-7} \) | \(a_{114}= -0.00980831 \pm 5.4 \cdot 10^{-7} \) |
\(a_{115}= +0.00712961 \pm 2.4 \cdot 10^{-7} \) | \(a_{116}= -0.07584645 \pm 2.6 \cdot 10^{-7} \) | \(a_{117}= -1.49035639 \pm 1.9 \cdot 10^{-7} \) |
\(a_{118}= +0.62839409 \pm 2.5 \cdot 10^{-7} \) | \(a_{119}= +0.58095309 \pm 1.6 \cdot 10^{-7} \) | \(a_{120}= -0.00781393 \pm 5.4 \cdot 10^{-7} \) |
\(a_{121}= -0.16801556 \pm 2.1 \cdot 10^{-7} \) | \(a_{122}= +0.17770621 \pm 1.5 \cdot 10^{-7} \) | \(a_{123}= -0.47460021 \pm 1.7 \cdot 10^{-7} \) |
\(a_{124}= -0.47531442 \pm 2.6 \cdot 10^{-7} \) | \(a_{125}= -0.13525490 \pm 1.9 \cdot 10^{-7} \) | \(a_{126}= -0.23884794 \pm 2.4 \cdot 10^{-7} \) |
\(a_{127}= -0.67994846 \pm 2.2 \cdot 10^{-7} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.51052456 \pm 2.9 \cdot 10^{-7} \) |
\(a_{130}= -0.07993031 \pm 4.6 \cdot 10^{-7} \) | \(a_{131}= -0.11952581 \pm 1.8 \cdot 10^{-7} \) | \(a_{132}= +0.14870326 \pm 5.5 \cdot 10^{-7} \) |
\(a_{133}= -0.01607930 \pm 2.4 \cdot 10^{-7} \) | \(a_{134}= +0.64673023 \pm 2.5 \cdot 10^{-7} \) | \(a_{135}= -0.04185265 \pm 1.6 \cdot 10^{-7} \) |
\(a_{136}= +0.54343185 \pm 1.6 \cdot 10^{-7} \) | \(a_{137}= -1.45542537 \pm 2.6 \cdot 10^{-7} \) | \(a_{138}= -0.02425057 \pm 5.2 \cdot 10^{-7} \) |
\(a_{139}= +0.49705245 \pm 2.1 \cdot 10^{-7} \) | \(a_{140}= -0.01280981 \pm 2.4 \cdot 10^{-7} \) | \(a_{141}= +0.20382441 \pm 2.0 \cdot 10^{-7} \) |
\(a_{142}= -0.33714103 \pm 3.2 \cdot 10^{-7} \) | \(a_{143}= +1.52111560 \pm 2.8 \cdot 10^{-7} \) | \(a_{144}= -0.22342179 \pm 2.4 \cdot 10^{-7} \) |
\(a_{145}= -0.01028223 \pm 2.4 \cdot 10^{-7} \) | \(a_{146}= +0.24715361 \pm 2.4 \cdot 10^{-7} \) | \(a_{147}= +0.04657950 \pm 3.1 \cdot 10^{-7} \) |
\(a_{148}= -0.03173859 \pm 1.9 \cdot 10^{-7} \) | \(a_{149}= +0.75273521 \pm 1.6 \cdot 10^{-7} \) | \(a_{150}= +0.22949746 \pm 4.9 \cdot 10^{-7} \) |
\(a_{151}= -1.68199142 \pm 1.9 \cdot 10^{-7} \) | \(a_{152}= -0.01504081 \pm 2.4 \cdot 10^{-7} \) | \(a_{153}= +1.37364845 \pm 1.7 \cdot 10^{-7} \) |
\(a_{154}= +0.24377748 \pm 2.5 \cdot 10^{-7} \) | \(a_{155}= -0.06443664 \pm 2.9 \cdot 10^{-7} \) | \(a_{156}= +0.27187389 \pm 5.3 \cdot 10^{-7} \) |
\(a_{157}= +1.34302639 \pm 1.9 \cdot 10^{-7} \) | \(a_{158}= -1.16847134 \pm 2.9 \cdot 10^{-7} \) | \(a_{159}= -0.29705793 \pm 2.6 \cdot 10^{-7} \) |
\(a_{160}= -0.01198248 \pm 2.4 \cdot 10^{-7} \) | \(a_{161}= -0.03975530 \pm 2.2 \cdot 10^{-7} \) | \(a_{162}= -0.48957519 \pm 2.6 \cdot 10^{-7} \) |
\(a_{163}= -1.10307940 \pm 1.7 \cdot 10^{-7} \) | \(a_{164}= -0.72778827 \pm 1.6 \cdot 10^{-7} \) | \(a_{165}= +0.02015916 \pm 2.8 \cdot 10^{-7} \) |
\(a_{166}= +0.69195795 \pm 1.8 \cdot 10^{-7} \) | \(a_{167}= -0.21257053 \pm 2.5 \cdot 10^{-7} \) | \(a_{168}= +0.04357113 \pm 3.1 \cdot 10^{-7} \) |
\(a_{169}= +1.78105282 \pm 2.3 \cdot 10^{-7} \) | \(a_{170}= +0.07367107 \pm 3.9 \cdot 10^{-7} \) | \(a_{171}= -0.03801910 \pm 3.1 \cdot 10^{-7} \) |
\(a_{172}= -0.78287743 \pm 2.4 \cdot 10^{-7} \) | \(a_{173}= -1.61375851 \pm 2.6 \cdot 10^{-7} \) | \(a_{174}= +0.03497382 \pm 5.7 \cdot 10^{-7} \) |
\(a_{175}= +0.37622789 \pm 1.9 \cdot 10^{-7} \) | \(a_{176}= +0.22803295 \pm 2.5 \cdot 10^{-7} \) | \(a_{177}= -0.28976102 \pm 2.8 \cdot 10^{-7} \) |
\(a_{178}= +0.50049224 \pm 1.7 \cdot 10^{-7} \) | \(a_{179}= -1.68013233 \pm 2.1 \cdot 10^{-7} \) | \(a_{180}= -0.03028847 \pm 4.8 \cdot 10^{-7} \) |
\(a_{181}= +1.46795307 \pm 2.1 \cdot 10^{-7} \) | \(a_{182}= +0.44569791 \pm 2.3 \cdot 10^{-7} \) | \(a_{183}= -0.08194274 \pm 1.9 \cdot 10^{-7} \) |
\(a_{184}= -0.03718768 \pm 2.2 \cdot 10^{-7} \) | \(a_{185}= -0.00430268 \pm 1.5 \cdot 10^{-7} \) | \(a_{186}= +0.21917391 \pm 5.7 \cdot 10^{-7} \) |
\(a_{187}= -1.40199894 \pm 1.3 \cdot 10^{-7} \) | \(a_{188}= +0.31255994 \pm 1.8 \cdot 10^{-7} \) | \(a_{189}= +0.23337380 \pm 2.3 \cdot 10^{-7} \) |
\(a_{190}= -0.00203903 \pm 4.7 \cdot 10^{-7} \) | \(a_{191}= -0.90366885 \pm 1.6 \cdot 10^{-7} \) | \(a_{192}= +0.04075706 \pm 3.1 \cdot 10^{-7} \) |
\(a_{193}= +0.65110715 \pm 1.8 \cdot 10^{-7} \) | \(a_{194}= -0.53557082 \pm 1.9 \cdot 10^{-7} \) | \(a_{195}= +0.03685695 \pm 1.8 \cdot 10^{-7} \) |
\(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= +1.27301689 \pm 2.9 \cdot 10^{-7} \) | \(a_{198}= +0.57640550 \pm 4.8 \cdot 10^{-7} \) |
\(a_{199}= +1.02138135 \pm 2.1 \cdot 10^{-7} \) | \(a_{200}= +0.35192897 \pm 1.9 \cdot 10^{-7} \) | \(a_{201}= -0.29821606 \pm 3.0 \cdot 10^{-7} \) |
\(a_{202}= +1.22026561 \pm 2.6 \cdot 10^{-7} \) | \(a_{203}= +0.05733453 \pm 2.6 \cdot 10^{-7} \) | \(a_{204}= -0.25058379 \pm 4.6 \cdot 10^{-7} \) |
\(a_{205}= -0.09866359 \pm 1.6 \cdot 10^{-7} \) | \(a_{206}= -0.82345820 \pm 1.8 \cdot 10^{-7} \) | \(a_{207}= -0.09400037 \pm 2.1 \cdot 10^{-7} \) |
\(a_{208}= +0.41691222 \pm 2.3 \cdot 10^{-7} \) | \(a_{209}= +0.03880377 \pm 1.8 \cdot 10^{-7} \) | \(a_{210}= +0.00590678 \pm 5.4 \cdot 10^{-7} \) |
\(a_{211}= +0.38650436 \pm 2.8 \cdot 10^{-7} \) | \(a_{212}= -0.45553136 \pm 2.3 \cdot 10^{-7} \) | \(a_{213}= +0.15546030 \pm 4.4 \cdot 10^{-7} \) |
\(a_{214}= -1.24717385 \pm 1.8 \cdot 10^{-7} \) | \(a_{215}= -0.10613183 \pm 2.0 \cdot 10^{-7} \) | \(a_{216}= +0.21830120 \pm 2.3 \cdot 10^{-7} \) |
\(a_{217}= +0.35930393 \pm 2.6 \cdot 10^{-7} \) | \(a_{218}= -0.70717823 \pm 1.8 \cdot 10^{-7} \) | \(a_{219}= -0.11396587 \pm 2.9 \cdot 10^{-7} \) |
\(a_{220}= +0.03091359 \pm 4.8 \cdot 10^{-7} \) | \(a_{221}= -2.56327206 \pm 1.3 \cdot 10^{-7} \) | \(a_{222}= +0.01463509 \pm 4.9 \cdot 10^{-7} \) |
\(a_{223}= -0.42856425 \pm 2.1 \cdot 10^{-7} \) | \(a_{224}= +0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= +0.88958105 \pm 1.5 \cdot 10^{-7} \) |
