Maass form invariants
| Level: | \( 14 = 2 \cdot 7 \) |
| Weight: | \( 0 \) |
| Character: | 14.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(6.59193983827603760685421536511 \pm 3 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.86994212 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{4}= +0.5 \) | \(a_{5}= -0.63980237 \pm 2.9 \cdot 10^{-8} \) | \(a_{6}= -1.32224875 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +2.49668353 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{10}= -0.45240859 \pm 4.0 \cdot 10^{-8} \) | \(a_{11}= +0.40385661 \pm 3.0 \cdot 10^{-8} \) | \(a_{12}= -0.93497106 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{13}= +1.50840800 \pm 2.8 \cdot 10^{-8} \) | \(a_{14}= -0.26726124 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= +1.19639340 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{16}= +0.25 \) | \(a_{17}= -0.46575662 \pm 1.9 \cdot 10^{-8} \) | \(a_{18}= +1.76542186 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{19}= -0.73058617 \pm 2.9 \cdot 10^{-8} \) | \(a_{20}= -0.31990118 \pm 4.0 \cdot 10^{-8} \) | \(a_{21}= +0.70677169 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{22}= +0.28556975 \pm 4.1 \cdot 10^{-8} \) | \(a_{23}= +0.76982978 \pm 2.7 \cdot 10^{-8} \) | \(a_{24}= -0.66112438 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{25}= -0.59065293 \pm 2.3 \cdot 10^{-8} \) | \(a_{26}= +1.06660552 \pm 3.9 \cdot 10^{-8} \) | \(a_{27}= -2.79871158 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{28}= -0.18898224 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= +1.44818905 \pm 3.3 \cdot 10^{-8} \) | \(a_{30}= +0.84597788 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{31}= +0.50607476 \pm 3.2 \cdot 10^{-8} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.75518848 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{34}= -0.32933967 \pm 3.0 \cdot 10^{-8} \) | \(a_{35}= +0.24182256 \pm 4.0 \cdot 10^{-8} \) | \(a_{36}= +1.24834177 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{37}= +1.31433900 \pm 2.3 \cdot 10^{-8} \) | \(a_{38}= -0.51660244 \pm 4.0 \cdot 10^{-8} \) | \(a_{39}= -2.82063565 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{40}= -0.22620430 \pm 4.0 \cdot 10^{-8} \) | \(a_{41}= +0.57912690 \pm 1.9 \cdot 10^{-8} \) | \(a_{42}= +0.49976305 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{43}= +0.37696802 \pm 3.0 \cdot 10^{-8} \) | \(a_{44}= +0.20192830 \pm 4.1 \cdot 10^{-8} \) | \(a_{45}= -1.59738404 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{46}= +0.54435186 \pm 3.7 \cdot 10^{-8} \) | \(a_{47}= +0.45080554 \pm 2.1 \cdot 10^{-8} \) | \(a_{48}= -0.46748553 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.41765469 \pm 3.3 \cdot 10^{-8} \) | \(a_{51}= +0.87093793 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{52}= +0.75420400 \pm 3.9 \cdot 10^{-8} \) | \(a_{53}= -0.21726435 \pm 2.9 \cdot 10^{-8} \) | \(a_{54}= -1.97898793 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{55}= -0.25838841 \pm 2.8 \cdot 10^{-8} \) | \(a_{56}= -0.13363062 \pm 1.6 \cdot 10^{-7} \) | \(a_{57}= +1.36615386 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{58}= +1.02402430 \pm 4.3 \cdot 10^{-8} \) | \(a_{59}= +0.09200219 \pm 3.1 \cdot 10^{-8} \) | \(a_{60}= +0.59819670 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{61}= +1.51788272 \pm 1.8 \cdot 10^{-8} \) | \(a_{62}= +0.35784889 \pm 4.3 \cdot 10^{-8} \) | \(a_{63}= -0.94365768 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{64}= +0.125 \) | \(a_{65}= -0.96508301 \pm 2.0 \cdot 10^{-8} \) | \(a_{66}= -0.53399890 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{67}= -1.48075743 \pm 3.1 \cdot 10^{-8} \) | \(a_{68}= -0.23287831 \pm 3.0 \cdot 10^{-8} \) | \(a_{69}= -1.43953712 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{70}= +0.17099438 \pm 4.0 \cdot 10^{-8} \) | \(a_{71}= -0.67438935 \pm 4.0 \cdot 10^{-8} \) | \(a_{72}= +0.88271093 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{73}= -0.17116446 \pm 2.9 \cdot 10^{-8} \) | \(a_{74}= +0.92937802 \pm 3.4 \cdot 10^{-8} \) | \(a_{75}= +1.10448679 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{76}= -0.36529309 \pm 4.0 \cdot 10^{-8} \) | \(a_{77}= -0.15264345 \pm 4.1 \cdot 10^{-8} \) | \(a_{78}= -1.99449060 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{79}= +1.42106316 \pm 3.6 \cdot 10^{-8} \) | \(a_{80}= -0.15995059 \pm 4.0 \cdot 10^{-8} \) | \(a_{81}= +2.73674513 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{82}= +0.40950456 \pm 2.9 \cdot 10^{-8} \) | \(a_{83}= +0.55759422 \pm 2.2 \cdot 10^{-8} \) | \(a_{84}= +0.35338584 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{85}= +0.29799219 \pm 2.3 \cdot 10^{-8} \) | \(a_{86}= +0.26655665 \pm 4.0 \cdot 10^{-8} \) | \(a_{87}= -2.70802971 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{88}= +0.14278487 \pm 4.1 \cdot 10^{-8} \) | \(a_{89}= +0.30189963 \pm 2.1 \cdot 10^{-8} \) | \(a_{90}= -1.12952108 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{91}= -0.57012463 \pm 3.9 \cdot 10^{-8} \) | \(a_{92}= +0.38491489 \pm 3.7 \cdot 10^{-8} \) | \(a_{93}= -0.94633051 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{94}= +0.31876766 \pm 3.2 \cdot 10^{-8} \) | \(a_{95}= +0.46743076 \pm 2.5 \cdot 10^{-8} \) | \(a_{96}= -0.33056219 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{97}= -0.02638238 \pm 2.4 \cdot 10^{-8} \) | \(a_{98}= +0.10101525 \pm 2.6 \cdot 10^{-7} \) | \(a_{99}= +1.00830214 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{100}= -0.29532646 \pm 3.3 \cdot 10^{-8} \) | \(a_{101}= +0.70875025 \pm 3.2 \cdot 10^{-8} \) | \(a_{102}= +0.61584611 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{103}= -1.62714689 \pm 2.2 \cdot 10^{-8} \) | \(a_{104}= +0.53330276 \pm 3.9 \cdot 10^{-8} \) | \(a_{105}= -0.45219420 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{106}= -0.15362910 \pm 3.9 \cdot 10^{-8} \) | \(a_{107}= +0.35334384 \pm 2.2 \cdot 10^{-8} \) | \(a_{108}= -1.39935579 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{109}= +1.59134655 \pm 2.2 \cdot 10^{-8} \) | \(a_{110}= -0.18270820 \pm 7.1 \cdot 10^{-8} \) | \(a_{111}= -2.45773785 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{112}= -0.09449112 \pm 3.0 \cdot 10^{-7} \) | \(a_{113}= -0.70712991 \pm 3.5 \cdot 10^{-8} \) | \(a_{114}= +0.96601666 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{115}= -0.49253891 \pm 3.1 \cdot 10^{-8} \) | \(a_{116}= +0.72409453 \pm 4.3 \cdot 10^{-8} \) | \(a_{117}= +3.76601741 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{118}= +0.06505537 \pm 4.1 \cdot 10^{-8} \) | \(a_{119}= +0.17603946 \pm 3.0 \cdot 10^{-8} \) | \(a_{120}= +0.42298894 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{121}= -0.83689984 \pm 2.6 \cdot 10^{-8} \) | \(a_{122}= +1.07330517 \pm 2.9 \cdot 10^{-8} \) | \(a_{123}= -1.08293379 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{124}= +0.25303738 \pm 4.3 \cdot 10^{-8} \) | \(a_{125}= +1.01770351 \pm 2.5 \cdot 10^{-8} \) | \(a_{126}= -0.66726674 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{127}= -1.30065249 \pm 2.9 \cdot 10^{-8} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.70490838 