Maass form invariants
| Level: | \( 11 \) |
| Weight: | \( 0 \) |
| Character: | 11.1 |
| Symmetry: | even |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(11.1472353004277571201830219459 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.93346949 \pm 1.1 \cdot 10^{-7} \) | \(a_{3}= +0.62589405 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{4}= +2.73830428 \pm 8.7 \cdot 10^{-8} \) | \(a_{5}= +1.16458706 \pm 9.3 \cdot 10^{-8} \) | \(a_{6}= -1.21014706 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{7}= +0.43442801 \pm 7.3 \cdot 10^{-8} \) | \(a_{8}= -3.36095830 \pm 1.1 \cdot 10^{-7} \) | \(a_{9}= -0.60825663 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{10}= -2.25169356 \pm 1.0 \cdot 10^{-7} \) | \(a_{11}= +0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +1.71388837 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{13}= -0.89466811 \pm 1.0 \cdot 10^{-7} \) | \(a_{14}= -0.83995331 \pm 8.4 \cdot 10^{-8} \) | \(a_{15}= +0.72890812 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{16}= +3.76000606 \pm 1.2 \cdot 10^{-7} \) | \(a_{17}= -0.09690602 \pm 9.2 \cdot 10^{-8} \) | \(a_{18}= +1.17604565 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{19}= -1.51591912 \pm 9.8 \cdot 10^{-8} \) | \(a_{20}= +3.18899374 \pm 1.1 \cdot 10^{-7} \) | \(a_{21}= +0.27190591 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{22}= -0.58296299 \pm 1.2 \cdot 10^{-7} \) | \(a_{23}= -0.90296129 \pm 9.4 \cdot 10^{-8} \) | \(a_{24}= -2.10360382 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{25}= +0.35626303 \pm 8.3 \cdot 10^{-8} \) | \(a_{26}= +1.72981350 \pm 1.1 \cdot 10^{-7} \) | \(a_{27}= -1.00659826 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{28}= +1.18959609 \pm 5.9 \cdot 10^{-8} \) | \(a_{29}= -0.77054171 \pm 1.1 \cdot 10^{-7} \) | \(a_{30}= -1.40932161 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{31}= +0.81396168 \pm 8.8 \cdot 10^{-8} \) | \(a_{32}= -3.90889872 \pm 7.9 \cdot 10^{-8} \) | \(a_{33}= +0.18871416 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{34}= +0.18736484 \pm 8.8 \cdot 10^{-8} \) | \(a_{35}= +0.50592924 \pm 6.2 \cdot 10^{-8} \) | \(a_{36}= -1.66559175 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{37}= +1.52071528 \pm 9.3 \cdot 10^{-8} \) | \(a_{38}= +2.93098337 \pm 9.6 \cdot 10^{-8} \) | \(a_{39}= -0.55996745 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{40}= -3.91412856 \pm 1.2 \cdot 10^{-7} \) | \(a_{41}= -1.15877393 \pm 1.0 \cdot 10^{-7} \) | \(a_{42}= -0.52572178 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{43}= +1.18166369 \pm 9.0 \cdot 10^{-8} \) | \(a_{44}= +0.82562981 \pm 9.8 \cdot 10^{-8} \) | \(a_{45}= -0.70836781 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{46}= +1.74584811 \pm 1.0 \cdot 10^{-7} \) | \(a_{47}= -1.10413803 \pm 1.1 \cdot 10^{-7} \) | \(a_{48}= +2.35336544 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{49}= -0.81127230 \pm 7.6 \cdot 10^{-8} \) | \(a_{50}= -0.68882370 \pm 9.2 \cdot 10^{-8} \) | \(a_{51}= -0.06065290 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{52}= -2.44987351 \pm 5.1 \cdot 10^{-8} \) | \(a_{53}= -0.75526324 \pm 1.1 \cdot 10^{-7} \) | \(a_{54}= +1.94622704 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{55}= +0.35113621 \pm 1.0 \cdot 10^{-7} \) | \(a_{56}= -1.46009444 \pm 7.7 \cdot 10^{-8} \) | \(a_{57}= -0.94880476 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{58}= +1.48981888 \pm 1.1 \cdot 10^{-7} \) | \(a_{59}= -0.24035578 \pm 1.4 \cdot 10^{-7} \) | \(a_{60}= +1.99597222 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{61}= -0.29693126 \pm 8.4 \cdot 10^{-8} \) | \(a_{62}= -1.57377008 \pm 9.0 \cdot 10^{-8} \) | \(a_{63}= -0.26424372 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{64}= +3.79773036 \pm 8.0 \cdot 10^{-8} \) | \(a_{65}= -1.04191891 \pm 7.3 \cdot 10^{-8} \) | \(a_{66}= -0.36487307 