\(a_{226}= -0.61236791 \pm 2.8 \cdot 10^{-7} \) | \(a_{227}= -0.37544292 \pm 2.5 \cdot 10^{-7} \) | \(a_{228}= +0.00693552 \pm 5.4 \cdot 10^{-7} \) |
\(a_{229}= +0.30218650 \pm 2.0 \cdot 10^{-7} \) | \(a_{230}= -0.00504140 \pm 4.5 \cdot 10^{-7} \) | \(a_{231}= -0.11240910 \pm 5.5 \cdot 10^{-7} \) |
\(a_{232}= +0.05363154 \pm 2.6 \cdot 10^{-7} \) | \(a_{233}= +0.75814916 \pm 1.7 \cdot 10^{-7} \) | \(a_{234}= +1.05384111 \pm 4.7 \cdot 10^{-7} \) |
\(a_{235}= +0.04237261 \pm 1.7 \cdot 10^{-7} \) | \(a_{236}= -0.44434172 \pm 2.5 \cdot 10^{-7} \) | \(a_{237}= +0.53879795 \pm 3.8 \cdot 10^{-7} \) |
\(a_{238}= -0.41079587 \pm 1.6 \cdot 10^{-7} \) | \(a_{239}= -1.01189177 \pm 2.7 \cdot 10^{-7} \) | \(a_{240}= +0.00552529 \pm 5.4 \cdot 10^{-7} \) |
\(a_{241}= +1.57704862 \pm 2.6 \cdot 10^{-7} \) | \(a_{242}= +0.11880494 \pm 2.2 \cdot 10^{-7} \) | \(a_{243}= +0.84319877 \pm 2.4 \cdot 10^{-7} \) |
\(a_{244}= -0.12565727 \pm 1.5 \cdot 10^{-7} \) | \(a_{245}= +0.00968331 \pm 2.4 \cdot 10^{-7} \) | \(a_{246}= +0.33559302 \pm 4.6 \cdot 10^{-7} \) |
\(a_{247}= +0.07094485 \pm 2.2 \cdot 10^{-7} \) | \(a_{248}= +0.33609805 \pm 2.6 \cdot 10^{-7} \) | \(a_{249}= -0.31907118 \pm 2.2 \cdot 10^{-7} \) |
\(a_{250}= +0.09563966 \pm 2.0 \cdot 10^{-7} \) | \(a_{251}= -0.03275314 \pm 2.1 \cdot 10^{-7} \) | \(a_{252}= +0.16889100 \pm 2.4 \cdot 10^{-7} \) |
\(a_{253}= +0.09594043 \pm 2.5 \cdot 10^{-7} \) | \(a_{254}= +0.48079617 \pm 2.3 \cdot 10^{-7} \) | \(a_{255}= -0.03397073 \pm 1.7 \cdot 10^{-7} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -0.14420660 \pm 2.5 \cdot 10^{-7} \) | \(a_{258}= +0.36099538 \pm 5.5 \cdot 10^{-7} \) |
\(a_{259}= +0.02399212 \pm 1.9 \cdot 10^{-7} \) | \(a_{260}= +0.05651926 \pm 4.6 \cdot 10^{-7} \) | \(a_{261}= +0.13556599 \pm 2.4 \cdot 10^{-7} \) |
\(a_{262}= +0.08451751 \pm 1.9 \cdot 10^{-7} \) | \(a_{263}= -1.65039739 \pm 2.5 \cdot 10^{-7} \) | \(a_{264}= -0.10514908 \pm 5.5 \cdot 10^{-7} \) |
\(a_{265}= -0.06175472 \pm 2.5 \cdot 10^{-7} \) | \(a_{266}= +0.01136979 \pm 2.4 \cdot 10^{-7} \) | \(a_{267}= -0.23078375 \pm 2.1 \cdot 10^{-7} \) |
\(a_{268}= -0.45730733 \pm 2.5 \cdot 10^{-7} \) | \(a_{269}= +0.37368213 \pm 2.2 \cdot 10^{-7} \) | \(a_{270}= +0.02959429 \pm 4.6 \cdot 10^{-7} \) |
\(a_{271}= -1.34638563 \pm 1.9 \cdot 10^{-7} \) | \(a_{272}= -0.38426435 \pm 1.6 \cdot 10^{-7} \) | \(a_{273}= -0.20551734 \pm 5.3 \cdot 10^{-7} \) |
\(a_{274}= +1.02914115 \pm 2.7 \cdot 10^{-7} \) | \(a_{275}= -0.90794097 \pm 2.0 \cdot 10^{-7} \) | \(a_{276}= +0.01714774 \pm 5.2 \cdot 10^{-7} \) |
\(a_{277}= +1.34800528 \pm 3.1 \cdot 10^{-7} \) | \(a_{278}= -0.35146916 \pm 2.2 \cdot 10^{-7} \) | \(a_{279}= +0.84956478 \pm 1.9 \cdot 10^{-7} \) |
\(a_{280}= +0.00905791 \pm 2.4 \cdot 10^{-7} \) | \(a_{281}= -1.52382702 \pm 2.0 \cdot 10^{-7} \) | \(a_{282}= -0.14412562 \pm 4.8 \cdot 10^{-7} \) |
\(a_{283}= -0.70702461 \pm 2.3 \cdot 10^{-7} \) | \(a_{284}= +0.23839471 \pm 3.2 \cdot 10^{-7} \) | \(a_{285}= +0.00094022 \pm 2.5 \cdot 10^{-7} \) |
\(a_{286}= -1.07559116 \pm 4.7 \cdot 10^{-7} \) | \(a_{287}= +0.55015622 \pm 1.6 \cdot 10^{-7} \) | \(a_{288}= +0.15798306 \pm 2.4 \cdot 10^{-7} \) |
\(a_{289}= +1.36254544 \pm 1.9 \cdot 10^{-7} \) | \(a_{290}= +0.00727063 \pm 5.0 \cdot 10^{-7} \) | \(a_{291}= +0.24695896 \pm 2.9 \cdot 10^{-7} \) |
\(a_{292}= -0.17476399 \pm 2.4 \cdot 10^{-7} \) | \(a_{293}= +0.91282467 \pm 1.6 \cdot 10^{-7} \) | \(a_{294}= -0.03293668 \pm 3.1 \cdot 10^{-7} \) |
\(a_{295}= -0.06023778 \pm 3.0 \cdot 10^{-7} \) | \(a_{296}= +0.02244257 \pm 1.9 \cdot 10^{-7} \) | \(a_{297}= -0.56319490 \pm 2.3 \cdot 10^{-7} \) |
\(a_{298}= -0.53226417 \pm 1.7 \cdot 10^{-7} \) | \(a_{299}= +0.17540771 \pm 1.6 \cdot 10^{-7} \) | \(a_{300}= -0.16227921 \pm 4.9 \cdot 10^{-7} \) |
\(a_{301}= +0.59179971 \pm 2.4 \cdot 10^{-7} \) | \(a_{302}= +1.18934754 \pm 2.1 \cdot 10^{-7} \) | \(a_{303}= -0.56268099 \pm 3.2 \cdot 10^{-7} \) |
\(a_{304}= +0.01063546 \pm 2.4 \cdot 10^{-7} \) | \(a_{305}= -0.01703490 \pm 1.3 \cdot 10^{-7} \) | \(a_{306}= -0.97131613 \pm 4.0 \cdot 10^{-7} \) |
\(a_{307}= +1.04452015 \pm 2.0 \cdot 10^{-7} \) | \(a_{308}= -0.17237671 \pm 2.5 \cdot 10^{-7} \) | \(a_{309}= +0.37970773 \pm 2.7 \cdot 10^{-7} \) |
\(a_{310}= +0.04556358 \pm 5.0 \cdot 10^{-7} \) | \(a_{311}= -0.23009012 \pm 2.6 \cdot 10^{-7} \) | \(a_{312}= -0.19224387 \pm 5.3 \cdot 10^{-7} \) |
\(a_{313}= +1.68544593 \pm 1.4 \cdot 10^{-7} \) | \(a_{314}= -0.94966307 \pm 2.0 \cdot 10^{-7} \) | \(a_{315}= +0.02289593 \pm 4.8 \cdot 10^{-7} \) |
\(a_{316}= +0.82623401 \pm 2.9 \cdot 10^{-7} \) | \(a_{317}= -1.00913321 \pm 2.5 \cdot 10^{-7} \) | \(a_{318}= +0.21005168 \pm 5.4 \cdot 10^{-7} \) |
\(a_{319}= -0.13836391 \pm 2.0 \cdot 10^{-7} \) | \(a_{320}= +0.00847290 \pm 2.4 \cdot 10^{-7} \) | \(a_{321}= +0.57508875 \pm 2.0 \cdot 10^{-7} \) |
\(a_{322}= +0.02811124 \pm 2.2 \cdot 10^{-7} \) | \(a_{323}= -0.06538925 \pm 1.4 \cdot 10^{-7} \) | \(a_{324}= +0.34618194 \pm 2.6 \cdot 10^{-7} \) |
\(a_{325}= -1.65998678 \pm 1.9 \cdot 10^{-7} \) | \(a_{326}= +0.77999492 \pm 1.8 \cdot 10^{-7} \) | \(a_{327}= +0.32608946 \pm 1.9 \cdot 10^{-7} \) |
\(a_{328}= +0.51462402 \pm 1.6 \cdot 10^{-7} \) | \(a_{329}= -0.23627311 \pm 1.8 \cdot 10^{-7} \) | \(a_{330}= -0.01425468 \pm 7.8 \cdot 10^{-7} \) |
\(a_{331}= +0.19356751 \pm 2.0 \cdot 10^{-7} \) | \(a_{332}= -0.48928816 \pm 1.8 \cdot 10^{-7} \) | \(a_{333}= +0.05672875 \pm 1.1 \cdot 10^{-7} \) |
\(a_{334}= +0.15031006 \pm 2.7 \cdot 10^{-7} \) | \(a_{335}= -0.06199548 \pm 1.9 \cdot 10^{-7} \) | \(a_{336}= -0.03080944 \pm 3.1 \cdot 10^{-7} \) |