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{130}= -0.68241674 \pm 6.9 \cdot 10^{-8} \) | \(a_{131}= +0.53116599 \pm 2.4 \cdot 10^{-8} \) | \(a_{132}= -0.37759424 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{133}= +0.27613562 \pm 4.0 \cdot 10^{-8} \) | \(a_{134}= -1.04705362 \pm 4.1 \cdot 10^{-8} \) | \(a_{135}= +1.79062230 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{136}= -0.16466983 \pm 3.0 \cdot 10^{-8} \) | \(a_{137}= -0.09466974 \pm 3.3 \cdot 10^{-8} \) | \(a_{138}= -1.01790646 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{139}= -0.03386217 \pm 2.7 \cdot 10^{-8} \) | \(a_{140}= +0.12091128 \pm 4.0 \cdot 10^{-8} \) | \(a_{141}= -0.84298028 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{142}= -0.47686528 \pm 5.1 \cdot 10^{-8} \) | \(a_{143}= +0.60918054 \pm 3.7 \cdot 10^{-8} \) | \(a_{144}= +0.62417088 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{145}= -0.92655479 \pm 3.1 \cdot 10^{-8} \) | \(a_{146}= -0.12103155 \pm 4.0 \cdot 10^{-8} \) | \(a_{147}= -0.26713459 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{148}= +0.65716950 \pm 3.4 \cdot 10^{-8} \) | \(a_{149}= +1.01719019 \pm 2.1 \cdot 10^{-8} \) | \(a_{150}= +0.78099010 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{151}= +0.62655241 \pm 2.5 \cdot 10^{-8} \) | \(a_{152}= -0.25830122 \pm 4.0 \cdot 10^{-8} \) | \(a_{153}= -1.16284689 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{154}= -0.10793522 \pm 4.1 \cdot 10^{-8} \) | \(a_{155}= -0.32378783 \pm 3.7 \cdot 10^{-8} \) | \(a_{156}= -1.41031783 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{157}= -0.27314426 \pm 2.5 \cdot 10^{-8} \) | \(a_{158}= +1.00484340 \pm 4.7 \cdot 10^{-8} \) | \(a_{159}= +0.40627176 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{160}= -0.11310215 \pm 4.0 \cdot 10^{-8} \) | \(a_{161}= -0.29096831 \pm 3.7 \cdot 10^{-8} \) | \(a_{162}= +1.93517104 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{163}= -0.40566277 \pm 2.2 \cdot 10^{-8} \) | \(a_{164}= +0.28956345 \pm 2.9 \cdot 10^{-8} \) | \(a_{165}= +0.48317138 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{166}= +0.39427865 \pm 3.3 \cdot 10^{-8} \) | \(a_{167}= +1.06723253 \pm 3.3 \cdot 10^{-8} \) | \(a_{168}= +0.24988153 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{169}= +1.27529469 \pm 3.0 \cdot 10^{-8} \) | \(a_{170}= +0.21071230 \pm 6.0 \cdot 10^{-8} \) | \(a_{171}= -1.82404247 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{172}= +0.18848401 \pm 4.0 \cdot 10^{-8} \) | \(a_{173}= -0.04368691 \pm 3.4 \cdot 10^{-8} \) | \(a_{174}= -1.91486617 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{175}= +0.22324582 \pm 3.3 \cdot 10^{-8} \) | \(a_{176}= +0.10096415 \pm 4.1 \cdot 10^{-8} \) | \(a_{177}= -0.17203877 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{178}= +0.21347528 \pm 3.1 \cdot 10^{-8} \) | \(a_{179}= +0.43599934 \pm 2.7 \cdot 10^{-8} \) | \(a_{180}= -0.79869202 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{181}= +0.85454718 \pm 2.7 \cdot 10^{-8} \) | \(a_{182}= -0.40313900 \pm 3.9 \cdot 10^{-8} \) | \(a_{183}= -2.83835284 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{184}= +0.27217593 \pm 3.7 \cdot 10^{-8} \) | \(a_{185}= -0.84091720 \pm 2.0 \cdot 10^{-8} \) | \(a_{186}= -0.66915672 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{187}= -0.18809889 \pm 1.6 \cdot 10^{-8} \) | \(a_{188}= +0.22540277 \pm 3.2 \cdot 10^{-8} \) | \(a_{189}= +1.05781355 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{190}= +0.33052346 \pm 7.0 \cdot 10^{-8} \) | \(a_{191}= -0.62749075 \pm 2.1 \cdot 10^{-8} \) | \(a_{192}= -0.23374277 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{193}= -1.55955843 \pm 2.3 \cdot 10^{-8} \) | \(a_{194}= -0.01865516 \pm 3.4 \cdot 10^{-8} \) | \(a_{195}= +1.80464937 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{196}= +0.07142857 \pm 4.5 \cdot 10^{-7} \) | \(a_{197}= +1.02590304 \pm 3.8 \cdot 10^{-8} \) | \(a_{198}= +0.71297728 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{199}= -0.50984619 \pm 2.7 \cdot 10^{-8} \) | \(a_{200}= -0.20882735 \pm 3.3 \cdot 10^{-8} \) | \(a_{201}= +2.76893068 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{202}= +0.50116211 \pm 4.3 \cdot 10^{-8} \) | \(a_{203}= -0.54736401 \pm 4.3 \cdot 10^{-8} \) | \(a_{204}= +0.43546896 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{205}= -0.37052676 \pm 2.0 \cdot 10^{-8} \) | \(a_{206}= -1.15056660 \pm 3.3 \cdot 10^{-8} \) | \(a_{207}= +1.92202133 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{208}= +0.37710200 \pm 3.9 \cdot 10^{-8} \) | \(a_{209}= -0.29505205 \pm 2.4 \cdot 10^{-8} \) | \(a_{210}= -0.31974959 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{211}= -1.64793900 \pm 3.6 \cdot 10^{-8} \) | \(a_{212}= -0.10863218 \pm 3.9 \cdot 10^{-8} \) | \(a_{213}= +1.26106905 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{214}= +0.24985183 \pm 3.3 \cdot 10^{-8} \) | \(a_{215}= -0.24118503 \pm 2.5 \cdot 10^{-8} \) | \(a_{216}= -0.98949397 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{217}= -0.19127828 \pm 4.3 \cdot 10^{-8} \) | \(a_{218}= +1.12525194 \pm 3.2 \cdot 10^{-8} \) | \(a_{219}= +0.32006763 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{220}= -0.12919421 \pm 7.1 \cdot 10^{-8} \) | \(a_{221}= -0.70255102 \pm 1.7 \cdot 10^{-8} \) | \(a_{222}= -1.73788310 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{223}= -0.36531565 \pm 2.7 \cdot 10^{-8} \) | \(a_{224}= -0.06681531 \pm 5.0 \cdot 10^{-7} \) | \(a_{225}= -1.47467344 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{226}= -0.50001636 \pm 4.6 \cdot 10^{-8} \) | \(a_{227}= +1.47695341 \pm 3.2 \cdot 10^{-8} \) | \(a_{228}= +0.68307693 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{229}= -0.11580203 \pm 2.6 \cdot 10^{-8} \) | \(a_{230}= -0.34827761 \pm 6.7 \cdot 10^{-8} \) | \(a_{231}= +0.28543442 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{232}= +0.51201215 \pm 4.3 \cdot 10^{-8} \) | \(a_{233}= +1.18532622 \pm 2.3 \cdot 10^{-8} \) | \(a_{234}= +2.66297645 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{235}= -0.28842645 \pm 2.2 \cdot 10^{-8} \) | \(a_{236}= +0.04600109 \pm 4.1 \cdot 10^{-8} \) | \(a_{237}= -2.65730586 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{238}= +0.12447869 \pm 3.0 \cdot 10^{-8} \) | \(a_{239}= +1.38269861 \pm 3.5 \cdot 10^{-8} \) | \(a_{240}= +0.29909835 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{241}= -0.92082548 \pm 3.3 \cdot 10^{-8} \) | \(a_{242}= -0.59177755 \pm 3.7 \cdot 10^{-8} \) | \(a_{243}= -2.31884341 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{244}= +0.75894136 \pm 2.9 \cdot 10^{-8} \) | \(a_{245}= -0.09140034 \pm 4.0 \cdot 10^{-8} \) | \(a_{246}= -0.76574983 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{247}= -1.10202203 \pm 2.8 \cdot 10^{-8} \) | \(a_{248}= +0.17892445 \pm 4.3 \cdot 10^{-8} \) | \(a_{249}= -1.04266892 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{250}= +0.71962505 \pm 3.5 \cdot 10^{-8} \) | \(a_{251}= +1.66297763 \pm 2.8 \cdot 10^{-8} \) | \(a_{252}= -0.47182884 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{253}= +0.31090084 \pm 3.3 \cdot 