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{67}= -0.13858507 \pm 1.0 \cdot 10^{-7} \) | \(a_{68}= -0.26535817 \pm 9.3 \cdot 10^{-8} \) | \(a_{69}= -0.56515810 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{70}= -0.97819876 \pm 7.2 \cdot 10^{-8} \) | \(a_{71}= +0.67737009 \pm 1.1 \cdot 10^{-7} \) | \(a_{72}= +2.04432518 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{73}= -0.18321360 \pm 9.6 \cdot 10^{-8} \) | \(a_{74}= -2.94025661 \pm 7.9 \cdot 10^{-8} \) | \(a_{75}= +0.22298291 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{76}= -4.15104781 \pm 4.7 \cdot 10^{-8} \) | \(a_{77}= +0.13098497 \pm 8.3 \cdot 10^{-8} \) | \(a_{78}= +1.08267998 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{79}= -0.17992270 \pm 1.1 \cdot 10^{-7} \) | \(a_{80}= +4.37885442 \pm 1.1 \cdot 10^{-7} \) | \(a_{81}= -0.02176723 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{82}= +2.24045405 \pm 1.2 \cdot 10^{-7} \) | \(a_{83}= +0.11618154 \pm 8.9 \cdot 10^{-8} \) | \(a_{84}= +0.74456112 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{85}= -0.11285550 \pm 9.0 \cdot 10^{-8} \) | \(a_{86}= -2.28471070 \pm 9.9 \cdot 10^{-8} \) | \(a_{87}= -0.48227747 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{88}= -1.01336706 \pm 1.2 \cdot 10^{-7} \) | \(a_{89}= +0.53728353 \pm 9.0 \cdot 10^{-8} \) | \(a_{90}= +1.36960754 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{91}= -0.38866889 \pm 6.1 \cdot 10^{-8} \) | \(a_{92}= -2.47258277 \pm 5.6 \cdot 10^{-8} \) | \(a_{93}= +0.50945378 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{94}= +2.13481721 \pm 1.2 \cdot 10^{-7} \) | \(a_{95}= -1.76541979 \pm 6.8 \cdot 10^{-8} \) | \(a_{96}= -2.44655646 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{97}= +0.64215677 \pm 1.3 \cdot 10^{-7} \) | \(a_{98}= +1.56857025 \pm 8.8 \cdot 10^{-8} \) | \(a_{99}= -0.18339628 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{100}= +0.97555658 \pm 9.2 \cdot 10^{-8} \) | \(a_{101}= -1.30283819 \pm 1.6 \cdot 10^{-7} \) | \(a_{102}= +0.11727054 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{103}= -1.08693776 \pm 9.6 \cdot 10^{-8} \) | \(a_{104}= +3.00694221 \pm 9.6 \cdot 10^{-8} \) | \(a_{105}= +0.31665811 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{106}= +1.46027844 \pm 1.0 \cdot 10^{-7} \) | \(a_{107}= -0.98907837 \pm 6.5 \cdot 10^{-8} \) | \(a_{108}= -2.75637234 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{109}= -0.59770613 \pm 6.9 \cdot 10^{-8} \) | \(a_{110}= -0.67891115 \pm 2.2 \cdot 10^{-7} \) | \(a_{111}= +0.95180665 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{112}= +1.63345196 \pm 8.4 \cdot 10^{-8} \) | \(a_{113}= +1.22148846 \pm 9.3 \cdot 10^{-8} \) | \(a_{114}= +1.83448506 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{115}= -1.05157704 \pm 6.8 \cdot 10^{-8} \) | \(a_{116}= -2.10997765 \pm 1.0 \cdot 10^{-7} \) | \(a_{117}= +0.54418781 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{118}= +0.46472057 \pm 1.5 \cdot 10^{-7} \) | \(a_{119}= -0.04209869 \pm 5.0 \cdot 10^{-8} \) | \(a_{120}= -2.44982979 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.57410754 \pm 1.0 \cdot 10^{-7} \) | \(a_{123}= -0.72526971 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{124}= +2.22887476 \pm 8.1 \cdot 10^{-8} \) | \(a_{125}= -0.74968775 \pm 1.0 \cdot 10^{-7} \) | \(a_{126}= +0.51090717 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{127}= +1.08923572 \pm 1.1 \cdot 10^{-7} \) | \(a_{128}= -3.43389708 \pm 1.1 \cdot 10^{-7} \) | \(a_{129}= +0.73959628 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{130}= +2.01451842 \pm 8.0 \cdot 10^{-8} \) | \(a_{131}= -0.51243200 \pm 8.0 \cdot 10^{-8} \) | \(a_{132}= +0.51675679 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{133}= -0.65855773 \pm 7.0 \cdot 10^{-8} \) | \(a_{134}= +0.26795000 \pm 1.2 \cdot 10^{-7} \) | \(a_{135}= -1.17227132 