\(a_{337}= -0.95367434 \pm 2.3 \cdot 10^{-7} \) | \(a_{338}= -1.25939453 \pm 2.4 \cdot 10^{-7} \) | \(a_{339}= +0.28237114 \pm 3.7 \cdot 10^{-7} \) |
\(a_{340}= -0.05209331 \pm 3.9 \cdot 10^{-7} \) | \(a_{341}= -0.86709880 \pm 2.1 \cdot 10^{-7} \) | \(a_{342}= +0.02688356 \pm 4.8 \cdot 10^{-7} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.55357794 \pm 2.4 \cdot 10^{-7} \) | \(a_{345}= +0.00232466 \pm 3.1 \cdot 10^{-7} \) |
\(a_{346}= +1.14109959 \pm 2.7 \cdot 10^{-7} \) | \(a_{347}= -0.96165136 \pm 2.3 \cdot 10^{-7} \) | \(a_{348}= -0.02473023 \pm 5.7 \cdot 10^{-7} \) |
\(a_{349}= -0.14505665 \pm 2.2 \cdot 10^{-7} \) | \(a_{350}= -0.26603329 \pm 1.9 \cdot 10^{-7} \) | \(a_{351}= -1.02968818 \pm 2.4 \cdot 10^{-7} \) |
\(a_{352}= -0.16124365 \pm 2.5 \cdot 10^{-7} \) | \(a_{353}= +0.46037380 \pm 1.4 \cdot 10^{-7} \) | \(a_{354}= +0.20489199 \pm 5.5 \cdot 10^{-7} \) |
\(a_{355}= +0.03231830 \pm 3.0 \cdot 10^{-7} \) | \(a_{356}= -0.35390146 \pm 1.7 \cdot 10^{-7} \) | \(a_{357}= +0.18942354 \pm 4.6 \cdot 10^{-7} \) |
\(a_{358}= +1.18803297 \pm 2.2 \cdot 10^{-7} \) | \(a_{359}= +0.88324266 \pm 3.0 \cdot 10^{-7} \) | \(a_{360}= +0.02141718 \pm 4.8 \cdot 10^{-7} \) |
\(a_{361}= -0.99819019 \pm 2.0 \cdot 10^{-7} \) | \(a_{362}= -1.03799957 \pm 2.2 \cdot 10^{-7} \) | \(a_{363}= -0.05478257 \pm 2.4 \cdot 10^{-7} \) |
\(a_{364}= -0.31515602 \pm 2.3 \cdot 10^{-7} \) | \(a_{365}= -0.02369211 \pm 1.9 \cdot 10^{-7} \) | \(a_{366}= +0.05794227 \pm 4.5 \cdot 10^{-7} \) |
\(a_{367}= +0.63206760 \pm 1.6 \cdot 10^{-7} \) | \(a_{368}= +0.02629566 \pm 2.2 \cdot 10^{-7} \) | \(a_{369}= +1.30083005 \pm 9.3 \cdot 10^{-8} \) |
\(a_{370}= +0.00304246 \pm 4.2 \cdot 10^{-7} \) | \(a_{371}= +0.34434934 \pm 2.3 \cdot 10^{-7} \) | \(a_{372}= -0.15497936 \pm 5.7 \cdot 10^{-7} \) |
\(a_{373}= +0.84836247 \pm 2.8 \cdot 10^{-7} \) | \(a_{374}= +0.99136296 \pm 4.0 \cdot 10^{-7} \) | \(a_{375}= -0.04410074 \pm 2.5 \cdot 10^{-7} \) |
\(a_{376}= -0.22101326 \pm 1.8 \cdot 10^{-7} \) | \(a_{377}= -0.25297049 \pm 1.9 \cdot 10^{-7} \) | \(a_{378}= -0.16502019 \pm 2.3 \cdot 10^{-7} \) |
\(a_{379}= -0.92685843 \pm 2.6 \cdot 10^{-7} \) | \(a_{380}= +0.00144181 \pm 4.7 \cdot 10^{-7} \) | \(a_{381}= -0.22170162 \pm 2.9 \cdot 10^{-7} \) |
\(a_{382}= +0.63899038 \pm 1.7 \cdot 10^{-7} \) | \(a_{383}= +1.62421962 \pm 2.1 \cdot 10^{-7} \) | \(a_{384}= -0.02881960 \pm 3.1 \cdot 10^{-7} \) |
\(a_{385}= -0.02336848 \pm 4.8 \cdot 10^{-7} \) | \(a_{386}= -0.46040228 \pm 1.9 \cdot 10^{-7} \) | \(a_{387}= +1.39929500 \pm 1.9 \cdot 10^{-7} \) |
\(a_{388}= +0.37870576 \pm 1.9 \cdot 10^{-7} \) | \(a_{389}= +0.94360402 \pm 2.3 \cdot 10^{-7} \) | \(a_{390}= -0.02606180 \pm 7.7 \cdot 10^{-7} \) |
\(a_{391}= -0.16167175 \pm 1.2 \cdot 10^{-7} \) | \(a_{392}= -0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= -0.03897217 \pm 2.5 \cdot 10^{-7} \) |
\(a_{394}= -0.90015887 \pm 3.0 \cdot 10^{-7} \) | \(a_{395}= +0.11200952 \pm 2.8 \cdot 10^{-7} \) | \(a_{396}= -0.40758024 \pm 4.8 \cdot 10^{-7} \) |
\(a_{397}= -1.58079795 \pm 1.8 \cdot 10^{-7} \) | \(a_{398}= -0.72222568 \pm 2.2 \cdot 10^{-7} \) | \(a_{399}= -0.00524276 \pm 5.4 \cdot 10^{-7} \) |
\(a_{400}= -0.24885136 \pm 1.9 \cdot 10^{-7} \) | \(a_{401}= -0.08064365 \pm 2.5 \cdot 10^{-7} \) | \(a_{402}= +0.21087060 \pm 5.5 \cdot 10^{-7} \) |
\(a_{403}= -1.58531513 \pm 1.3 \cdot 10^{-7} \) | \(a_{404}= -0.86285809 \pm 2.6 \cdot 10^{-7} \) | \(a_{405}= +0.04693062 \pm 2.3 \cdot 10^{-7} \) |
\(a_{406}= -0.04054163 \pm 2.6 \cdot 10^{-7} \) | \(a_{407}= -0.05789956 \pm 2.4 \cdot 10^{-7} \) | \(a_{408}= +0.17718949 \pm 4.6 \cdot 10^{-7} \) |
\(a_{409}= +0.17147928 \pm 3.0 \cdot 10^{-7} \) | \(a_{410}= +0.06976569 \pm 3.9 \cdot 10^{-7} \) | \(a_{411}= -0.47455092 \pm 3.2 \cdot 10^{-7} \) |
\(a_{412}= +0.58227288 \pm 1.8 \cdot 10^{-7} \) | \(a_{413}= +0.33589077 \pm 2.5 \cdot 10^{-7} \) | \(a_{414}= +0.06646830 \pm 4.6 \cdot 10^{-7} \) |
\(a_{415}= -0.06633100 \pm 1.5 \cdot 10^{-7} \) | \(a_{416}= -0.29480146 \pm 2.3 \cdot 10^{-7} \) | \(a_{417}= +0.16206719 \pm 2.8 \cdot 10^{-7} \) |
\(a_{418}= -0.02743841 \pm 4.8 \cdot 10^{-7} \) | \(a_{419}= -0.86055444 \pm 2.0 \cdot 10^{-7} \) | \(a_{420}= -0.00417672 \pm 5.4 \cdot 10^{-7} \) |
\(a_{421}= -1.44468788 \pm 2.0 \cdot 10^{-7} \) | \(a_{422}= -0.27329985 \pm 2.9 \cdot 10^{-7} \) | \(a_{423}= -0.55866161 \pm 2.2 \cdot 10^{-7} \) |
\(a_{424}= +0.32210931 \pm 2.3 \cdot 10^{-7} \) | \(a_{425}= +1.52999530 \pm 1.6 \cdot 10^{-7} \) | \(a_{426}= -0.10992703 \pm 6.3 \cdot 10^{-7} \) |
\(a_{427}= +0.09498797 \pm 1.5 \cdot 10^{-7} \) | \(a_{428}= +0.88188509 \pm 1.8 \cdot 10^{-7} \) | \(a_{429}= +0.49596964 \pm 3.0 \cdot 10^{-7} \) |
\(a_{430}= +0.07504653 \pm 4.8 \cdot 10^{-7} \) | \(a_{431}= +0.35531276 \pm 2.1 \cdot 10^{-7} \) | \(a_{432}= -0.15436226 \pm 2.3 \cdot 10^{-7} \) |
\(a_{433}= +1.48163094 \pm 2.9 \cdot 10^{-7} \) | \(a_{434}= -0.25406624 \pm 2.6 \cdot 10^{-7} \) | \(a_{435}= -0.00335259 \pm 3.4 \cdot 10^{-7} \) |
\(a_{436}= +0.50005052 \pm 1.8 \cdot 10^{-7} \) | \(a_{437}= +0.00447466 \pm 1.5 \cdot 10^{-7} \) | \(a_{438}= +0.08058604 \pm 5.4 \cdot 10^{-7} \) |
\(a_{439}= +0.36780115 \pm 2.8 \cdot 10^{-7} \) | \(a_{440}= -0.02185921 \pm 4.8 \cdot 10^{-7} \) | \(a_{441}= -0.12766959 \pm 2.4 \cdot 10^{-7} \) |
\(a_{442}= +1.81250706 \pm 3.9 \cdot 10^{-7} \) | \(a_{443}= -1.28903815 \pm 2.2 \cdot 10^{-7} \) | \(a_{444}= -0.01034857 \pm 4.9 \cdot 10^{-7} \) |
\(a_{445}= -0.04797712 \pm 2.0 \cdot 10^{-7} \) | \(a_{446}= +0.30304069 \pm 2.2 \cdot 10^{-7} \) | \(a_{447}= +0.24543422 \pm 2.0 \cdot 10^{-7} \) |