10^{-8} \) | \(a_{254}= -0.91970020 \pm 3.9 \cdot 10^{-8} \) | \(a_{255}= -0.55722815 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{256}= +0.0625 \) | \(a_{257}= +1.73763116 \pm 3.2 \cdot 10^{-8} \) | \(a_{258}= -0.49844550 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{259}= -0.49677345 \pm 3.4 \cdot 10^{-8} \) | \(a_{260}= -0.48254151 \pm 6.9 \cdot 10^{-8} \) | \(a_{261}= +3.61566976 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{262}= +0.37559107 \pm 3.4 \cdot 10^{-8} \) | \(a_{263}= +0.01662741 \pm 3.2 \cdot 10^{-8} \) | \(a_{264}= -0.26699945 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{265}= +0.13900625 \pm 3.2 \cdot 10^{-8} \) | \(a_{266}= +0.19525737 \pm 4.0 \cdot 10^{-8} \) | \(a_{267}= -0.56453484 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{268}= -0.74037871 \pm 4.1 \cdot 10^{-8} \) | \(a_{269}= -0.43748316 \pm 2.8 \cdot 10^{-8} \) | \(a_{270}= +1.26616117 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{271}= +1.42077564 \pm 2.4 \cdot 10^{-8} \) | \(a_{272}= -0.11643916 \pm 3.0 \cdot 10^{-8} \) | \(a_{273}= +1.06610007 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{274}= -0.06694161 \pm 4.4 \cdot 10^{-8} \) | \(a_{275}= -0.23853909 \pm 2.6 \cdot 10^{-8} \) | \(a_{276}= -0.71976856 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{277}= +0.05665655 \pm 4.0 \cdot 10^{-8} \) | \(a_{278}= -0.02394417 \pm 3.7 \cdot 10^{-8} \) | \(a_{279}= +1.26350852 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{280}= +0.08549719 \pm 4.0 \cdot 10^{-8} \) | \(a_{281}= -1.85905988 \pm 2.6 \cdot 10^{-8} \) | \(a_{282}= -0.59607707 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{283}= -0.04825984 \pm 3.0 \cdot 10^{-8} \) | \(a_{284}= -0.33719467 \pm 5.1 \cdot 10^{-8} \) | \(a_{285}= -0.87406847 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{286}= +0.43075569 \pm 7.0 \cdot 10^{-8} \) | \(a_{287}= -0.21888939 \pm 2.9 \cdot 10^{-8} \) | \(a_{288}= +0.44135546 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{289}= -0.78307077 \pm 2.4 \cdot 10^{-8} \) | \(a_{290}= -0.65517317 \pm 7.3 \cdot 10^{-8} \) | \(a_{291}= +0.04933352 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{292}= -0.08558223 \pm 4.0 \cdot 10^{-8} \) | \(a_{293}= -0.99099001 \pm 2.0 \cdot 10^{-8} \) | \(a_{294}= -0.18889268 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{295}= -0.05886322 \pm 3.9 \cdot 10^{-8} \) | \(a_{296}= +0.46468901 \pm 3.4 \cdot 10^{-8} \) | \(a_{297}= -1.13027816 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{298}= +0.71926208 \pm 3.1 \cdot 10^{-8} \) | \(a_{299}= +1.16121739 \pm 2.1 \cdot 10^{-8} \) | \(a_{300}= +0.55224340 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{301}= -0.14248052 \pm 4.0 \cdot 10^{-8} \) | \(a_{302}= +0.44303946 \pm 3.6 \cdot 10^{-8} \) | \(a_{303}= -1.32532194 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{304}= -0.18264654 \pm 4.0 \cdot 10^{-8} \) | \(a_{305}= -0.97114496 \pm 1.7 \cdot 10^{-8} \) | \(a_{306}= -0.82225692 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{307}= +0.30211315 \pm 2.5 \cdot 10^{-8} \) | \(a_{308}= -0.07632172 \pm 4.1 \cdot 10^{-8} \) | \(a_{309}= +3.04267050 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{310}= -0.22895257 \pm 7.3 \cdot 10^{-8} \) | \(a_{311}= +0.34220372 \pm 3.3 \cdot 10^{-8} \) | \(a_{312}= -0.99724530 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{313}= +0.76087922 \pm 1.8 \cdot 10^{-8} \) | \(a_{314}= -0.19314216 \pm 3.6 \cdot 10^{-8} \) | \(a_{315}= +0.60375442 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{316}= +0.71053158 \pm 4.7 \cdot 10^{-8} \) | \(a_{317}= -1.52993686 \pm 3.3 \cdot 10^{-8} \) | \(a_{318}= +0.28727752 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{319}= +0.58486072 \pm 2.6 \cdot 10^{-8} \) | \(a_{320}= -0.07997530 \pm 4.0 \cdot 10^{-8} \) | \(a_{321}= -0.66073253 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{322}= -0.20574566 \pm 3.7 \cdot 10^{-8} \) | \(a_{323}= +0.34027535 \pm 1.9 \cdot 10^{-8} \) | \(a_{324}= +1.36837256 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{325}= -0.89094560 \pm 2.4 \cdot 10^{-8} \) | \(a_{326}= -0.28684690 \pm 3.3 \cdot 10^{-8} \) | \(a_{327}= -2.97572594 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{328}= +0.20475228 \pm 2.9 \cdot 10^{-8} \) | \(a_{329}= -0.17038848 \pm 3.2 \cdot 10^{-8} \) | \(a_{330}= +0.34165376 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{331}= +0.02287607 \pm 2.6 \cdot 10^{-8} \) | \(a_{332}= +0.27879711 \pm 3.3 \cdot 10^{-8} \) | \(a_{333}= +3.28148853 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{334}= +0.75464736 \pm 4.3 \cdot 10^{-8} \) | \(a_{335}= +0.94739211 \pm 2.4 \cdot 10^{-8} \) | \(a_{336}= +0.17669292 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{337}= +0.47561667 \pm 2.9 \cdot 10^{-8} \) | \(a_{338}= +0.90176952 \pm 4.0 \cdot 10^{-8} \) | \(a_{339}= +1.32229201 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{340}= +0.14899610 \pm 6.0 \cdot 10^{-8} \) | \(a_{341}= +0.20438164 \pm 2.7 \cdot 10^{-8} \) | \(a_{342}= -1.28979280 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.13327832 \pm 4.0 \cdot 10^{-8} \) | \(a_{345}= +0.92101926 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{346}= -0.03089131 \pm 4.4 \cdot 10^{-8} \) | \(a_{347}= -0.76875743 \pm 3.0 \cdot 10^{-8} \) | \(a_{348}= -1.35401486 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{349}= -1.54431636 \pm 2.9 \cdot 10^{-8} \) | \(a_{350}= +0.15785864 \pm 3.3 \cdot 10^{-8} \) | \(a_{351}= -4.22159893 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{352}= +0.07139244 \pm 4.1 \cdot 10^{-8} \) | \(a_{353}= -0.64219169 \pm 1.9 \cdot 10^{-8} \) | \(a_{354}= -0.12164978 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{355}= +0.43147590 \pm 3.9 \cdot 10^{-8} \) | \(a_{356}= +0.15094982 \pm 3.1 \cdot 10^{-8} \) | \(a_{357}= -0.32918359 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{358}= +0.30829809 \pm 3.7 \cdot 10^{-8} \) | \(a_{359}= +0.33325594 \pm 3.8 \cdot 10^{-8} \) | \(a_{360}= -0.56476054 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{361}= -0.46624384 \pm 2.6 \cdot 10^{-8} \) | \(a_{362}= +0.60425610 \pm 3.7 \cdot 10^{-8} \) | \(a_{363}= +1.56495426 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{364}= -0.28506232 \pm 3.9 \cdot 10^{-8} \) | \(a_{365}= +0.10951142 \pm 2.4 \cdot 10^{-8} \) | \(a_{366}= -2.00701854 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{367}= +0.42671237 \pm 2.0 \cdot 10^{-8} \) | \(a_{368}= +0.19245744 \pm 3.7 \cdot 10^{-8} \) | \(a_{369}= +1.44589660 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{370}= -0.59461826 \pm 6.4 \cdot 10^{-8} \) | \(a_{371}= +0.08211821 \pm 3.9 \cdot 10^{-8} \) | \(a_{372}= -0.47316525 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{373}= +0.00685675 \pm 3.7 \cdot 10^{-8} \) | \(a_{374}= -0.13300600 \pm 6.1 \cdot 10^{-8} \) | \(a_{375}= -1.90304666 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{376}= +0.15938383 \pm 3.2 \cdot 10^{-8} \) | \(a_{377}= +2.18445995 \pm 2.4 \cdot 10^{-8} \) | \(a_{378}= +0.74798713 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{379}= +0.28060259 \pm 3.3 \cdot 