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{136}= +0.32569710 \pm 1.1 \cdot 10^{-7} \) | \(a_{137}= -1.44375505 \pm 7.1 \cdot 10^{-8} \) | \(a_{138}= +1.09271595 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{139}= +0.65708586 \pm 1.1 \cdot 10^{-7} \) | \(a_{140}= +1.38538822 \pm 6.4 \cdot 10^{-8} \) | \(a_{141}= -0.69107343 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{142}= -1.30967440 \pm 1.1 \cdot 10^{-7} \) | \(a_{143}= -0.26975258 \pm 1.1 \cdot 10^{-7} \) | \(a_{144}= -2.28704863 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{145}= -0.89736290 \pm 9.9 \cdot 10^{-8} \) | \(a_{146}= +0.35423790 \pm 1.0 \cdot 10^{-7} \) | \(a_{147}= -0.50777051 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{148}= +4.16418117 \pm 7.0 \cdot 10^{-8} \) | \(a_{149}= -1.71545863 \pm 1.1 \cdot 10^{-7} \) | \(a_{150}= -0.43113066 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{151}= +1.82336464 \pm 6.7 \cdot 10^{-8} \) | \(a_{152}= +5.09494094 \pm 9.8 \cdot 10^{-8} \) | \(a_{153}= +0.05894373 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{154}= -0.25325545 \pm 2.0 \cdot 10^{-7} \) | \(a_{155}= +0.94792924 \pm 7.6 \cdot 10^{-8} \) | \(a_{156}= -1.53336127 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{157}= +1.02992129 \pm 7.5 \cdot 10^{-8} \) | \(a_{158}= +0.34787505 \pm 1.3 \cdot 10^{-7} \) | \(a_{159}= -0.47271477 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{160}= -4.55225288 \pm 8.2 \cdot 10^{-8} \) | \(a_{161}= -0.39227168 \pm 4.2 \cdot 10^{-8} \) | \(a_{162}= +0.04208628 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{163}= -0.33960299 \pm 9.5 \cdot 10^{-8} \) | \(a_{164}= -3.17307562 \pm 6.9 \cdot 10^{-8} \) | \(a_{165}= +0.21977407 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{166}= -0.22463345 \pm 1.0 \cdot 10^{-7} \) | \(a_{167}= -0.23658298 \pm 9.1 \cdot 10^{-8} \) | \(a_{168}= -0.91386443 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{169}= -0.19956897 \pm 9.3 \cdot 10^{-8} \) | \(a_{170}= +0.21820267 \pm 9.7 \cdot 10^{-8} \) | \(a_{171}= +0.92206786 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{172}= +3.23575475 \pm 7.8 \cdot 10^{-8} \) | \(a_{173}= +0.08149884 \pm 1.0 \cdot 10^{-7} \) | \(a_{174}= +0.93246878 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{175}= +0.15477064 \pm 5.7 \cdot 10^{-8} \) | \(a_{176}= +1.13368448 \pm 1.3 \cdot 10^{-7} \) | \(a_{177}= -0.15043725 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{178}= -1.03882131 \pm 9.3 \cdot 10^{-8} \) | \(a_{179}= -0.53742912 \pm 1.1 \cdot 10^{-7} \) | \(a_{180}= -1.93972660 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{181}= +0.18470876 \pm 1.3 \cdot 10^{-7} \) | \(a_{182}= +0.75147944 \pm 7.0 \cdot 10^{-8} \) | \(a_{183}= -0.18584751 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{184}= +3.03481525 \pm 8.8 \cdot 10^{-8} \) | \(a_{185}= +1.77100534 \pm 8.4 \cdot 10^{-8} \) | \(a_{186}= -0.98501334 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{187}= -0.02921826 \pm 1.0 \cdot 10^{-7} \) | \(a_{188}= -3.02346591 \pm 9.5 \cdot 10^{-8} \) | \(a_{189}= -0.43729448 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{190}= +3.41338531 \pm 6.8 \cdot 10^{-8} \) | \(a_{191}= -1.14301337 \pm 8.6 \cdot 10^{-8} \) | \(a_{192}= +2.37697685 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{193}= -0.25649362 \pm 8.7 \cdot 10^{-8} \) | \(a_{194}= -1.24159053 \pm 1.4 \cdot 10^{-7} \) | \(a_{195}= -0.65213085 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{196}= -2.22151042 \pm 8.2 \cdot 10^{-8} \) | \(a_{197}= +0.85420695 \pm 6.9 \cdot 10^{-8} \) | \(a_{198}= +0.35459110 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{199}= -1.62350740 \pm 1.1 \cdot 10^{-7} \) | \(a_{200}= -1.19738518 \pm 1.0 \cdot 10^{-7} \) | \(a_{201}= -0.08673957 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{202}= +2.51899789 \pm 1.7 \cdot 10^{-7} \) | \(a_{203}= -0.33474490 \pm 4.4 \cdot 10^{-8} \) | \(a_{204}= -0.16608610 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{205}= -1.34949313 \pm 8.8 \cdot 10^{-8} \) | \(a_{206}= +2.10156101 \pm 1.0 \cdot 10^{-7} \) | \(a_{207}= +0.54923220 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{208}= -3.36395752 \pm 1.2 \cdot 10^{-7} \) | \(a_{209}= -0.45706681 \pm 1.0 \cdot 10^{-7} \) | \(a_{210}= -0.61224879 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{211}= -0.04610089 \pm 9.1 \cdot 10^{-8} \) | \(a_{212}= -2.06814058 \pm 6.6 \cdot 10^{-8} \) | \(a_{213}= +0.42396191 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{214}= +1.91235286 \pm 6.6 \cdot 10^{-8} \) | \(a_{215}= +1.37615025 \pm 8.2 \cdot 10^{-8} \) | \(a_{216}= +3.38313479 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{217}= +0.35360776 \pm 4.7 \cdot 10^{-8} \) | \(a_{218}= +1.15564656 \pm 9.0 \cdot 10^{-8} \) | \(a_{219}= -0.11467230 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{220}= +0.96151779 \pm 1.9 \cdot 10^{-7} \) | \(a_{221}= +0.08669873 \pm 6.7 \cdot 10^{-8} \) | \(a_{222}= -1.84028913 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{223}= +0.94825897 \pm 9.2 \cdot 10^{-8} \) | \(a_{224}= -1.69813510 \pm 5.1 \cdot 10^{-8} \) | \(a_{225}= -0.21669935 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{226}= -2.36171067 \pm 1.1 \cdot 10^{-7} \) | \(a_{227}= +0.34173598 \pm 9.6 \cdot 10^{-8} \) | \(a_{228}= -2.59811614 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{229}= -0.49635236 \pm 8.6 \cdot 10^{-8} \) | \(a_{230}= +2.03319212 \pm 7.7 \cdot 10^{-8} \) | \(a_{231}= +0.08198272 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{232}= +2.58975854 \pm 1.3 \cdot 10^{-7} \) | \(a_{233}= +0.58765061 \pm 9.0 \cdot 10^{-8} \) | \(a_{234}= -1.05217053 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{235}= -1.28586487 \pm 9.5 \cdot 10^{-8} \) | \(a_{236}= -0.65816727 \pm 4.6 \cdot 10^{-8} \) | \(a_{237}= -0.11261255 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{238}= +0.08139653 \pm 4.6 \cdot 10^{-8} \) | \(a_{239}= +1.06004717 \pm 1.3 \cdot 10^{-7} \) | \(a_{240}= +2.74069894 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{241}= -0.62914790 \pm 6.1 \cdot 10^{-8} \) | \(a_{242}= -0.17576995 \pm 1.2 \cdot 10^{-7} \) | \(a_{243}= +0.99297428 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{244}= -0.81308815 \pm 1.0 \cdot 10^{-7} \) | \(a_{245}= -0.94479723 \pm 7.0 \cdot 10^{-8} \) | \(a_{246}= +1.40228687 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{247}= +1.35624449 \pm 8.9 \cdot 10^{-8} \) | \(a_{248}= -2.73569127 \pm 1.0 \cdot 10^{-7} \) | \(a_{249}= +0.07271733 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{250}= +1.44949839 \pm 1.0 \cdot 10^{-7} \) | \(a_{251}= -0.63530135 \pm 8.4 \cdot 10^{-8} \) | \(a_{252}= -0.72357971 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{253}= -0.27225307 \pm 1.0 \cdot 10^{-7} \) | \(a_{254}= -2.10600404 \pm 1.0 \cdot 10^{-7} \) | \(a_{255}= -0.07063559 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{256}= +2.84160489 \pm 8.5 \cdot 10^{-8} \) | \(a_{257}= -0.30668651 \pm 1.1 \cdot 10^{-7} \) | \(a_{258}= -1.42998684 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{259}= +0.66064132 \pm 5.3 \cdot 10^{-8} \) | \(a_{260}= -2.85309100 \pm 5.1 \cdot 10^{-8} \) | \(a_{261}= +0.46868710 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{262}= +0.99077163 \pm 8.1 \cdot 10^{-8} \) | \(a_{263}= -1.21148002 \pm 1.0 \cdot 10^{-7} \) | \(a_{264}= -0.63426042 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{265}= -0.87956980 \pm 9.7 \cdot 10^{-8} \) | \(a_{266}= +1.27330128 \pm 7.6 \cdot 10^{-8} \) | \(a_{267}= +0.33628257 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{268}= -0.37948809 \pm 7.5 \cdot 10^{-8} \) | \(a_{269}= +0.59685990 \pm 9.8 \cdot 