\(a_{448}= -0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= +0.40698723 \pm 2.1 \cdot 10^{-7} \) | \(a_{450}= -0.62902880 \pm 4.3 \cdot 10^{-7} \) |
\(a_{451}= -1.32767766 \pm 1.8 \cdot 10^{-7} \) | \(a_{452}= +0.43300950 \pm 2.8 \cdot 10^{-7} \) | \(a_{453}= -0.54842425 \pm 2.3 \cdot 10^{-7} \) |
\(a_{454}= +0.26547823 \pm 2.6 \cdot 10^{-7} \) | \(a_{455}= -0.04272455 \pm 4.6 \cdot 10^{-7} \) | \(a_{456}= -0.00490415 \pm 5.4 \cdot 10^{-7} \) |
\(a_{457}= -1.22827659 \pm 3.1 \cdot 10^{-7} \) | \(a_{458}= -0.21367812 \pm 2.1 \cdot 10^{-7} \) | \(a_{459}= +0.94905459 \pm 1.7 \cdot 10^{-7} \) |
\(a_{460}= +0.00356481 \pm 4.5 \cdot 10^{-7} \) | \(a_{461}= +1.26564192 \pm 1.4 \cdot 10^{-7} \) | \(a_{462}= +0.07948523 \pm 5.5 \cdot 10^{-7} \) |
\(a_{463}= +0.44354885 \pm 2.8 \cdot 10^{-7} \) | \(a_{464}= -0.03792322 \pm 2.6 \cdot 10^{-7} \) | \(a_{465}= -0.02100998 \pm 3.7 \cdot 10^{-7} \) |
\(a_{466}= -0.53609241 \pm 1.9 \cdot 10^{-7} \) | \(a_{467}= +0.27270438 \pm 2.7 \cdot 10^{-7} \) | \(a_{468}= -0.74517819 \pm 4.7 \cdot 10^{-7} \) |
\(a_{469}= +0.34569185 \pm 2.5 \cdot 10^{-7} \) | \(a_{470}= -0.02996196 \pm 4.1 \cdot 10^{-7} \) | \(a_{471}= +0.43790250 \pm 2.4 \cdot 10^{-7} \) |
\(a_{472}= +0.31419705 \pm 2.5 \cdot 10^{-7} \) | \(a_{473}= -1.42817481 \pm 2.0 \cdot 10^{-7} \) | \(a_{474}= -0.38098769 \pm 5.9 \cdot 10^{-7} \) |
\(a_{475}= -0.04234638 \pm 1.6 \cdot 10^{-7} \) | \(a_{476}= +0.29047654 \pm 1.6 \cdot 10^{-7} \) | \(a_{477}= +0.81420504 \pm 1.8 \cdot 10^{-7} \) |
\(a_{478}= +0.71551553 \pm 2.8 \cdot 10^{-7} \) | \(a_{479}= -1.50730335 \pm 2.5 \cdot 10^{-7} \) | \(a_{480}= -0.00390697 \pm 5.4 \cdot 10^{-7} \) |
\(a_{481}= -0.10585766 \pm 2.4 \cdot 10^{-7} \) | \(a_{482}= -1.11514177 \pm 2.7 \cdot 10^{-7} \) | \(a_{483}= -0.01296247 \pm 5.2 \cdot 10^{-7} \) |
\(a_{484}= -0.08400778 \pm 2.2 \cdot 10^{-7} \) | \(a_{485}= +0.05133975 \pm 1.3 \cdot 10^{-7} \) | \(a_{486}= -0.59623157 \pm 2.5 \cdot 10^{-7} \) |
\(a_{487}= +1.74242628 \pm 1.9 \cdot 10^{-7} \) | \(a_{488}= +0.08885311 \pm 1.5 \cdot 10^{-7} \) | \(a_{489}= -0.35966622 \pm 2.1 \cdot 10^{-7} \) |
\(a_{490}= -0.00684713 \pm 2.4 \cdot 10^{-7} \) | \(a_{491}= -1.02119351 \pm 2.8 \cdot 10^{-7} \) | \(a_{492}= -0.23730010 \pm 4.6 \cdot 10^{-7} \) |
\(a_{493}= +0.23316069 \pm 1.5 \cdot 10^{-7} \) | \(a_{494}= -0.05016559 \pm 4.6 \cdot 10^{-7} \) | \(a_{495}= -0.05525416 \pm 1.8 \cdot 10^{-7} \) |
\(a_{496}= -0.23765721 \pm 2.6 \cdot 10^{-7} \) | \(a_{497}= -0.18020946 \pm 3.2 \cdot 10^{-7} \) | \(a_{498}= +0.22561739 \pm 4.9 \cdot 10^{-7} \) |
\(a_{499}= -0.34333486 \pm 3.2 \cdot 10^{-7} \) | \(a_{500}= -0.06762745 \pm 2.0 \cdot 10^{-7} \) | \(a_{501}= -0.06931000 \pm 2.9 \cdot 10^{-7} \) |
\(a_{502}= +0.02315997 \pm 2.3 \cdot 10^{-7} \) | \(a_{503}= +0.58868108 \pm 2.3 \cdot 10^{-7} \) | \(a_{504}= -0.11942397 \pm 2.4 \cdot 10^{-7} \) |
\(a_{505}= -0.11697451 \pm 2.7 \cdot 10^{-7} \) | \(a_{506}= -0.06784013 \pm 4.6 \cdot 10^{-7} \) | \(a_{507}= +0.58072387 \pm 2.6 \cdot 10^{-7} \) |
\(a_{508}= -0.33997423 \pm 2.3 \cdot 10^{-7} \) | \(a_{509}= -0.06280309 \pm 2.0 \cdot 10^{-7} \) | \(a_{510}= +0.02402093 \pm 7.0 \cdot 10^{-7} \) |
\(a_{511}= +0.13210916 \pm 2.4 \cdot 10^{-7} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.02626742 \pm 2.8 \cdot 10^{-7} \) |
\(a_{514}= +0.10196946 \pm 2.6 \cdot 10^{-7} \) | \(a_{515}= +0.07893660 \pm 1.0 \cdot 10^{-7} \) | \(a_{516}= -0.25526228 \pm 5.5 \cdot 10^{-7} \) |
\(a_{517}= +0.57019173 \pm 1.6 \cdot 10^{-7} \) | \(a_{518}= -0.01696499 \pm 1.9 \cdot 10^{-7} \) | \(a_{519}= -0.52617647 \pm 3.7 \cdot 10^{-7} \) |
\(a_{520}= -0.03996515 \pm 4.6 \cdot 10^{-7} \) | \(a_{521}= +1.04764267 \pm 2.1 \cdot 10^{-7} \) | \(a_{522}= -0.09585963 \pm 5.0 \cdot 10^{-7} \) |
\(a_{523}= +0.12993480 \pm 2.3 \cdot 10^{-7} \) | \(a_{524}= -0.05976291 \pm 1.9 \cdot 10^{-7} \) | \(a_{525}= +0.12267155 \pm 4.9 \cdot 10^{-7} \) |
\(a_{526}= +1.16700719 \pm 2.6 \cdot 10^{-7} \) | \(a_{527}= +1.46117109 \pm 1.1 \cdot 10^{-7} \) | \(a_{528}= +0.07435163 \pm 5.5 \cdot 10^{-7} \) |
\(a_{529}= -0.98893661 \pm 2.0 \cdot 10^{-7} \) | \(a_{530}= +0.04366718 \pm 4.7 \cdot 10^{-7} \) | \(a_{531}= +0.79420498 \pm 1.8 \cdot 10^{-7} \) |
\(a_{532}= -0.00803965 \pm 2.4 \cdot 10^{-7} \) | \(a_{533}= -2.42739060 \pm 1.3 \cdot 10^{-7} \) | \(a_{534}= +0.16318875 \pm 4.8 \cdot 10^{-7} \) |
\(a_{535}= +0.11955393 \pm 1.3 \cdot 10^{-7} \) | \(a_{536}= +0.32336511 \pm 2.5 \cdot 10^{-7} \) | \(a_{537}= -0.54781809 \pm 2.5 \cdot 10^{-7} \) |
\(a_{538}= -0.26423317 \pm 2.3 \cdot 10^{-7} \) | \(a_{539}= +0.13030454 \pm 2.5 \cdot 10^{-7} \) | \(a_{540}= -0.02092633 \pm 4.6 \cdot 10^{-7} \) |
\(a_{541}= +0.57852819 \pm 1.6 \cdot 10^{-7} \) | \(a_{542}= +0.95203841 \pm 2.0 \cdot 10^{-7} \) | \(a_{543}= +0.47863566 \pm 2.4 \cdot 10^{-7} \) |
\(a_{544}= +0.27171593 \pm 1.6 \cdot 10^{-7} \) | \(a_{545}= +0.06779002 \pm 2.0 \cdot 10^{-7} \) | \(a_{546}= +0.14532271 \pm 5.3 \cdot 10^{-7} \) |
\(a_{547}= +1.23249862 \pm 2.0 \cdot 10^{-7} \) | \(a_{548}= -0.72771269 \pm 2.7 \cdot 10^{-7} \) | \(a_{549}= +0.22459657 \pm 1.7 \cdot 10^{-7} \) |
\(a_{550}= +0.64201121 \pm 4.3 \cdot 10^{-7} \) | \(a_{551}= -0.00645329 \pm 2.4 \cdot 10^{-7} \) | \(a_{552}= -0.01212528 \pm 5.2 \cdot 10^{-7} \) |
\(a_{553}= -0.62457420 \pm 2.9 \cdot 10^{-7} \) | \(a_{554}= -0.95318368 \pm 3.2 \cdot 10^{-7} \) | \(a_{555}= -0.00140292 \pm 1.5 \cdot 10^{-7} \) |
\(a_{556}= +0.24852622 \pm 2.2 \cdot 10^{-7} \) | \(a_{557}= +0.44841288 \pm 2.5 \cdot 10^{-7} \) | \(a_{558}= -0.60073302 \pm 5.0 \cdot 10^{-7} \) |