10^{-8} \) | \(a_{380}= +0.23371538 \pm 7.0 \cdot 10^{-8} \) | \(a_{381}= +2.43214488 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{382}= -0.44370297 \pm 3.1 \cdot 10^{-8} \) | \(a_{383}= -0.08532420 \pm 2.7 \cdot 10^{-8} \) | \(a_{384}= -0.16528109 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{385}= +0.09766164 \pm 7.1 \cdot 10^{-8} \) | \(a_{386}= -1.10277434 \pm 3.3 \cdot 10^{-8} \) | \(a_{387}= +0.94116985 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{388}= -0.01319119 \pm 3.4 \cdot 10^{-8} \) | \(a_{389}= -0.52763429 \pm 3.0 \cdot 10^{-8} \) | \(a_{390}= +1.27607981 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{391}= -0.35855332 \pm 1.6 \cdot 10^{-8} \) | \(a_{392}= +0.05050763 \pm 7.9 \cdot 10^{-7} \) | \(a_{393}= -0.99324965 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{394}= +0.72542299 \pm 4.8 \cdot 10^{-8} \) | \(a_{395}= -0.90919958 \pm 3.6 \cdot 10^{-8} \) | \(a_{396}= +0.50415107 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{397}= -1.48407841 \pm 2.4 \cdot 10^{-8} \) | \(a_{398}= -0.36051570 \pm 3.7 \cdot 10^{-8} \) | \(a_{399}= -0.51635762 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{400}= -0.14766323 \pm 3.3 \cdot 10^{-8} \) | \(a_{401}= +1.13114325 \pm 3.2 \cdot 10^{-8} \) | \(a_{402}= +1.95792966 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{403}= +0.76336721 \pm 1.7 \cdot 10^{-8} \) | \(a_{404}= +0.35437512 \pm 4.3 \cdot 10^{-8} \) | \(a_{405}= -1.75097601 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{406}= -0.38704481 \pm 4.3 \cdot 10^{-8} \) | \(a_{407}= +0.53080449 \pm 3.1 \cdot 10^{-8} \) | \(a_{408}= +0.30792306 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{409}= -1.76512252 \pm 3.8 \cdot 10^{-8} \) | \(a_{410}= -0.26200199 \pm 5.9 \cdot 10^{-8} \) | \(a_{411}= +0.17702693 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{412}= -0.81357344 \pm 3.3 \cdot 10^{-8} \) | \(a_{413}= -0.03477356 \pm 4.1 \cdot 10^{-8} \) | \(a_{414}= +1.35907431 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{415}= -0.35675010 \pm 2.0 \cdot 10^{-8} \) | \(a_{416}= +0.26665138 \pm 3.9 \cdot 10^{-8} \) | \(a_{417}= +0.06332029 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{418}= -0.20863331 \pm 7.1 \cdot 10^{-8} \) | \(a_{419}= +1.56142546 \pm 2.6 \cdot 10^{-8} \) | \(a_{420}= -0.22609710 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{421}= +1.01491742 \pm 2.5 \cdot 10^{-8} \) | \(a_{422}= -1.16526884 \pm 4.6 \cdot 10^{-8} \) | \(a_{423}= +1.12551878 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{424}= -0.07681455 \pm 3.9 \cdot 10^{-8} \) | \(a_{425}= +0.27510051 \pm 2.0 \cdot 10^{-8} \) | \(a_{426}= +0.89171047 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{427}= -0.57370574 \pm 2.9 \cdot 10^{-8} \) | \(a_{428}= +0.17667192 \pm 3.3 \cdot 10^{-8} \) | \(a_{429}= -1.13913235 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{430}= -0.17054357 \pm 7.0 \cdot 10^{-8} \) | \(a_{431}= -0.58119571 \pm 2.7 \cdot 10^{-8} \) | \(a_{432}= -0.69967789 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{433}= -1.85719162 \pm 3.8 \cdot 10^{-8} \) | \(a_{434}= -0.13525417 \pm 4.3 \cdot 10^{-8} \) | \(a_{435}= +1.73260382 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{436}= +0.79567328 \pm 3.2 \cdot 10^{-8} \) | \(a_{437}= -0.56242699 \pm 2.0 \cdot 10^{-8} \) | \(a_{438}= +0.22632199 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{439}= +1.54885533 \pm 3.6 \cdot 10^{-8} \) | \(a_{440}= -0.09135410 \pm 7.1 \cdot 10^{-8} \) | \(a_{441}= +0.35666908 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{442}= -0.49677859 \pm 5.9 \cdot 10^{-8} \) | \(a_{443}= -1.28617514 \pm 2.8 \cdot 10^{-8} \) | \(a_{444}= -1.22886892 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{445}= -0.19315610 \pm 2.6 \cdot 10^{-8} \) | \(a_{446}= -0.25831717 \pm 3.8 \cdot 10^{-8} \) | \(a_{447}= -1.90208678 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{448}= -0.04724556 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= -0.87063580 \pm 2.8 \cdot 10^{-8} \) | \(a_{450}= -1.04275159 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{451}= +0.23388423 \pm 2.4 \cdot 10^{-8} \) | \(a_{452}= -0.35356496 \pm 4.6 \cdot 10^{-8} \) | \(a_{453}= -1.17161674 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{454}= +1.04436377 \pm 4.2 \cdot 10^{-8} \) | \(a_{455}= +0.36476709 \pm 6.9 \cdot 10^{-8} \) | \(a_{456}= +0.48300833 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{457}= +0.62787629 \pm 3.9 \cdot 10^{-8} \) | \(a_{458}= -0.08188440 \pm 3.6 \cdot 10^{-8} \) | \(a_{459}= +1.30351845 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{460}= -0.24626946 \pm 6.7 \cdot 10^{-8} \) | \(a_{461}= +1.56037251 \pm 1.9 \cdot 10^{-8} \) | \(a_{462}= +0.20183261 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{463}= -0.36139571 \pm 3.6 \cdot 10^{-8} \) | \(a_{464}= +0.36204726 \pm 4.3 \cdot 10^{-8} \) | \(a_{465}= +0.60546450 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{466}= +0.83815220 \pm 3.3 \cdot 10^{-8} \) | \(a_{467}= -0.80750849 \pm 3.5 \cdot 10^{-8} \) | \(a_{468}= +1.88300871 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{469}= +0.55967370 \pm 4.1 \cdot 10^{-8} \) | \(a_{470}= -0.20394830 \pm 6.2 \cdot 10^{-8} \) | \(a_{471}= +0.51076395 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{472}= +0.03252769 \pm 4.1 \cdot 10^{-8} \) | \(a_{473}= +0.15224103 \pm 2.6 \cdot 10^{-8} \) | \(a_{474}= -1.87899900 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{475}= +0.43152286 \pm 2.0 \cdot 10^{-8} \) | \(a_{476}= +0.08801973 \pm 3.0 \cdot 10^{-8} \) | \(a_{477}= -0.54244033 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{478}= +0.97771556 \pm 4.6 \cdot 10^{-8} \) | \(a_{479}= -0.11938343 \pm 3.2 \cdot 10^{-8} \) | \(a_{480}= +0.21149447 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{481}= +1.98255945 \pm 3.1 \cdot 10^{-8} \) | \(a_{482}= -0.65112194 \pm 4.3 \cdot 10^{-8} \) | \(a_{483}= +0.54409389 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{484}= -0.41844992 \pm 3.7 \cdot 10^{-8} \) | \(a_{485}= +0.01687951 \pm 1.7 \cdot 10^{-8} \) | \(a_{486}= -1.63966990 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{487}= +1.49505406 \pm 2.5 \cdot 10^{-8} \) | \(a_{488}= +0.53665258 \pm 2.9 \cdot 10^{-8} \) | \(a_{489}= +0.75856590 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{490}= -0.06462980 \pm 4.0 \cdot 10^{-8} \) | \(a_{491}= +0.68999895 \pm 3.6 \cdot 10^{-8} \) | \(a_{492}= -0.54146690 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{493}= -0.67450364 \pm 1.9 \cdot 10^{-8} \) | \(a_{494}= -0.77924725 \pm 6.9 \cdot 10^{-8} \) | \(a_{495}= -0.64511410 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{496}= +0.12651869 \pm 4.3 \cdot 10^{-8} \) | \(a_{497}= +0.25489521 \pm 5.1 \cdot 10^{-8} \) | \(a_{498}= -0.73727826 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{499}= -1.23636873 \pm 4.2 \cdot 10^{-8} \) | \(a_{500}= +0.50885176 \pm 3.5 \cdot 10^{-8} \) | \(a_{501}= -1.99566306 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{502}= +1.17590276 \pm 3.8 \cdot 10^{-8} \) | \(a_{503}= -1.42178560 \pm 3.0 \cdot 10^{-8} \) | \(a_{504}= -0.33363337 