10^{-8} \) | \(a_{270}= +2.26655083 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{271}= -0.44511756 \pm 9.5 \cdot 10^{-8} \) | \(a_{272}= -0.36436723 \pm 9.2 \cdot 10^{-8} \) | \(a_{273}= -0.24326555 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{274}= +2.79145634 \pm 7.9 \cdot 10^{-8} \) | \(a_{275}= +0.10741734 \pm 9.3 \cdot 10^{-8} \) | \(a_{276}= -1.54757485 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{277}= +0.37858075 \pm 5.8 \cdot 10^{-8} \) | \(a_{278}= -1.27045547 \pm 1.4 \cdot 10^{-7} \) | \(a_{279}= -0.49509759 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{280}= -1.70040709 \pm 6.5 \cdot 10^{-8} \) | \(a_{281}= +0.78766808 \pm 9.3 \cdot 10^{-8} \) | \(a_{282}= +1.33616940 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{283}= +0.16071768 \pm 1.2 \cdot 10^{-7} \) | \(a_{284}= +1.85484541 \pm 6.6 \cdot 10^{-8} \) | \(a_{285}= -1.10496575 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{286}= +0.52155839 \pm 2.3 \cdot 10^{-7} \) | \(a_{287}= -0.50340386 \pm 9.2 \cdot 10^{-8} \) | \(a_{288}= +2.37761358 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{289}= -0.99060922 \pm 1.0 \cdot 10^{-7} \) | \(a_{290}= +1.73502380 \pm 1.1 \cdot 10^{-7} \) | \(a_{291}= +0.40192211 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{292}= -0.50169458 \pm 5.4 \cdot 10^{-8} \) | \(a_{293}= +1.20378198 \pm 8.8 \cdot 10^{-8} \) | \(a_{294}= +0.98175879 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{295}= -0.27991523 \pm 1.0 \cdot 10^{-7} \) | \(a_{296}= -5.11106065 \pm 9.2 \cdot 10^{-8} \) | \(a_{297}= -0.30350080 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{298}= +3.31678694 \pm 1.2 \cdot 10^{-7} \) | \(a_{299}= +0.80785067 \pm 1.3 \cdot 10^{-7} \) | \(a_{300}= +0.61059506 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{301}= +0.51334781 \pm 7.3 \cdot 10^{-8} \) | \(a_{302}= -3.52541991 \pm 6.8 \cdot 10^{-8} \) | \(a_{303}= -0.81543867 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{304}= -5.69986507 \pm 9.4 \cdot 10^{-8} \) | \(a_{305}= -0.34580231 \pm 8.1 \cdot 10^{-8} \) | \(a_{306}= -0.11396590 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{307}= +1.30618533 \pm 1.3 \cdot 10^{-7} \) | \(a_{308}= +0.35867672 \pm 1.7 \cdot 10^{-7} \) | \(a_{309}= -0.68030788 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{310}= -1.83279228 \pm 9.3 \cdot 10^{-8} \) | \(a_{311}= +1.60286868 \pm 8.6 \cdot 10^{-8} \) | \(a_{312}= +1.88202725 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{313}= +1.58262679 \pm 1.2 \cdot 10^{-7} \) | \(a_{314}= -1.99132140 \pm 7.7 \cdot 10^{-8} \) | \(a_{315}= -0.30773482 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{316}= -0.49268310 \pm 1.1 \cdot 10^{-7} \) | \(a_{317}= -1.03213585 \pm 9.5 \cdot 10^{-8} \) | \(a_{318}= +0.91397959 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{319}= -0.23232707 \pm 1.2 \cdot 10^{-7} \) | \(a_{320}= +4.42278765 \pm 6.1 \cdot 10^{-8} \) | \(a_{321}= -0.61905827 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{322}= +0.75844533 \pm 4.9 \cdot 10^{-8} \) | \(a_{323}= +0.14690169 \pm 1.0 \cdot 10^{-7} \) | \(a_{324}= -0.05960531 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{325}= -0.31873717 \pm 7.4 \cdot 10^{-8} \) | \(a_{326}= +0.65661203 \pm 1.1 \cdot 10^{-7} \) | \(a_{327}= -0.37410071 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{328}= +3.89459087 \pm 1.0 \cdot 10^{-7} \) | \(a_{329}= -0.47966849 \pm 4.5 \cdot 10^{-8} \) | \(a_{330}= -0.42492645 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{331}= -0.79543086 \pm 1.4 \cdot 10^{-7} \) | \(a_{332}= +0.31814040 \pm 1.2 \cdot 10^{-7} \) | \(a_{333}= -0.92498516 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{334}= +0.45742597 \pm 1.1 \cdot 10^{-7} \) | \(a_{335}= -0.16139438 \pm 8.1 \cdot 10^{-8} \) | \(a_{336}= +1.02236787 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{337}= +0.15285554 \pm 1.3 \cdot 10^{-7} \) | \(a_{338}= +0.38586052 \pm 1.0 \cdot 10^{-7} \) | \(a_{339}= +0.76452236 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{340}= -0.30903270 \pm 1.2 \cdot 10^{-7} \) | \(a_{341}= +0.24541868 \pm 9.8 \cdot 10^{-8} \) | \(a_{342}= -1.78279008 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{343}= -0.78686743 \pm 9.3 \cdot 10^{-8} \) | \(a_{344}= -3.97152240 \pm 1.0 \cdot 10^{-7} \) | \(a_{345}= -0.65817582 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{346}= -0.15757552 \pm 1.0 \cdot 10^{-7} \) | \(a_{347}= +1.33178482 \pm 8.6 \cdot 10^{-8} \) | \(a_{348}= -1.32062247 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{349}= -1.03290050 \pm 1.2 \cdot 10^{-7} \) | \(a_{350}= -0.29924431 \pm 6.1 \cdot 10^{-8} \) | \(a_{351}= +0.90057137 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{352}= -1.17857731 \pm 8.9 \cdot 10^{-8} \) | \(a_{353}= +1.76580370 \pm 7.3 \cdot 10^{-8} \) | \(a_{354}= +0.29086584 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{355}= +0.78885644 \pm 7.9 \cdot 10^{-8} \) | \(a_{356}= +1.47124579 \pm 5.8 \cdot 10^{-8} \) | \(a_{357}= -0.02634932 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{358}= +1.03910280 \pm 1.1 \cdot 10^{-7} \) | \(a_{359}= -0.48097450 \pm 1.2 \cdot 10^{-7} \) | \(a_{360}= +2.38079466 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{361}= +1.29801077 \pm 1.0 \cdot 10^{-7} \) | \(a_{362}= -0.35712876 \pm 1.6 \cdot 10^{-7} \) | \(a_{363}= +0.05689946 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{364}= -1.06429368 \pm 4.6 \cdot 10^{-8} \) | \(a_{365}= -0.21336819 \pm 7.1 \cdot 10^{-8} \) | \(a_{366}= +0.35933049 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{367}= -0.99855832 \pm 1.1 \cdot 10^{-7} \) | \(a_{368}= -3.39513993 \pm 1.1 \cdot 10^{-7} \) | \(a_{369}= +0.70483193 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{370}= -3.42418481 \pm 7.2 \cdot 10^{-8} \) | \(a_{371}= -0.32810751 \pm 7.6 \cdot 10^{-8} \) | \(a_{372}= +1.39503946 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{373}= +0.19467909 \pm 1.2 \cdot 10^{-7} \) | \(a_{374}= +0.05649262 \pm 2.2 \cdot 10^{-7} \) | \(a_{375}= -0.46922510 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{376}= +3.71096190 \pm 1.2 \cdot 10^{-7} \) | \(a_{377}= +0.68937909 \pm 1.1 \cdot 10^{-7} \) | \(a_{378}= +0.84549554 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{379}= +0.72925457 \pm 1.1 \cdot 10^{-7} \) | \(a_{380}= -4.83425658 \pm 4.5 \cdot 10^{-8} \) | \(a_{381}= +0.68174616 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{382}= +2.20998148 \pm 9.1 \cdot 10^{-8} \) | \(a_{383}= -0.76932396 \pm 1.2 \cdot 10^{-7} \) | \(a_{384}= -2.14925577 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{385}= +0.15254341 \pm 1.7 \cdot 10^{-7} \) | \(a_{386}= +0.49592259 \pm 8.7 \cdot 10^{-8} \) | \(a_{387}= -0.71875478 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{388}= +1.75842064 \pm 8.1 \cdot 10^{-8} \) | \(a_{389}= -1.48168797 \pm 1.0 \cdot 10^{-7} \) | \(a_{390}= +1.26087510 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{391}= +0.08750239 \pm 4.9 \cdot 10^{-8} \) | \(a_{392}= +2.72665238 \pm 9.5 \cdot 10^{-8} \) | \(a_{393}= -0.32072814 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{394}= -1.65158308 \pm 9.9 \cdot 10^{-8} \) | \(a_{395}= -0.20953565 \pm 1.0 \cdot 10^{-7} \) | \(a_{396}= -0.50219481 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{397}= +0.66913102 \pm 1.3 \cdot 10^{-7} \) | \(a_{398}= +3.13900203 \pm 1.4 \cdot 10^{-7} \) | \(a_{399}= -0.41218737 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{400}= +1.33955115 \pm 1.0 \cdot 10^{-7} \) | \(a_{401}= -1.37438264 \pm 9.1 \cdot 10^{-8} \) | \(a_{402}= +0.16770831 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{403}= -0.72822556 \pm 7.3 \cdot 10^{-8} \) | \(a_{404}= -3.56756739 \pm 9.7 \cdot 10^{-8} \) | \(a_{405}= -0.02534984 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{406}= +0.64721906 \pm 5.2 \cdot 10^{-8} \) | \(a_{407}= +0.45851291 \pm 1.0 \cdot 10^{-7} \) | \(a_{408}= +0.20385188 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{409}= -0.49193787 \pm 9.6 \cdot 10^{-8} \) | \(a_{410}= +2.60920380 \pm 1.0 \cdot 10^{-7} \) | \(a_{411}= -0.90363770 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{412}= -2.97636634 \pm 4.0 \cdot 10^{-8} \) | \(a_{413}= -0.10441728 \pm 1.1 \cdot 10^{-7} \) | \(a_{414}= -1.06192369 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{415}= +0.13530351 \pm 1.1 \cdot 10^{-7} \) | \(a_{416}= +3.49716703 \pm 6.3 \cdot 10^{-8} \) | \(a_{417}= +0.41126614 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{418}= +0.88372474 \pm 2.2 \cdot 10^{-7} \) | \(a_{419}= +0.85779350 \pm 8.9 \cdot 10^{-8} \) | \(a_{420}= +0.86710625 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{421}= +0.23112315 \pm 9.9 \cdot 10^{-8} \) | \(a_{422}= +0.08913467 \pm 7.9 \cdot 10^{-8} \) | \(a_{423}= +0.67159928 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{424}= +2.53840827 \pm 1.0 \cdot 10^{-7} \) | \(a_{425}= -0.03452403 \pm 8.6 \cdot 10^{-8} \) | \(a_{426}= -0.81971742 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{427}= -0.12899526 \pm 5.3 \cdot 10^{-8} \) | \(a_{428}= -2.70839754 \pm 6.6 \cdot 10^{-8} \) | \(a_{429}= -0.16883654 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{430}= -2.66074453 \pm 9.6 \cdot 10^{-8} \) | \(a_{431}= -1.62063005 \pm 1.0 \cdot 10^{-7} \) | \(a_{432}= -3.78481558 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{433}= +0.58267181 \pm 8.4 \cdot 10^{-8} \) | \(a_{434}= -0.68368981 \pm 5.1 \cdot 10^{-8} \) | \(a_{435}= -0.56165410 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{436}= -1.63670124 \pm 9.6 \cdot 10^{-8} \) | \(a_{437}= +1.36881628 \pm 5.9 \cdot 10^{-8} \) | \(a_{438}= +0.22171540 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{439}= +1.02974851 \pm 6.4 \cdot 10^{-8} \) | \(a_{440}= -1.18015416 \pm 2.2 \cdot 10^{-7} \) | \(a_{441}= +0.49346176 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{442}= -0.16762934 \pm 6.1 \cdot 10^{-8} \) | \(a_{443}= -0.22538826 \pm 8.8 \cdot 10^{-8} \) | \(a_{444}= +2.60633623 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{445}= +0.62571345 \pm 8.2 \cdot 10^{-8} \) | \(a_{446}= -1.83342980 \pm 9.8 \cdot 10^{-8} \) | \(a_{447}= -1.07369536 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{448}= +1.64984046 \pm 6.6 \cdot 10^{-8} \) | \(a_{449}= +0.92557092 \pm 7.9 \cdot 10^{-8} \) | \(a_{450}= +0.41898158 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{451}= -0.34938349 \pm 1.1 \cdot 10^{-7} \) | \(a_{452}= +3.34480708 \pm 1.0 \cdot 10^{-7} \) | \(a_{453}= +1.14123309 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{454}= -0.66073609 \pm 9.4 \cdot 10^{-8} \) | \(a_{455}= -0.45263876 \pm 5.2 \cdot 10^{-8} \) | \(a_{456}= +3.18889324 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{457}= +0.80889274 \pm 9.9 \cdot 10^{-8} \) | \(a_{458}= +0.95968214 \pm 9.9 \cdot 10^{-8} \) | \(a_{459}= +0.09754543 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{460}= -2.87953791 \pm 6.8 \cdot 10^{-8} \) | \(a_{461}= +1.31151390 \pm 7.3 \cdot 10^{-8} \) | \(a_{462}= -0.15851108 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{463}= -1.88381407 \pm 1.1 \cdot 10^{-7} \) | \(a_{464}= -2.89724149 \pm 1.2 \cdot 10^{-7} \) | \(a_{465}= +0.59330328 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{466}= -1.13620454 \pm 1.0 \cdot 10^{-7} \) | \(a_{467}= +0.66609188 \pm 5.4 \cdot 10^{-8} \) | \(a_{468}= +1.49015182 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{469}= -0.06020524 \pm 7.8 \cdot 10^{-8} \) | \(a_{470}= +2.48618050 \pm 1.1 \cdot 10^{-7} \) | \(a_{471}= +0.64462161 