\(a_{559}= -2.61112935 \pm 2.4 \cdot 10^{-7} \) | \(a_{560}= -0.00640491 \pm 2.4 \cdot 10^{-7} \) | \(a_{561}= -0.45713088 \pm 1.5 \cdot 10^{-7} \) |
\(a_{562}= +1.07750842 \pm 2.1 \cdot 10^{-7} \) | \(a_{563}= +0.46952417 \pm 1.7 \cdot 10^{-7} \) | \(a_{564}= +0.10191220 \pm 4.8 \cdot 10^{-7} \) |
\(a_{565}= +0.05870151 \pm 2.9 \cdot 10^{-7} \) | \(a_{566}= +0.49994190 \pm 2.4 \cdot 10^{-7} \) | \(a_{567}= -0.26168895 \pm 2.6 \cdot 10^{-7} \) |
\(a_{568}= -0.16857052 \pm 3.2 \cdot 10^{-7} \) | \(a_{569}= -0.41369768 \pm 2.1 \cdot 10^{-7} \) | \(a_{570}= -0.00066484 \pm 7.8 \cdot 10^{-7} \) |
\(a_{571}= -1.95824166 \pm 2.0 \cdot 10^{-7} \) | \(a_{572}= +0.76055780 \pm 4.7 \cdot 10^{-7} \) | \(a_{573}= -0.29464711 \pm 2.1 \cdot 10^{-7} \) |
\(a_{574}= -0.38901919 \pm 1.6 \cdot 10^{-7} \) | \(a_{575}= -0.10469937 \pm 1.7 \cdot 10^{-7} \) | \(a_{576}= -0.11171089 \pm 2.4 \cdot 10^{-7} \) |
\(a_{577}= -0.29772825 \pm 1.9 \cdot 10^{-7} \) | \(a_{578}= -0.96346512 \pm 2.0 \cdot 10^{-7} \) | \(a_{579}= +0.21229773 \pm 2.4 \cdot 10^{-7} \) |
\(a_{580}= -0.00514111 \pm 5.0 \cdot 10^{-7} \) | \(a_{581}= +0.36986708 \pm 1.8 \cdot 10^{-7} \) | \(a_{582}= -0.17462635 \pm 5.0 \cdot 10^{-7} \) |
\(a_{583}= -0.83100928 \pm 1.7 \cdot 10^{-7} \) | \(a_{584}= +0.12357680 \pm 2.4 \cdot 10^{-7} \) | \(a_{585}= -0.10102108 \pm 1.5 \cdot 10^{-7} \) |
\(a_{586}= -0.64546452 \pm 1.7 \cdot 10^{-7} \) | \(a_{587}= +0.71780234 \pm 2.6 \cdot 10^{-7} \) | \(a_{588}= +0.02328975 \pm 3.1 \cdot 10^{-7} \) |
\(a_{589}= -0.04044150 \pm 2.4 \cdot 10^{-7} \) | \(a_{590}= +0.04259454 \pm 4.8 \cdot 10^{-7} \) | \(a_{591}= +0.41507544 \pm 3.8 \cdot 10^{-7} \) |
\(a_{592}= -0.01586930 \pm 1.9 \cdot 10^{-7} \) | \(a_{593}= +1.15607693 \pm 2.9 \cdot 10^{-7} \) | \(a_{594}= +0.39823893 \pm 4.7 \cdot 10^{-7} \) |
\(a_{595}= +0.03937884 \pm 3.9 \cdot 10^{-7} \) | \(a_{596}= +0.37636761 \pm 1.7 \cdot 10^{-7} \) | \(a_{597}= +0.33302804 \pm 2.9 \cdot 10^{-7} \) |
\(a_{598}= -0.12403198 \pm 4.4 \cdot 10^{-7} \) | \(a_{599}= -0.44180324 \pm 2.2 \cdot 10^{-7} \) | \(a_{600}= +0.11474873 \pm 4.9 \cdot 10^{-7} \) |
\(a_{601}= -0.33615427 \pm 2.5 \cdot 10^{-7} \) | \(a_{602}= -0.41846559 \pm 2.4 \cdot 10^{-7} \) | \(a_{603}= +0.81737937 \pm 2.2 \cdot 10^{-7} \) |
\(a_{604}= -0.84099571 \pm 2.1 \cdot 10^{-7} \) | \(a_{605}= -0.01138863 \pm 1.6 \cdot 10^{-7} \) | \(a_{606}= +0.39787555 \pm 5.6 \cdot 10^{-7} \) |
\(a_{607}= +1.10205014 \pm 2.5 \cdot 10^{-7} \) | \(a_{608}= -0.00752041 \pm 2.4 \cdot 10^{-7} \) | \(a_{609}= +0.01869430 \pm 5.7 \cdot 10^{-7} \) |
\(a_{610}= +0.01204549 \pm 3.8 \cdot 10^{-7} \) | \(a_{611}= +1.04248049 \pm 1.5 \cdot 10^{-7} \) | \(a_{612}= +0.68682422 \pm 4.0 \cdot 10^{-7} \) |
\(a_{613}= +0.72252690 \pm 2.1 \cdot 10^{-7} \) | \(a_{614}= -0.73858728 \pm 2.1 \cdot 10^{-7} \) | \(a_{615}= -0.03216991 \pm 1.9 \cdot 10^{-7} \) |
\(a_{616}= +0.12188874 \pm 2.5 \cdot 10^{-7} \) | \(a_{617}= +1.96585984 \pm 2.1 \cdot 10^{-7} \) | \(a_{618}= -0.26849391 \pm 4.9 \cdot 10^{-7} \) |
\(a_{619}= -0.93121357 \pm 1.7 \cdot 10^{-7} \) | \(a_{620}= -0.03221832 \pm 5.0 \cdot 10^{-7} \) | \(a_{621}= -0.06494492 \pm 2.0 \cdot 10^{-7} \) |
\(a_{622}= +0.16269828 \pm 2.7 \cdot 10^{-7} \) | \(a_{623}= +0.26752436 \pm 1.7 \cdot 10^{-7} \) | \(a_{624}= +0.13593694 \pm 5.3 \cdot 10^{-7} \) |
\(a_{625}= +0.98623744 \pm 1.8 \cdot 10^{-7} \) | \(a_{626}= -1.19179025 \pm 1.5 \cdot 10^{-7} \) | \(a_{627}= +0.01265222 \pm 2.3 \cdot 10^{-7} \) |
\(a_{628}= +0.67151320 \pm 2.0 \cdot 10^{-7} \) | \(a_{629}= +0.09756808 \pm 1.4 \cdot 10^{-7} \) | \(a_{630}= -0.01618987 \pm 4.8 \cdot 10^{-7} \) |
\(a_{631}= -1.72299881 \pm 1.6 \cdot 10^{-7} \) | \(a_{632}= -0.58423567 \pm 2.9 \cdot 10^{-7} \) | \(a_{633}= +0.12602226 \pm 3.8 \cdot 10^{-7} \) |
\(a_{634}= +0.71356493 \pm 2.6 \cdot 10^{-7} \) | \(a_{635}= -0.04608906 \pm 2.9 \cdot 10^{-7} \) | \(a_{636}= -0.14852896 \pm 5.4 \cdot 10^{-7} \) |
\(a_{637}= +0.23823556 \pm 2.3 \cdot 10^{-7} \) | \(a_{638}= +0.09783806 \pm 5.0 \cdot 10^{-7} \) | \(a_{639}= -0.42610058 \pm 3.8 \cdot 10^{-7} \) |
\(a_{640}= -0.00599124 \pm 2.4 \cdot 10^{-7} \) | \(a_{641}= +0.22814170 \pm 3.3 \cdot 10^{-7} \) | \(a_{642}= -0.40664915 \pm 4.9 \cdot 10^{-7} \) |
\(a_{643}= +0.07117931 \pm 2.0 \cdot 10^{-7} \) | \(a_{644}= -0.01987765 \pm 2.2 \cdot 10^{-7} \) | \(a_{645}= -0.03460497 \pm 2.4 \cdot 10^{-7} \) |
\(a_{646}= +0.04623718 \pm 3.9 \cdot 10^{-7} \) | \(a_{647}= -0.53459219 \pm 2.2 \cdot 10^{-7} \) | \(a_{648}= -0.24478760 \pm 2.6 \cdot 10^{-7} \) |
\(a_{649}= -0.81059644 \pm 2.2 \cdot 10^{-7} \) | \(a_{650}= +1.17378791 \pm 4.1 \cdot 10^{-7} \) | \(a_{651}= +0.11715339 \pm 5.7 \cdot 10^{-7} \) |
\(a_{652}= -0.55153970 \pm 1.8 \cdot 10^{-7} \) | \(a_{653}= -1.72099847 \pm 2.5 \cdot 10^{-7} \) | \(a_{654}= -0.23058007 \pm 4.8 \cdot 10^{-7} \) |
\(a_{655}= -0.00810184 \pm 1.4 \cdot 10^{-7} \) | \(a_{656}= -0.36389413 \pm 1.6 \cdot 10^{-7} \) | \(a_{657}= +0.31236867 \pm 2.5 \cdot 10^{-7} \) |
\(a_{658}= +0.16707032 \pm 1.8 \cdot 10^{-7} \) | \(a_{659}= +0.07721815 \pm 2.0 \cdot 10^{-7} \) | \(a_{660}= +0.01007958 \pm 7.8 \cdot 10^{-7} \) |
\(a_{661}= -1.16279653 \pm 2.6 \cdot 10^{-7} \) | \(a_{662}= -0.13687290 \pm 2.2 \cdot 10^{-7} \) | \(a_{663}= -0.83577154 \pm 1.4 \cdot 10^{-7} \) |
\(a_{664}= +0.34597897 \pm 1.8 \cdot 10^{-7} \) | \(a_{665}= -0.00108991 \pm 4.7 \cdot 10^{-7} \) | \(a_{666}= -0.04011328 \pm 4.3 \cdot 10^{-7} \) |
\(a_{667}= -0.01595546 \pm 1.8 \cdot 10^{-7} \) | \(a_{668}= -0.10628526 \pm 2.7 \cdot 10^{-7} \) | \(a_{669}= -0.13973616 \pm 3.1 \cdot 10^{-7} \) |