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{505}= -0.45346009 \pm 3.4 \cdot 10^{-8} \) | \(a_{506}= +0.21984009 \pm 6.8 \cdot 10^{-8} \) | \(a_{507}= -2.38472726 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{508}= -0.65032625 \pm 3.9 \cdot 10^{-8} \) | \(a_{509}= +0.99003514 \pm 2.6 \cdot 10^{-8} \) | \(a_{510}= -0.39401980 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{511}= +0.06469408 \pm 4.0 \cdot 10^{-8} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +2.04469998 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{514}= +1.22869078 \pm 4.2 \cdot 10^{-8} \) | \(a_{515}= +1.04105243 \pm 1.3 \cdot 10^{-8} \) | \(a_{516}= -0.35245419 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{517}= +0.18206080 \pm 2.0 \cdot 10^{-8} \) | \(a_{518}= -0.35127187 \pm 3.4 \cdot 10^{-8} \) | \(a_{519}= +0.08169200 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{520}= -0.34120837 \pm 6.9 \cdot 10^{-8} \) | \(a_{521}= -1.07251939 \pm 2.7 \cdot 10^{-8} \) | \(a_{522}= +2.55666461 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{523}= -1.32602094 \pm 3.0 \cdot 10^{-8} \) | \(a_{524}= +0.26558299 \pm 3.4 \cdot 10^{-8} \) | \(a_{525}= -0.41745677 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{526}= +0.01175735 \pm 4.2 \cdot 10^{-8} \) | \(a_{527}= -0.23570767 \pm 1.4 \cdot 10^{-8} \) | \(a_{528}= -0.18879712 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{529}= -0.40736212 \pm 2.6 \cdot 10^{-8} \) | \(a_{530}= +0.09829226 \pm 6.9 \cdot 10^{-8} \) | \(a_{531}= +0.22970035 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{532}= +0.13806781 \pm 4.0 \cdot 10^{-8} \) | \(a_{533}= +0.87355965 \pm 1.7 \cdot 10^{-8} \) | \(a_{534}= -0.39918641 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{535}= -0.22607023 \pm 1.6 \cdot 10^{-8} \) | \(a_{536}= -0.52352681 \pm 4.1 \cdot 10^{-8} \) | \(a_{537}= -0.81529353 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{538}= -0.30934731 \pm 3.9 \cdot 10^{-8} \) | \(a_{539}= +0.05769380 \pm 4.1 \cdot 10^{-8} \) | \(a_{540}= +0.89531115 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{541}= -1.15554902 \pm 2.1 \cdot 10^{-8} \) | \(a_{542}= +1.00464009 \pm 3.4 \cdot 10^{-8} \) | \(a_{543}= -1.59795376 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{544}= -0.08233492 \pm 3.0 \cdot 10^{-8} \) | \(a_{545}= -1.01814729 \pm 2.6 \cdot 10^{-8} \) | \(a_{546}= +0.75384659 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{547}= +0.84906001 \pm 2.6 \cdot 10^{-8} \) | \(a_{548}= -0.04733487 \pm 4.4 \cdot 10^{-8} \) | \(a_{549}= +3.78967280 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{550}= -0.16867261 \pm 6.4 \cdot 10^{-8} \) | \(a_{551}= -1.05802690 \pm 3.1 \cdot 10^{-8} \) | \(a_{552}= -0.50895323 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{553}= -0.53711139 \pm 4.7 \cdot 10^{-8} \) | \(a_{554}= +0.04006223 \pm 5.1 \cdot 10^{-8} \) | \(a_{555}= +1.57246650 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{556}= -0.01693108 \pm 3.7 \cdot 10^{-8} \) | \(a_{557}= +0.07877808 \pm 3.3 \cdot 10^{-8} \) | \(a_{558}= +0.89343544 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{559}= +0.56862158 \pm 3.0 \cdot 10^{-8} \) | \(a_{560}= +0.06045564 \pm 4.0 \cdot 10^{-8} \) | \(a_{561}= +0.35173404 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{562}= -1.31455385 \pm 3.6 \cdot 10^{-8} \) | \(a_{563}= +1.92344169 \pm 2.2 \cdot 10^{-8} \) | \(a_{564}= -0.42149014 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{565}= +0.45242339 \pm 3.7 \cdot 10^{-8} \) | \(a_{566}= -0.03412486 \pm 4.1 \cdot 10^{-8} \) | \(a_{567}= -1.03439243 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{568}= -0.23843264 \pm 5.1 \cdot 10^{-8} \) | \(a_{569}= -0.79148298 \pm 2.7 \cdot 10^{-8} \) | \(a_{570}= -0.61805975 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{571}= +1.33633811 \pm 2.6 \cdot 10^{-8} \) | \(a_{572}= +0.30459027 \pm 7.0 \cdot 10^{-8} \) | \(a_{573}= +1.17337139 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{574}= -0.15477818 \pm 2.9 \cdot 10^{-8} \) | \(a_{575}= -0.45470221 \pm 2.2 \cdot 10^{-8} \) | \(a_{576}= +0.31208544 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{577}= -0.55066496 \pm 2.5 \cdot 10^{-8} \) | \(a_{578}= -0.55371465 \pm 3.5 \cdot 10^{-8} \) | \(a_{579}= +2.91628400 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{580}= -0.46327739 \pm 7.3 \cdot 10^{-8} \) | \(a_{581}= -0.21075080 \pm 3.3 \cdot 10^{-8} \) | \(a_{582}= +0.03488407 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{583}= -0.08774364 \pm 2.2 \cdot 10^{-8} \) | \(a_{584}= -0.06051577 \pm 4.0 \cdot 10^{-8} \) | \(a_{585}= -2.40950686 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{586}= -0.70073575 \pm 3.1 \cdot 10^{-8} \) | \(a_{587}= -0.84617290 \pm 3.4 \cdot 10^{-8} \) | \(a_{588}= -0.13356729 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{589}= -0.36973122 \pm 3.1 \cdot 10^{-8} \) | \(a_{590}= -0.04162258 \pm 7.1 \cdot 10^{-8} \) | \(a_{591}= -1.91837930 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{592}= +0.32858475 \pm 3.4 \cdot 10^{-8} \) | \(a_{593}= -0.88898137 \pm 3.7 \cdot 10^{-8} \) | \(a_{594}= -0.79922735 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{595}= -0.11263046 \pm 6.0 \cdot 10^{-8} \) | \(a_{596}= +0.50859510 \pm 3.1 \cdot 10^{-8} \) | \(a_{597}= +0.95338287 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{598}= +0.82110469 \pm 6.6 \cdot 10^{-8} \) | \(a_{599}= +0.97244803 \pm 2.9 \cdot 10^{-8} \) | \(a_{600}= +0.39049505 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{601}= +0.80980393 \pm 3.2 \cdot 10^{-8} \) | \(a_{602}= -0.10074894 \pm 4.0 \cdot 10^{-8} \) | \(a_{603}= -3.69698268 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{604}= +0.31327621 \pm 3.6 \cdot 10^{-8} \) | \(a_{605}= +0.53545050 \pm 2.1 \cdot 10^{-8} \) | \(a_{606}= -0.93714413 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{607}= +0.67322185 \pm 3.2 \cdot 10^{-8} \) | \(a_{608}= -0.12915061 \pm 4.0 \cdot 10^{-8} \) | \(a_{609}= +1.02353902 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{610}= -0.68670319 \pm 5.9 \cdot 10^{-8} \) | \(a_{611}= +0.67999869 \pm 2.0 \cdot 10^{-8} \) | \(a_{612}= -0.58142345 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{613}= +1.04952985 \pm 2.7 \cdot 10^{-8} \) | \(a_{614}= +0.21362626 \pm 3.6 \cdot 10^{-8} \) | \(a_{615}= +0.69286360 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{616}= -0.05396761 \pm 4.1 \cdot 10^{-8} \) | \(a_{617}= +0.75299910 \pm 2.8 \cdot 10^{-8} \) | \(a_{618}= +2.15149294 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{619}= -1.25967292 \pm 2.2 \cdot 10^{-8} \) | \(a_{620}= -0.16189391 \pm 7.3 \cdot 10^{-8} \) | \(a_{621}= -2.15453151 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{622}= +0.24197457 \pm 4.4 \cdot 10^{-8} \) | \(a_{623}= -0.11410734 \pm 3.1 \cdot 10^{-8} \) | \(a_{624}= -0.70515891 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{625}= -0.06047619 \pm 2.3 \cdot 10^{-8} \) | \(a_{626}= +0.53802285 \pm 2.9 \cdot 10^{-8} \) | \(a_{627}= +0.55173026 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{628}= -0.13657213 \pm 3.6 \cdot 10^{-8} \) | \(a_{629}= -0.61216209 \pm 1.8 \cdot 10^{-8} \) | \(a_{630}= +0.42691884 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{631}= -1.08177040 \pm 2.1 \cdot 10^{-8} \) | \(a_{632}= +0.50242170 \pm 4.7 \cdot 10^{-8} \) | \(a_{633}= +3.08155056 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{634}= -1.08182873 \pm 4.3 \cdot 10^{-8} \) | \(a_{635}= +0.83216055 \pm 3.7 \cdot 10^{-8} \) | \(a_{636}= +0.20313588 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{637}= +0.21548686 \pm 3.9 \cdot 10^{-8} \) | \(a_{638}= +0.41355898 \pm 7.4 \cdot 10^{-8} \) | \(a_{639}= -1.68373678 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{640}= -0.05655107 \pm 4.0 \cdot 10^{-8} \) | \(a_{641}= -0.34275444 \pm 4.2 \cdot 10^{-8} \) | \(a_{642}= -0.46720846 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{643}= +0.44857410 \pm 2.6 \cdot 10^{-8} \) | \(a_{644}= -0.14548415 \pm 3.7 \cdot 10^{-8} \) | \(a_{645}= +0.45100205 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{646}= +0.24061101 \pm 6.0 \cdot 10^{-8} \) | \(a_{647}= -0.52820155 \pm 2.9 \cdot 10^{-8} \) | \(a_{648}= +0.96758552 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{649}= +0.03715569 \pm 2.9 \cdot 10^{-8} \) | \(a_{650}= -0.62999368 \pm 6.2 \cdot 10^{-8} \) | \(a_{651}= +0.35767931 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{652}= -0.20283139 \pm 3.3 \cdot 10^{-8} \) | \(a_{653}= -1.23568794 \pm 3.2 \cdot 10^{-8} \) | \(a_{654}= -2.10415599 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{655}= -0.33984126 \pm 1.8 \cdot 10^{-8} \) | \(a_{656}= +0.14478173 \pm 2.9 \cdot 10^{-8} \) | \(a_{657}= -0.42734348 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{658}= -0.12048285 \pm 3.2 \cdot 10^{-8} \) | \(a_{659}= +1.71237690 \pm 2.6 \cdot 10^{-8} \) | \(a_{660}= +0.24158569 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{661}= -0.91595166 \pm 3.3 \cdot 10^{-8} \) | \(a_{662}= +0.01617582 \pm 3.7 \cdot 10^{-8} \) | \(a_{663}= +1.31372974 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{664}= +0.19713933 \pm 3.3 \cdot 10^{-8} \) | \(a_{665}= -0.17667222 \pm 7.0 \cdot 10^{-8} \) | \(a_{666}= +2.32036279 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{667}= +1.11485906 \pm 2.3 \cdot 10^{-8} \) | \(a_{668}= +0.53361626 \pm 4.3 \cdot 10^{-8} \) | \(a_{669}= +0.68311912 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{670}= +0.66990738 \pm 7.1 \cdot 10^{-8} \) | \(a_{671}= +0.61300697 \pm 2.2 \cdot 10^{-8} \) | \(a_{672}= +0.12494076 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{673}= -0.59338143 \pm 2.1 \cdot 10^{-8} \) | \(a_{674}= +0.33631177 \pm 4.0 \cdot 10^{-8} \) | \(a_{675}= +1.65306719 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{676}= +0.63764735 \pm 4.0 \cdot 10^{-8} \) | \(a_{677}= -1.72374069 \pm 3.0 \cdot 10^{-8} \) | \(a_{678}= +0.93500164 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{679}= +0.00997160 \pm 3.4 \cdot 10^{-8} \) | \(a_{680}= +0.10535615 \pm 6.0 \cdot 10^{-8} \) | \(a_{681}= -2.76181738 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{682}= +0.14451964 \pm 7.4 \cdot 10^{-8} \) | \(a_{683}= -0.50750229 \pm 1.8 \cdot 10^{-8} \) | \(a_{684}= -0.91202123 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{685}= +0.06056992 \pm 3.3 \cdot 10^{-8} \) | \(a_{686}= -0.03818018 \pm 1.3 \cdot 10^{-6} \) | \(a_{687}= +0.21654309 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{688}= +0.09424201 \pm 4.0 \cdot 10^{-8} \) | \(a_{689}= -0.32772328 \pm 2.4 \cdot 10^{-8} \) | \(a_{690}= +0.65125897 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{691}= -1.70747806 \pm 2.0 \cdot 10^{-8} \) | \(a_{692}= -0.02184346 \pm 4.4 \cdot 10^{-8} \) | \(a_{693}= -0.38110239 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{694}= -0.54359359 \pm 4.0 \cdot 10^{-8} \) | \(a_{695}= +0.02166509 \pm 2.1 \cdot 10^{-8} \) | \(a_{696}= -0.95743309 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{697}= -0.26973219 \pm 1.1 \cdot 10^{-8} \) | \(a_{698}= -1.09199657 \pm 3.9 \cdot 10^{-8} \) | \(a_{699}= -2.21649142 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{700}= +0.11162291 \pm 3.3 \cdot 10^{-8} \) | \(a_{701}= +1.58286470 \pm 2.2 \cdot 10^{-8} \) | \(a_{702}= -2.98512123 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{703}= -0.96023790 \pm 1.8 \cdot 10^{-8} \) | \(a_{704}= +0.05048208 \pm 4.1 \cdot 10^{-8} \) | \(a_{705}= +0.53934078 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{706}= -0.45409810 \pm 2.9 \cdot 10^{-8} \) | \(a_{707}= -0.26788241 \pm 4.3 \cdot 10^{-8} \) | \(a_{708}= -0.08601938 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{709}= +1.26666490 \pm 3.3 \cdot 10^{-8} \) | \(a_{710}= +0.30509954 \pm 8.1 \cdot 10^{-8} \) | \(a_{711}= +3.54794500 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{712}= +0.10673764 \pm 3.1 \cdot 10^{-8} \) | \(a_{713}= +0.38959142 \pm 3.1 \cdot 10^{-8} \) | \(a_{714}= -0.23276795 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{715}= -0.38975515 \pm 1.8 \cdot 10^{-8} \) | \(a_{716}= +0.21799967 \pm 3.7 \cdot 10^{-8} \) | \(a_{717}= -2.58556637 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{718}= +0.23564753 \pm 4.9 \cdot 10^{-8} \) | \(a_{719}= -0.24083816 \pm 3.2 \cdot 10^{-8} \) | \(a_{720}= -0.39934601 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{721}= +0.61500372 \pm 3.3 \cdot 10^{-8} \) | \(a_{722}= -0.32968418 \pm 3.6 \cdot 10^{-8} \) | \(a_{723}= +1.72189036 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{724}= +0.42727359 \pm 3.7 \cdot 10^{-8} \) | \(a_{725}= -0.85537711 \pm 1.5 \cdot 10^{-8} \) | \(a_{726}= +1.10658977 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{727}= +1.09224222 \pm 2.0 \cdot 10^{-8} \) | \(a_{728}= -0.20156950 \pm 3.9 \cdot 10^{-8} \) | \(a_{729}= +1.59935783 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{730}= +0.07743627 \pm 7.0 \cdot 10^{-8} \) | \(a_{731}= -0.17557535 \pm 2.0 \cdot 10^{-8} \) | \(a_{732}= -1.41917642 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{733}= +1.36167744 \pm 2.7 \cdot 10^{-8} \) | \(a_{734}= +0.30173121 \pm 3.1 \cdot 10^{-8} \) | \(a_{735}= +0.17091334 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{736}= +0.13608796 \pm 3.7 \cdot 10^{-8} \) | \(a_{737}= -0.59801367 \pm 3.1 \cdot 10^{-8} \) | \(a_{738}= +1.02240329 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{739}= -0.45641401 \pm 2.0 \cdot 10^{-8} \) | \(a_{740}= -0.42045860 \pm 6.4 \cdot 10^{-8} \) | \(a_{741}= +2.06071741 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{742}= +0.05806634 \pm 3.9 \cdot 10^{-8} \) | \(a_{743}= +0.95696756 \pm 3.4 \cdot 10^{-8} \) | \(a_{744}= -0.33457836 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{745}= -0.65080069 \pm 2.4 \cdot 10^{-8} \) | \(a_{746}= +0.00484846 \pm 4.7 \cdot 10^{-8} \) | \(a_{747}= +1.39213630 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{748}= -0.09404944 \pm 6.1 \cdot 10^{-8} \) | \(a_{749}= -0.13355142 \pm 3.3 \cdot 10^{-8} \) | \(a_{750}= -1.34565720 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{751}= +0.06068940 \pm 3.0 \cdot 10^{-8} \) | \(a_{752}= +0.11270139 \pm 3.2 \cdot 10^{-8} \) | \(a_{753}= -3.10967192 