\(a_{670}= +0.04383742 \pm 4.8 \cdot 10^{-7} \) | \(a_{671}= -0.22923198 \pm 1.7 \cdot 10^{-7} \) | \(a_{672}= +0.02178557 \pm 3.1 \cdot 10^{-7} \) |
\(a_{673}= +0.86501315 \pm 1.7 \cdot 10^{-7} \) | \(a_{674}= +0.67434959 \pm 2.4 \cdot 10^{-7} \) | \(a_{675}= +0.61461212 \pm 1.9 \cdot 10^{-7} \) |
\(a_{676}= +0.89052641 \pm 2.4 \cdot 10^{-7} \) | \(a_{677}= +0.26979888 \pm 2.3 \cdot 10^{-7} \) | \(a_{678}= -0.19966654 \pm 5.9 \cdot 10^{-7} \) |
\(a_{679}= -0.28627465 \pm 1.9 \cdot 10^{-7} \) | \(a_{680}= +0.03683553 \pm 3.9 \cdot 10^{-7} \) | \(a_{681}= -0.12241561 \pm 3.5 \cdot 10^{-7} \) |
\(a_{682}= +0.61313144 \pm 5.0 \cdot 10^{-7} \) | \(a_{683}= +0.22472807 \pm 1.4 \cdot 10^{-7} \) | \(a_{684}= -0.01900955 \pm 4.8 \cdot 10^{-7} \) |
\(a_{685}= -0.09865334 \pm 2.5 \cdot 10^{-7} \) | \(a_{686}= +0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= +0.09852988 \pm 2.8 \cdot 10^{-7} \) |
\(a_{688}= -0.39143871 \pm 2.4 \cdot 10^{-7} \) | \(a_{689}= -1.51933272 \pm 1.8 \cdot 10^{-7} \) | \(a_{690}= -0.00164378 \pm 7.6 \cdot 10^{-7} \) |
\(a_{691}= -0.13760667 \pm 1.6 \cdot 10^{-7} \) | \(a_{692}= -0.80687925 \pm 2.7 \cdot 10^{-7} \) | \(a_{693}= +0.30810170 \pm 4.8 \cdot 10^{-7} \) |
\(a_{694}= +0.67999020 \pm 2.4 \cdot 10^{-7} \) | \(a_{695}= +0.03369179 \pm 1.6 \cdot 10^{-7} \) | \(a_{696}= +0.01748691 \pm 5.7 \cdot 10^{-7} \) |
\(a_{697}= +2.23730468 \pm 8.8 \cdot 10^{-8} \) | \(a_{698}= +0.10257054 \pm 2.3 \cdot 10^{-7} \) | \(a_{699}= +0.24719947 \pm 2.0 \cdot 10^{-7} \) |
\(a_{700}= +0.18811395 \pm 1.9 \cdot 10^{-7} \) | \(a_{701}= -0.47655588 \pm 1.7 \cdot 10^{-7} \) | \(a_{702}= +0.72809950 \pm 4.5 \cdot 10^{-7} \) |
\(a_{703}= -0.00270044 \pm 1.4 \cdot 10^{-7} \) | \(a_{704}= +0.11401648 \pm 2.5 \cdot 10^{-7} \) | \(a_{705}= +0.01381586 \pm 1.5 \cdot 10^{-7} \) |
\(a_{706}= -0.32553343 \pm 1.5 \cdot 10^{-7} \) | \(a_{707}= +0.65225940 \pm 2.6 \cdot 10^{-7} \) | \(a_{708}= -0.14488051 \pm 5.5 \cdot 10^{-7} \) |
\(a_{709}= +1.12286228 \pm 2.5 \cdot 10^{-7} \) | \(a_{710}= -0.02285249 \pm 5.6 \cdot 10^{-7} \) | \(a_{711}= -1.47678943 \pm 2.4 \cdot 10^{-7} \) |
\(a_{712}= +0.25024612 \pm 1.7 \cdot 10^{-7} \) | \(a_{713}= -0.09998965 \pm 2.4 \cdot 10^{-7} \) | \(a_{714}= -0.13394267 \pm 4.6 \cdot 10^{-7} \) |
\(a_{715}= +0.10310604 \pm 1.4 \cdot 10^{-7} \) | \(a_{716}= -0.84006617 \pm 2.2 \cdot 10^{-7} \) | \(a_{717}= -0.32993390 \pm 3.9 \cdot 10^{-7} \) |
\(a_{718}= -0.62454688 \pm 3.1 \cdot 10^{-7} \) | \(a_{719}= -1.65164683 \pm 2.5 \cdot 10^{-7} \) | \(a_{720}= -0.01514424 \pm 4.8 \cdot 10^{-7} \) |
\(a_{721}= -0.44015692 \pm 1.8 \cdot 10^{-7} \) | \(a_{722}= +0.70582705 \pm 2.1 \cdot 10^{-7} \) | \(a_{723}= +0.51420697 \pm 3.2 \cdot 10^{-7} \) |
\(a_{724}= +0.73397654 \pm 2.2 \cdot 10^{-7} \) | \(a_{725}= +0.15099593 \pm 1.1 \cdot 10^{-7} \) | \(a_{726}= +0.03873713 \pm 5.2 \cdot 10^{-7} \) |
\(a_{727}= +1.18643018 \pm 1.6 \cdot 10^{-7} \) | \(a_{728}= +0.22284896 \pm 2.3 \cdot 10^{-7} \) | \(a_{729}= -0.41743343 \pm 2.0 \cdot 10^{-7} \) |
\(a_{730}= +0.01675285 \pm 4.7 \cdot 10^{-7} \) | \(a_{731}= +2.40665508 \pm 1.6 \cdot 10^{-7} \) | \(a_{732}= -0.04097137 \pm 4.5 \cdot 10^{-7} \) |
\(a_{733}= +0.37014778 \pm 2.1 \cdot 10^{-7} \) | \(a_{734}= -0.44693928 \pm 1.7 \cdot 10^{-7} \) | \(a_{735}= +0.00315731 \pm 5.4 \cdot 10^{-7} \) |
\(a_{736}= -0.01859384 \pm 2.2 \cdot 10^{-7} \) | \(a_{737}= -0.83424912 \pm 2.4 \cdot 10^{-7} \) | \(a_{738}= -0.91982575 \pm 4.0 \cdot 10^{-7} \) |
\(a_{739}= +0.16399973 \pm 1.5 \cdot 10^{-7} \) | \(a_{740}= -0.00215134 \pm 4.2 \cdot 10^{-7} \) | \(a_{741}= +0.02313203 \pm 2.8 \cdot 10^{-7} \) |
\(a_{742}= -0.24349175 \pm 2.3 \cdot 10^{-7} \) | \(a_{743}= +0.90714924 \pm 2.6 \cdot 10^{-7} \) | \(a_{744}= +0.10958696 \pm 5.7 \cdot 10^{-7} \) |
\(a_{745}= +0.05102278 \pm 1.8 \cdot 10^{-7} \) | \(a_{746}= -0.59988286 \pm 2.9 \cdot 10^{-7} \) | \(a_{747}= +0.87454108 \pm 1.6 \cdot 10^{-7} \) |
\(a_{748}= -0.70099947 \pm 4.0 \cdot 10^{-7} \) | \(a_{749}= -0.66664246 \pm 1.8 \cdot 10^{-7} \) | \(a_{750}= +0.03118393 \pm 5.1 \cdot 10^{-7} \) |
\(a_{751}= -0.59612828 \pm 2.3 \cdot 10^{-7} \) | \(a_{752}= +0.15627997 \pm 1.8 \cdot 10^{-7} \) | \(a_{753}= -0.01067938 \pm 3.1 \cdot 10^{-7} \) |
\(a_{754}= +0.17887715 \pm 4.9 \cdot 10^{-7} \) | \(a_{755}= -0.11401071 \pm 1.4 \cdot 10^{-7} \) | \(a_{756}= +0.11668690 \pm 2.3 \cdot 10^{-7} \) |
\(a_{757}= -1.77217113 \pm 1.8 \cdot 10^{-7} \) | \(a_{758}= +0.65538788 \pm 2.7 \cdot 10^{-7} \) | \(a_{759}= +0.03128200 \pm 3.2 \cdot 10^{-7} \) |
\(a_{760}= -0.00101951 \pm 4.7 \cdot 10^{-7} \) | \(a_{761}= +0.84204734 \pm 3.4 \cdot 10^{-7} \) | \(a_{762}= +0.15676672 \pm 5.4 \cdot 10^{-7} \) |
\(a_{763}= -0.37800266 \pm 1.8 \cdot 10^{-7} \) | \(a_{764}= -0.45183443 \pm 1.7 \cdot 10^{-7} \) | \(a_{765}= +0.09311024 \pm 1.5 \cdot 10^{-7} \) |
\(a_{766}= -1.14849671 \pm 2.2 \cdot 10^{-7} \) | \(a_{767}= -1.48201197 \pm 1.6 \cdot 10^{-7} \) | \(a_{768}= +0.02037853 \pm 3.1 \cdot 10^{-7} \) |
\(a_{769}= -0.59205083 \pm 2.7 \cdot 10^{-7} \) | \(a_{770}= +0.01652401 \pm 4.8 \cdot 10^{-7} \) | \(a_{771}= -0.04701950 \pm 3.4 \cdot 10^{-7} \) |
\(a_{772}= +0.32555358 \pm 1.9 \cdot 10^{-7} \) | \(a_{773}= +0.37792895 \pm 1.4 \cdot 10^{-7} \) | \(a_{774}= -0.98945098 \pm 4.8 \cdot 10^{-7} \) |
\(a_{775}= +0.94626112 \pm 1.7 \cdot 10^{-7} \) | \(a_{776}= -0.26778541 \pm 1.9 \cdot 10^{-7} \) | \(a_{777}= +0.00782279 \pm 4.9 \cdot 10^{-7} \) |
\(a_{778}= -0.66722880 \pm 2.4 \cdot 10^{-7} \) | \(a_{779}= -0.06192290 \pm 9.3 \cdot 10^{-8} \) | \(a_{780}= +0.01842847 \pm 7.7 \cdot 10^{-7} \) |
\(a_{781}= +0.43489480 \pm 2.9 \cdot 10^{-7} \) | \(a_{782}= +0.11431919 \pm 3.7 \cdot 10^{-7} \) | \(a_{783}= +0.09366263 \pm 1.6 \cdot 10^{-7} \) |
\(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= +0.09103458 \pm 2.5 \cdot 10^{-7} \) | \(a_{786}= +0.02755748 \pm 5.0 \cdot 10^{-7} \) |
\(a_{787}= +0.69204647 \pm 2.5 \cdot 10^{-7} \) | \(a_{788}= +0.63650844 \pm 3.0 \cdot 10^{-7} \) | \(a_{789}= -0.53812281 \pm 3.3 \cdot 10^{-7} \) |
\(a_{790}= -0.07920269 \pm 5.2 \cdot 10^{-7} \) | \(a_{791}= -0.32732442 \pm 2.8 \cdot 10^{-7} \) | \(a_{792}= +0.28820275 \pm 4.8 \cdot 10^{-7} \) |
\(a_{793}= -0.41910440 \pm 1.5 \cdot 10^{-7} \) | \(a_{794}= +1.11779295 \pm 1.9 \cdot 10^{-7} \) | \(a_{795}= -0.02013553 \pm 2.5 \cdot 10^{-7} \) |
\(a_{796}= +0.51069068 \pm 2.2 \cdot 10^{-7} \) | \(a_{797}= +0.57633472 \pm 2.0 \cdot 10^{-7} \) | \(a_{798}= +0.00370719 \pm 5.4 \cdot 10^{-7} \) |
\(a_{799}= -0.96084515 \pm 1.8 \cdot 10^{-7} \) | \(a_{800}= +0.17596448 \pm 1.9 \cdot 10^{-7} \) | \(a_{801}= +0.63255437 \pm 1.7 \cdot 10^{-7} \) |
\(a_{802}= +0.05702367 \pm 2.6 \cdot 10^{-7} \) | \(a_{803}= -0.31881559 \pm 2.2 \cdot 10^{-7} \) | \(a_{804}= -0.14910803 \pm 5.5 \cdot 10^{-7} \) |
\(a_{805}= -0.00269474 \pm 4.5 \cdot 10^{-7} \) | \(a_{806}= +1.12098708 \pm 4.9 \cdot 10^{-7} \) | \(a_{807}= +0.12184149 \pm 2.7 \cdot 10^{-7} \) |
\(a_{808}= +0.61013280 \pm 2.6 \cdot 10^{-7} \) | \(a_{809}= -0.47857164 \pm 2.8 \cdot 10^{-7} \) | \(a_{810}= -0.03318496 \pm 4.9 \cdot 10^{-7} \) |
\(a_{811}= +1.69850373 \pm 2.1 \cdot 10^{-7} \) | \(a_{812}= +0.02866726 \pm 2.6 \cdot 10^{-7} \) | \(a_{813}= -0.43899780 \pm 2.4 \cdot 10^{-7} \) |
\(a_{814}= +0.04094117 \pm 4.3 \cdot 10^{-7} \) | \(a_{815}= -0.07477022 \pm 1.7 \cdot 10^{-7} \) | \(a_{816}= -0.12529189 \pm 4.6 \cdot 10^{-7} \) |
\(a_{817}= -0.06661009 \pm 2.4 \cdot 10^{-7} \) | \(a_{818}= -0.12125416 \pm 3.1 \cdot 10^{-7} \) | \(a_{819}= +0.56330177 \pm 4.7 \cdot 10^{-7} \) |
\(a_{820}= -0.04933179 \pm 3.9 \cdot 10^{-7} \) | \(a_{821}= +0.80633648 \pm 2.8 \cdot 10^{-7} \) | \(a_{822}= +0.33555817 \pm 5.7 \cdot 10^{-7} \) |
\(a_{823}= -0.01797099 \pm 1.2 \cdot 10^{-7} \) | \(a_{824}= -0.41172910 \pm 1.8 \cdot 10^{-7} \) | \(a_{825}= -0.29604006 \pm 2.2 \cdot 10^{-7} \) |
\(a_{826}= -0.23751064 \pm 2.5 \cdot 10^{-7} \) | \(a_{827}= +0.77630781 \pm 1.9 \cdot 10^{-7} \) | \(a_{828}= -0.04700019 \pm 4.6 \cdot 10^{-7} \) |
\(a_{829}= -0.73720678 \pm 3.0 \cdot 10^{-7} \) | \(a_{830}= +0.04690310 \pm 4.2 \cdot 10^{-7} \) | \(a_{831}= +0.43952590 \pm 4.3 \cdot 10^{-7} \) |
\(a_{832}= +0.20845611 \pm 2.3 \cdot 10^{-7} \) | \(a_{833}= -0.21957963 \pm 1.6 \cdot 10^{-7} \) | \(a_{834}= -0.11459881 \pm 5.2 \cdot 10^{-7} \) |
\(a_{835}= -0.01440870 \pm 2.9 \cdot 10^{-7} \) | \(a_{836}= +0.01940188 \pm 4.8 \cdot 10^{-7} \) | \(a_{837}= +0.58696485 \pm 1.2 \cdot 10^{-7} \) |
\(a_{838}= +0.60850388 \pm 2.1 \cdot 10^{-7} \) | \(a_{839}= -1.83008368 \pm 2.4 \cdot 10^{-7} \) | \(a_{840}= +0.00295339 \pm 5.4 \cdot 10^{-7} \) |
\(a_{841}= -0.97698927 \pm 2.6 \cdot 10^{-7} \) | \(a_{842}= +1.02154860 \pm 2.1 \cdot 10^{-7} \) | \(a_{843}= -0.49685372 \pm 2.6 \cdot 10^{-7} \) |
\(a_{844}= +0.19325218 \pm 2.9 \cdot 10^{-7} \) | \(a_{845}= +0.12072540 \pm 1.7 \cdot 10^{-7} \) | \(a_{846}= +0.39503341 \pm 4.1 \cdot 10^{-7} \) |
\(a_{847}= +0.06350391 \pm 2.2 \cdot 10^{-7} \) | \(a_{848}= -0.22776568 \pm 2.3 \cdot 10^{-7} \) | \(a_{849}= -0.23052998 \pm 3.0 \cdot 10^{-7} \) |
\(a_{850}= -1.08187005 \pm 3.4 \cdot 10^{-7} \) | \(a_{851}= -0.00667670 \pm 1.5 \cdot 10^{-7} \) | \(a_{852}= +0.07773015 \pm 6.3 \cdot 10^{-7} \) |
\(a_{853}= -1.05034113 \pm 1.4 \cdot 10^{-7} \) | \(a_{854}= -0.06716663 \pm 1.5 \cdot 10^{-7} \) | \(a_{855}= -0.00257705 \pm 2.1 \cdot 10^{-7} \) |
\(a_{856}= -0.62358693 \pm 1.8 \cdot 10^{-7} \) | \(a_{857}= +1.49014974 \pm 2.1 \cdot 10^{-7} \) | \(a_{858}= -0.35070350 \pm 7.7 \cdot 10^{-7} \) |
\(a_{859}= -0.90186187 \pm 1.2 \cdot 10^{-7} \) | \(a_{860}= -0.05306591 \pm 4.8 \cdot 10^{-7} \) | \(a_{861}= +0.17938202 \pm 4.6 \cdot 10^{-7} \) |
\(a_{862}= -0.25124406 \pm 2.2 \cdot 10^{-7} \) | \(a_{863}= -1.14909519 \pm 1.7 \cdot 10^{-7} \) | \(a_{864}= +0.10915060 \pm 2.3 \cdot 10^{-7} \) |
\(a_{865}= -0.10938567 \pm 2.6 \cdot 10^{-7} \) | \(a_{866}= -1.04767129 \pm 3.0 \cdot 10^{-7} \) | \(a_{867}= +0.44426681 \pm 2.2 \cdot 10^{-7} \) |
\(a_{868}= +0.17965196 \pm 2.6 \cdot 10^{-7} \) | \(a_{869}= +1.50726864 \pm 2.2 \cdot 10^{-7} \) | \(a_{870}= +0.00237064 \pm 8.0 \cdot 10^{-7} \) |
\(a_{871}= -1.52525612 \pm 2.7 \cdot 10^{-7} \) | \(a_{872}= -0.35358911 \pm 1.8 \cdot 10^{-7} \) | \(a_{873}= -0.67688895 \pm 3.1 \cdot 10^{-7} \) |
\(a_{874}= -0.00316406 \pm 4.5 \cdot 10^{-7} \) | \(a_{875}= +0.05112155 \pm 2.0 \cdot 10^{-7} \) | \(a_{876}= -0.05698294 \pm 5.4 \cdot 10^{-7} \) |
\(a_{877}= +1.35629625 \pm 2.3 \cdot 10^{-7} \) | \(a_{878}= -0.26007469 \pm 2.9 \cdot 10^{-7} \) | \(a_{879}= +0.29763243 \pm 1.9 \cdot 10^{-7} \) |
\(a_{880}= +0.01545680 \pm 4.8 \cdot 10^{-7} \) | \(a_{881}= -0.42417115 \pm 2.0 \cdot 10^{-7} \) | \(a_{882}= +0.09027604 \pm 2.4 \cdot 10^{-7} \) |
\(a_{883}= +0.81618542 \pm 2.0 \cdot 10^{-7} \) | \(a_{884}= -1.28163603 \pm 3.9 \cdot 10^{-7} \) | \(a_{885}= -0.01964092 \pm 3.3 \cdot 10^{-7} \) |
\(a_{886}= +0.91148762 \pm 2.3 \cdot 10^{-7} \) | \(a_{887}= -1.26708726 \pm 2.4 \cdot 10^{-7} \) | \(a_{888}= +0.00731755 \pm 4.9 \cdot 10^{-7} \) |
\(a_{889}= +0.25699636 \pm 2.3 \cdot 10^{-7} \) | \(a_{890}= +0.03392495 \pm 4.1 \cdot 10^{-7} \) | \(a_{891}= +0.63152712 \pm 2.5 \cdot 10^{-7} \) |