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{754}= +1.54464645 \pm 7.2 \cdot 10^{-8} \) | \(a_{755}= -0.40086972 \pm 1.8 \cdot 10^{-8} \) | \(a_{756}= +0.52890677 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{757}= +0.42508435 \pm 2.3 \cdot 10^{-8} \) | \(a_{758}= +0.19841599 \pm 4.4 \cdot 10^{-8} \) | \(a_{759}= -0.58136658 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{760}= +0.16526173 \pm 7.0 \cdot 10^{-8} \) | \(a_{761}= -0.14061484 \pm 4.4 \cdot 10^{-8} \) | \(a_{762}= +1.71978614 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{763}= -0.60147246 \pm 3.2 \cdot 10^{-8} \) | \(a_{764}= -0.31374538 \pm 3.1 \cdot 10^{-8} \) | \(a_{765}= +0.74399220 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{766}= -0.06033332 \pm 3.7 \cdot 10^{-8} \) | \(a_{767}= +0.13877684 \pm 2.1 \cdot 10^{-8} \) | \(a_{768}= -0.11687138 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{769}= +0.84554504 \pm 3.5 \cdot 10^{-8} \) | \(a_{770}= +0.06905721 \pm 7.1 \cdot 10^{-8} \) | \(a_{771}= -3.24926970 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{772}= -0.77977922 \pm 3.3 \cdot 10^{-8} \) | \(a_{773}= +0.47471224 \pm 1.8 \cdot 10^{-8} \) | \(a_{774}= +0.66550759 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{775}= -0.29891454 \pm 2.2 \cdot 10^{-8} \) | \(a_{776}= -0.00932758 \pm 3.4 \cdot 10^{-8} \) | \(a_{777}= +0.92893759 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{778}= -0.37309379 \pm 4.0 \cdot 10^{-8} \) | \(a_{779}= -0.42310211 \pm 1.1 \cdot 10^{-8} \) | \(a_{780}= +0.90232468 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{781}= -0.27235659 \pm 3.7 \cdot 10^{-8} \) | \(a_{782}= -0.25353548 \pm 5.7 \cdot 10^{-8} \) | \(a_{783}= -4.05306347 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{784}= +0.03571429 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= +0.17475834 \pm 3.2 \cdot 10^{-8} \) | \(a_{786}= -0.70233356 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{787}= +0.59890697 \pm 3.3 \cdot 10^{-8} \) | \(a_{788}= +0.51295152 \pm 4.8 \cdot 10^{-8} \) | \(a_{789}= -0.03109229 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{790}= -0.64290119 \pm 7.7 \cdot 10^{-8} \) | \(a_{791}= +0.26726998 \pm 4.6 \cdot 10^{-8} \) | \(a_{792}= +0.35648864 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{793}= +2.28958644 \pm 1.9 \cdot 10^{-8} \) | \(a_{794}= -1.04940191 \pm 3.4 \cdot 10^{-8} \) | \(a_{795}= -0.25993363 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{796}= -0.25492310 \pm 3.7 \cdot 10^{-8} \) | \(a_{797}= +0.33879390 \pm 2.6 \cdot 10^{-8} \) | \(a_{798}= -0.36511998 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{799}= -0.20996567 \pm 2.3 \cdot 10^{-8} \) | \(a_{800}= -0.10441367 \pm 3.3 \cdot 10^{-8} \) | \(a_{801}= +0.75374784 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{802}= +0.79983906 \pm 4.3 \cdot 10^{-8} \) | \(a_{803}= -0.06912590 \pm 2.8 \cdot 10^{-8} \) | \(a_{804}= +1.38446534 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{805}= +0.18616221 \pm 6.7 \cdot 10^{-8} \) | \(a_{806}= +0.53978213 \pm 7.2 \cdot 10^{-8} \) | \(a_{807}= +0.81806818 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{808}= +0.25058105 \pm 4.3 \cdot 10^{-8} \) | \(a_{809}= +1.79567962 \pm 3.6 \cdot 10^{-8} \) | \(a_{810}= -1.23812701 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{811}= -0.96202223 \pm 2.7 \cdot 10^{-8} \) | \(a_{812}= -0.27368201 \pm 4.3 \cdot 10^{-8} \) | \(a_{813}= -2.65676821 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{814}= +0.37533545 \pm 6.4 \cdot 10^{-8} \) | \(a_{815}= +0.25954400 \pm 2.2 \cdot 10^{-8} \) | \(a_{816}= +0.21773448 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{817}= -0.27540763 \pm 3.1 \cdot 10^{-8} \) | \(a_{818}= -1.24813011 \pm 4.9 \cdot 10^{-8} \) | \(a_{819}= -1.42342079 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{820}= -0.18526338 \pm 5.9 \cdot 10^{-8} \) | \(a_{821}= -1.25235927 \pm 3.6 \cdot 10^{-8} \) | \(a_{822}= +0.12517694 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{823}= -0.86950060 \pm 1.6 \cdot 10^{-8} \) | \(a_{824}= -0.57528330 \pm 3.3 \cdot 10^{-8} \) | \(a_{825}= +0.44605429 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{826}= -0.02458862 \pm 4.1 \cdot 10^{-8} \) | \(a_{827}= +1.84434466 \pm 2.5 \cdot 10^{-8} \) | \(a_{828}= +0.96101066 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{829}= +0.73772009 \pm 3.9 \cdot 10^{-8} \) | \(a_{830}= -0.25226042 \pm 6.3 \cdot 10^{-8} \) | \(a_{831}= -0.10594447 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{832}= +0.18855100 \pm 3.9 \cdot 10^{-8} \) | \(a_{833}= -0.06653666 \pm 3.0 \cdot 10^{-8} \) | \(a_{834}= +0.04477421 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{835}= -0.68281790 \pm 3.7 \cdot 10^{-8} \) | \(a_{836}= -0.14752603 \pm 7.1 \cdot 10^{-8} \) | \(a_{837}= -1.41635729 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{838}= +1.10409453 \pm 3.6 \cdot 10^{-8} \) | \(a_{839}= -0.20332912 \pm 3.1 \cdot 10^{-8} \) | \(a_{840}= -0.15987479 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{841}= +1.09725154 \pm 3.3 \cdot 10^{-8} \) | \(a_{842}= +0.71765499 \pm 3.6 \cdot 10^{-8} \) | \(a_{843}= +3.47633437 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{844}= -0.82396950 \pm 4.6 \cdot 10^{-8} \) | \(a_{845}= -0.81593656 \pm 2.2 \cdot 10^{-8} \) | \(a_{846}= +0.79586196 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{847}= +0.31631841 \pm 3.7 \cdot 10^{-8} \) | \(a_{848}= -0.05431609 \pm 3.9 \cdot 10^{-8} \) | \(a_{849}= +0.09024311 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{850}= +0.19452544 \pm 5.3 \cdot 10^{-8} \) | \(a_{851}= +1.01181730 \pm 1.9 \cdot 10^{-8} \) | \(a_{852}= +0.63053452 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{853}= -1.20196684 \pm 1.8 \cdot 10^{-8} \) | \(a_{854}= -0.40567122 \pm 2.9 \cdot 10^{-8} \) | \(a_{855}= +1.16702669 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{856}= +0.12492591 \pm 3.3 \cdot 10^{-8} \) | \(a_{857}= +0.67523077 \pm 2.7 \cdot 10^{-8} \) | \(a_{858}= -0.80548821 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{859}= +0.65839472 \pm 1.5 \cdot 10^{-8} \) | \(a_{860}= -0.12059252 \pm 7.0 \cdot 10^{-8} \) | \(a_{861}= +0.40931050 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{862}= -0.41096742 \pm 3.7 \cdot 10^{-8} \) | \(a_{863}= -1.58357483 \pm 2.2 \cdot 10^{-8} \) | \(a_{864}= -0.49474698 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{865}= +0.02795099 \pm 3.4 \cdot 10^{-8} \) | \(a_{866}= -1.31323279 \pm 4.8 \cdot 10^{-8} \) | \(a_{867}= +1.46429701 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{868}= -0.09563914 \pm 4.3 \cdot 10^{-8} \) | \(a_{869}= +0.57390575 \pm 2.9 \cdot 10^{-8} \) | \(a_{870}= +1.22513591 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{871}= -2.23358635 \pm 3.5 \cdot 10^{-8} \) | \(a_{872}= +0.56262597 \pm 3.2 \cdot 10^{-8} \) | \(a_{873}= -0.06586845 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{874}= -0.39769594 \pm 6.7 \cdot 10^{-8} \) | \(a_{875}= -0.38465577 \pm 3.5 \cdot 10^{-8} \) | \(a_{876}= +0.16003381 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{877}= +0.01259938 \pm 3.0 \cdot 10^{-8} \) | \(a_{878}= +1.09520610 \pm 4.7 \cdot 10^{-8} \) | \(a_{879}= +1.85309395 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{880}= -0.06459710 \pm 7.1 \cdot 10^{-8} \) | \(a_{881}= -0.62680810 \pm 2.6 \cdot 10^{-8} \) | \(a_{882}= +0.25220312 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{883}= -0.75749857 \pm 2.6 \cdot 10^{-8} \) | \(a_{884}= -0.35127551 \pm 5.9 \cdot 10^{-8} \) | \(a_{885}= +0.11007081 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{886}= -0.90946317 \pm 3.9 \cdot 10^{-8} \) | \(a_{887}= -0.30454113 \pm 3.1 \cdot 10^{-8} \) | \(a_{888}= -0.86894155 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{889}= +0.49160043 \pm 3.9 \cdot 10^{-8} \) | \(a_{890}= -0.13658199 \pm 6.1 \cdot 10^{-8} \) | \(a_{891}= +1.10525260 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{892}= -0.18265782 \pm 3.8 \cdot 10^{-8} \) | \(a_{893}= -0.32935230 \pm 2.4 \cdot 10^{-8} \) | \(a_{894}= -1.34497846 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{895}= -0.27895341 \pm 3.1 \cdot 10^{-8} \) | \(a_{896}= -0.03340766 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= -2.17140931 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{898}= -0.61563248 \pm 3.8 \cdot 10^{-8} \) | \(a_{899}= +0.73289193 \pm 4.1 \cdot 10^{-8} \) | \(a_{900}= -0.73733672 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{901}= +0.10119231 \pm 2.6 \cdot 10^{-8} \) | \(a_{902}= +0.16538112 \pm 6.0 \cdot 10^{-8} \) | \(a_{903}= +0.26643033 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{904}= -0.25000818 \pm 4.6 \cdot 10^{-8} \) | \(a_{905}= -0.54674131 \pm 3.0 \cdot 10^{-8} \) | \(a_{906}= -0.82845814 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{907}= -0.88304672 \pm 3.4 \cdot 10^{-8} \) | \(a_{908}= +0.73847670 \pm 4.2 \cdot 10^{-8} \) | \(a_{909}= +1.76952507 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{910}= +0.25792928 \pm 6.9 \cdot 10^{-8} \) | \(a_{911}= +0.97389439 \pm 2.2 \cdot 10^{-8} \) | \(a_{912}= +0.34153846 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{913}= +0.22518811 \pm 2.6 \cdot 10^{-8} \) | \(a_{914}= +0.44397558 \pm 5.0 \cdot 10^{-8} \) | \(a_{915}= +1.81598487 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{916}= -0.05790101 \pm 3.6 \cdot 10^{-8} \) | \(a_{917}= -0.20076187 \pm 3.4 \cdot 10^{-8} \) | \(a_{918}= +0.92172674 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{919}= -0.03552583 \pm 3.3 \cdot 10^{-8} \) | \(a_{920}= -0.17413880 \pm 6.7 \cdot 10^{-8} \) | \(a_{921}= -0.56493410 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{922}= +1.10334998 \pm 2.9 \cdot 10^{-8} \) | \(a_{923}= -1.01725429 \pm 3.3 \cdot 10^{-8} \) | \(a_{924}= +0.14271721 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{925}= -0.77631818 \pm 2.2 \cdot 10^{-8} \) | \(a_{926}= -0.25554535 \pm 4.6 \cdot 10^{-8} \) | \(a_{927}= -4.06247084 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{928}= +0.25600608 \pm 4.3 \cdot 10^{-8} \) | \(a_{929}= +0.97845132 \pm 3.2 \cdot 10^{-8} \) | \(a_{930}= +0.42812805 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{931}= -0.10436945 \pm 4.0 \cdot 10^{-8} \) | \(a_{932}= +0.59266311 \pm 3.3 \cdot 10^{-8} \) | \(a_{933}= -0.63990116 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{934}= -0.57099473 \pm 4.5 \cdot 10^{-8} \) | \(a_{935}= +0.12034612 \pm 1.6 \cdot 10^{-8} \) | \(a_{936}= +1.33148822 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{937}= +0.03043137 \pm 2.9 \cdot 10^{-8} \) | \(a_{938}= +0.39574907 \pm 4.1 \cdot 10^{-8} \) | \(a_{939}= -1.42280009 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{940}= -0.14421323 \pm 6.2 \cdot 10^{-8} \) | \(a_{941}= -0.19881974 \pm 3.0 \cdot 10^{-8} \) | \(a_{942}= +0.36116465 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{943}= +0.44582913 \pm 2.2 \cdot 10^{-8} \) | \(a_{944}= +0.02300055 \pm 4.1 \cdot 10^{-8} \) | \(a_{945}= -0.67679161 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{946}= +0.10765066 \pm 7.1 \cdot 10^{-8} \) | \(a_{947}= -0.09590219 \pm 1.7 \cdot 10^{-8} \) | \(a_{948}= -1.32865293 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{949}= -0.25818584 \pm 3.3 \cdot 10^{-8} \) | \(a_{950}= +0.30513274 \pm 6.3 \cdot 10^{-8} \) | \(a_{951}= +2.86089337 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{952}= +0.06223935 \pm 3.0 \cdot 10^{-8} \) | \(a_{953}= -0.23700629 \pm 2.9 \cdot 10^{-8} \) | \(a_{954}= -0.38356323 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{955}= +0.40147007 \pm 2.3 \cdot 10^{-8} \) | \(a_{956}= +0.69134930 \pm 4.6 \cdot 10^{-8} \) | \(a_{957}= -1.09365569 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{958}= -0.08441683 \pm 4.2 \cdot 10^{-8} \) | \(a_{959}= +0.03578180 \pm 4.4 \cdot 10^{-8} \) | \(a_{960}= +0.14954917 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{961}= -0.74388834 \pm 3.5 \cdot 10^{-8} \) | \(a_{962}= +1.40188123 \pm 6.3 \cdot 10^{-8} \) | \(a_{963}= +0.88218775 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{964}= -0.46041274 \pm 4.3 \cdot 10^{-8} \) | \(a_{965}= +0.99780918 \pm 2.1 \cdot 10^{-8} \) | \(a_{966}= +0.38473248 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{967}= -0.54049639 \pm 3.9 \cdot 10^{-8} \) | \(a_{968}= -0.29588878 \pm 3.7 \cdot 10^{-8} \) | \(a_{969}= -0.63629521 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{970}= +0.01193561 \pm 6.4 \cdot 10^{-8} \) | \(a_{971}= -0.98377981 \pm 3.9 \cdot 10^{-8} \) | \(a_{972}= -1.15942170 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{973}= +0.01279870 \pm 3.7 \cdot 10^{-8} \) | \(a_{974}= +1.05716286 \pm 3.5 \cdot 10^{-8} \) | \(a_{975}= +1.66601671 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{976}= +0.37947068 \pm 2.9 \cdot 10^{-8} \) | \(a_{977}= +0.84741710 \pm 3.9 \cdot 10^{-8} \) | \(a_{978}= +0.53638709 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{979}= +0.12192416 \pm 2.4 \cdot 10^{-8} \) | \(a_{980}= -0.04570017 \pm 4.0 \cdot 10^{-8} \) | \(a_{981}= +3.97308873 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{982}= +0.48790294 \pm 4.6 \cdot 10^{-8} \) | \(a_{983}= +0.52214686 \pm 2.7 \cdot 10^{-8} \) | \(a_{984}= -0.38287491 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{985}= -0.65637519 \pm 3.3 \cdot 10^{-8} \) | \(a_{986}= -0.47694610 \pm 6.3 \cdot 10^{-8} \) | \(a_{987}= +0.31861660 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{988}= -0.55101101 \pm 6.9 \cdot 10^{-8} \) | \(a_{989}= +0.29020121 \pm 1.8 \cdot 10^{-8} \) | \(a_{990}= -0.45616455 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{991}= +1.67451467 \pm 2.8 \cdot 10^{-8} \) | \(a_{992}= +0.08946222 \pm 4.3 \cdot 10^{-8} \) | \(a_{993}= -0.04277692 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{994}= +0.18023813 \pm 5.1 \cdot 10^{-8} \) | \(a_{995}= +0.32620080 \pm 2.7 \cdot 10^{-8} \) | \(a_{996}= -0.52133446 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{997}= +0.03548618 \pm 1.8 \cdot 10^{-8} \) | \(a_{998}= -0.87424471 \pm 5.2 \cdot 10^{-8} \) | \(a_{999}= -3.67845576 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{1000}= +0.35981253 \pm 3.5 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000