\(a_{892}= -0.21428212 \pm 2.2 \cdot 10^{-7} \) | \(a_{893}= +0.02659375 \pm 1.8 \cdot 10^{-7} \) | \(a_{894}= -0.17354820 \pm 4.8 \cdot 10^{-7} \) |
\(a_{895}= -0.11388469 \pm 2.4 \cdot 10^{-7} \) | \(a_{896}= +0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= +0.05719283 \pm 2.0 \cdot 10^{-7} \) |
\(a_{898}= -0.28778343 \pm 2.3 \cdot 10^{-7} \) | \(a_{899}= +0.14420364 \pm 3.2 \cdot 10^{-7} \) | \(a_{900}= +0.44479053 \pm 4.3 \cdot 10^{-7} \) |
\(a_{901}= +1.40035568 \pm 2.0 \cdot 10^{-7} \) | \(a_{902}= +0.93880988 \pm 4.0 \cdot 10^{-7} \) | \(a_{903}= +0.19296015 \pm 5.5 \cdot 10^{-7} \) |
\(a_{904}= -0.30618396 \pm 2.8 \cdot 10^{-7} \) | \(a_{905}= +0.09950251 \pm 2.3 \cdot 10^{-7} \) | \(a_{906}= +0.38779451 \pm 5.1 \cdot 10^{-7} \) |
\(a_{907}= +1.09374911 \pm 2.6 \cdot 10^{-7} \) | \(a_{908}= -0.18772146 \pm 2.6 \cdot 10^{-7} \) | \(a_{909}= +1.54225037 \pm 2.1 \cdot 10^{-7} \) |
\(a_{910}= +0.03021082 \pm 4.6 \cdot 10^{-7} \) | \(a_{911}= +0.18464360 \pm 1.7 \cdot 10^{-7} \) | \(a_{912}= +0.00346776 \pm 5.4 \cdot 10^{-7} \) |
\(a_{913}= -0.89259058 \pm 2.1 \cdot 10^{-7} \) | \(a_{914}= +0.86852271 \pm 3.2 \cdot 10^{-7} \) | \(a_{915}= -0.00555434 \pm 1.9 \cdot 10^{-7} \) |
\(a_{916}= +0.15109325 \pm 2.1 \cdot 10^{-7} \) | \(a_{917}= +0.04517651 \pm 1.9 \cdot 10^{-7} \) | \(a_{918}= -0.67108294 \pm 3.8 \cdot 10^{-7} \) |
\(a_{919}= -0.44303976 \pm 2.6 \cdot 10^{-7} \) | \(a_{920}= -0.00252070 \pm 4.5 \cdot 10^{-7} \) | \(a_{921}= +0.34057260 \pm 2.6 \cdot 10^{-7} \) |
\(a_{922}= -0.89494398 \pm 1.6 \cdot 10^{-7} \) | \(a_{923}= +0.79511735 \pm 2.5 \cdot 10^{-7} \) | \(a_{924}= -0.05620455 \pm 5.5 \cdot 10^{-7} \) |
\(a_{925}= +0.06318554 \pm 1.7 \cdot 10^{-7} \) | \(a_{926}= -0.31363640 \pm 2.9 \cdot 10^{-7} \) | \(a_{927}= -1.04073958 \pm 3.0 \cdot 10^{-7} \) |
\(a_{928}= +0.02681577 \pm 2.6 \cdot 10^{-7} \) | \(a_{929}= +0.98227434 \pm 2.5 \cdot 10^{-7} \) | \(a_{930}= +0.01485630 \pm 8.0 \cdot 10^{-7} \) |
\(a_{931}= +0.00607741 \pm 2.4 \cdot 10^{-7} \) | \(a_{932}= +0.37907458 \pm 1.9 \cdot 10^{-7} \) | \(a_{933}= -0.07502238 \pm 3.1 \cdot 10^{-7} \) |
\(a_{934}= -0.19283112 \pm 2.8 \cdot 10^{-7} \) | \(a_{935}= -0.09503193 \pm 1.3 \cdot 10^{-7} \) | \(a_{936}= +0.52692055 \pm 4.7 \cdot 10^{-7} \) |
\(a_{937}= -1.16395345 \pm 2.3 \cdot 10^{-7} \) | \(a_{938}= -0.24444105 \pm 2.5 \cdot 10^{-7} \) | \(a_{939}= +0.54955062 \pm 2.0 \cdot 10^{-7} \) |
\(a_{940}= +0.02118630 \pm 4.1 \cdot 10^{-7} \) | \(a_{941}= -0.59053507 \pm 2.3 \cdot 10^{-7} \) | \(a_{942}= -0.30964383 \pm 5.1 \cdot 10^{-7} \) |
\(a_{943}= -0.15310138 \pm 1.7 \cdot 10^{-7} \) | \(a_{944}= -0.22217086 \pm 2.5 \cdot 10^{-7} \) | \(a_{945}= +0.01581882 \pm 4.6 \cdot 10^{-7} \) |
\(a_{946}= +1.00987209 \pm 4.8 \cdot 10^{-7} \) | \(a_{947}= -0.36150596 \pm 1.3 \cdot 10^{-7} \) | \(a_{948}= +0.26939898 \pm 5.9 \cdot 10^{-7} \) |
\(a_{949}= -0.58288995 \pm 2.6 \cdot 10^{-7} \) | \(a_{950}= +0.02994341 \pm 4.2 \cdot 10^{-7} \) | \(a_{951}= -0.32903445 \pm 3.1 \cdot 10^{-7} \) |
\(a_{952}= -0.20539793 \pm 1.6 \cdot 10^{-7} \) | \(a_{953}= +0.37666327 \pm 2.2 \cdot 10^{-7} \) | \(a_{954}= -0.57572991 \pm 4.7 \cdot 10^{-7} \) |
\(a_{955}= -0.06125354 \pm 1.8 \cdot 10^{-7} \) | \(a_{956}= -0.50594588 \pm 2.8 \cdot 10^{-7} \) | \(a_{957}= -0.04511446 \pm 2.6 \cdot 10^{-7} \) |
\(a_{958}= +1.06582442 \pm 2.6 \cdot 10^{-7} \) | \(a_{959}= +0.55009908 \pm 2.7 \cdot 10^{-7} \) | \(a_{960}= +0.00276264 \pm 5.4 \cdot 10^{-7} \) |
\(a_{961}= -0.09630481 \pm 2.7 \cdot 10^{-7} \) | \(a_{962}= +0.07485267 \pm 4.1 \cdot 10^{-7} \) | \(a_{963}= -1.57625874 \pm 1.5 \cdot 10^{-7} \) |
\(a_{964}= +0.78852431 \pm 2.7 \cdot 10^{-7} \) | \(a_{965}= +0.04413411 \pm 1.6 \cdot 10^{-7} \) | \(a_{966}= +0.00916585 \pm 5.2 \cdot 10^{-7} \) |
\(a_{967}= +0.19521993 \pm 3.0 \cdot 10^{-7} \) | \(a_{968}= +0.05940247 \pm 2.2 \cdot 10^{-7} \) | \(a_{969}= -0.02132059 \pm 2.0 \cdot 10^{-7} \) |
\(a_{970}= -0.03630269 \pm 4.3 \cdot 10^{-7} \) | \(a_{971}= +0.14096796 \pm 3.0 \cdot 10^{-7} \) | \(a_{972}= +0.42159939 \pm 2.5 \cdot 10^{-7} \) |
\(a_{973}= -0.18786817 \pm 2.2 \cdot 10^{-7} \) | \(a_{974}= -1.23208144 \pm 2.0 \cdot 10^{-7} \) | \(a_{975}= -0.54124950 \pm 1.8 \cdot 10^{-7} \) |
\(a_{976}= -0.06282863 \pm 1.5 \cdot 10^{-7} \) | \(a_{977}= -0.27398158 \pm 3.1 \cdot 10^{-7} \) | \(a_{978}= +0.25432242 \pm 4.9 \cdot 10^{-7} \) |
\(a_{979}= -0.64560955 \pm 1.9 \cdot 10^{-7} \) | \(a_{980}= +0.00484165 \pm 2.4 \cdot 10^{-7} \) | \(a_{981}= -0.89377745 \pm 1.6 \cdot 10^{-7} \) |
\(a_{982}= +0.72209286 \pm 2.9 \cdot 10^{-7} \) | \(a_{983}= -0.40808177 \pm 2.1 \cdot 10^{-7} \) | \(a_{984}= +0.16779651 \pm 4.6 \cdot 10^{-7} \) |
\(a_{985}= +0.08628912 \pm 2.5 \cdot 10^{-7} \) | \(a_{986}= -0.16486950 \pm 4.2 \cdot 10^{-7} \) | \(a_{987}= -0.07703839 \pm 4.8 \cdot 10^{-7} \) |
\(a_{988}= +0.03547243 \pm 4.6 \cdot 10^{-7} \) | \(a_{989}= -0.16469023 \pm 1.4 \cdot 10^{-7} \) | \(a_{990}= +0.03907059 \pm 7.2 \cdot 10^{-7} \) |
\(a_{991}= +0.50804814 \pm 2.2 \cdot 10^{-7} \) | \(a_{992}= +0.16804903 \pm 2.6 \cdot 10^{-7} \) | \(a_{993}= +0.06311395 \pm 3.1 \cdot 10^{-7} \) |
\(a_{994}= +0.12742733 \pm 3.2 \cdot 10^{-7} \) | \(a_{995}= +0.06923246 \pm 2.1 \cdot 10^{-7} \) | \(a_{996}= -0.15953559 \pm 4.9 \cdot 10^{-7} \) |
\(a_{997}= +0.47280153 \pm 1.4 \cdot 10^{-7} \) | \(a_{998}= +0.24277441 \pm 3.4 \cdot 10^{-7} \) | \(a_{999}= +0.03919393 \pm 1.8 \cdot 10^{-7} \) |
\(a_{1000}= +0.04781983 \pm 2.0 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000