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{472}= +0.80782576 \pm 1.2 \cdot 10^{-7} \) | \(a_{473}= +0.35628501 \pm 1.0 \cdot 10^{-7} \) | \(a_{474}= +0.21773293 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{475}= -0.54006593 \pm 6.8 \cdot 10^{-8} \) | \(a_{476}= -0.11527902 \pm 4.0 \cdot 10^{-8} \) | \(a_{477}= +0.45939388 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{478}= -2.04956886 \pm 1.4 \cdot 10^{-7} \) | \(a_{479}= -1.03427014 \pm 7.0 \cdot 10^{-8} \) | \(a_{480}= -2.84922801 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{481}= -1.36053547 \pm 5.7 \cdot 10^{-8} \) | \(a_{482}= +1.21643828 \pm 7.9 \cdot 10^{-8} \) | \(a_{483}= -0.24552051 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{484}= +0.24893675 \pm 9.8 \cdot 10^{-8} \) | \(a_{485}= +0.74784747 \pm 1.0 \cdot 10^{-7} \) | \(a_{486}= -1.91988548 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{487}= -0.62922305 \pm 1.3 \cdot 10^{-7} \) | \(a_{488}= +0.99797359 \pm 1.2 \cdot 10^{-7} \) | \(a_{489}= -0.21255549 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{490}= +1.82673662 \pm 9.3 \cdot 10^{-8} \) | \(a_{491}= +1.10723241 \pm 1.0 \cdot 10^{-7} \) | \(a_{492}= -1.98600916 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{493}= +0.07467013 \pm 1.0 \cdot 10^{-7} \) | \(a_{494}= -2.62225735 \pm 9.1 \cdot 10^{-8} \) | \(a_{495}= -0.21358093 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{496}= +3.06050086 \pm 9.1 \cdot 10^{-8} \) | \(a_{497}= +0.29426854 \pm 8.1 \cdot 10^{-8} \) | \(a_{498}= -0.14059674 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{499}= -0.20634408 \pm 1.3 \cdot 10^{-7} \) | \(a_{500}= -2.05287318 \pm 5.1 \cdot 10^{-8} \) | \(a_{501}= -0.14807588 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{502}= +1.22833578 \pm 9.0 \cdot 10^{-8} \) | \(a_{503}= -1.75132133 \pm 1.1 \cdot 10^{-7} \) | \(a_{504}= +0.88811213 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{505}= -1.51726850 \pm 1.2 \cdot 10^{-7} \) | \(a_{506}= +0.52639301 \pm 2.2 \cdot 10^{-7} \) | \(a_{507}= -0.12490903 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{508}= +2.98265884 \pm 8.2 \cdot 10^{-8} \) | \(a_{509}= -0.56260737 \pm 9.4 \cdot 10^{-8} \) | \(a_{510}= +0.13657175 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{511}= -0.07959312 \pm 6.3 \cdot 10^{-8} \) | \(a_{512}= -2.06025929 \pm 9.2 \cdot 10^{-8} \) | \(a_{513}= +1.52592155 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{514}= +0.59296901 \pm 1.4 \cdot 10^{-7} \) | \(a_{515}= -1.26583366 \pm 7.0 \cdot 10^{-8} \) | \(a_{516}= +2.02523966 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{517}= -0.33291014 \pm 1.2 \cdot 10^{-7} \) | \(a_{518}= -1.27732984 \pm 6.0 \cdot 10^{-8} \) | \(a_{519}= +0.05100964 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{520}= +3.50184600 \pm 7.1 \cdot 10^{-8} \) | \(a_{521}= +1.51953418 \pm 9.9 \cdot 10^{-8} \) | \(a_{522}= -0.90619222 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{523}= -0.07051200 \pm 1.0 \cdot 10^{-7} \) | \(a_{524}= -1.40319473 \pm 6.0 \cdot 10^{-8} \) | \(a_{525}= +0.09687002 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{526}= +2.34235966 \pm 1.2 \cdot 10^{-7} \) | \(a_{527}= -0.07887779 \pm 8.5 \cdot 10^{-8} \) | \(a_{528}= +0.70956638 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{529}= -0.18466091 \pm 1.2 \cdot 10^{-7} \) | \(a_{530}= +1.70062138 \pm 8.3 \cdot 10^{-8} \) | \(a_{531}= +0.14619800 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{532}= -1.80333145 \pm 4.3 \cdot 10^{-8} \) | \(a_{533}= +1.03671808 \pm 8.1 \cdot 10^{-8} \) | \(a_{534}= -0.65019208 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{535}= -1.15186788 \pm 6.8 \cdot 10^{-8} \) | \(a_{536}= +0.46577864 \pm 1.1 \cdot 10^{-7} \) | \(a_{537}= -0.33637369 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{538}= -1.15401041 \pm 1.0 \cdot 10^{-7} \) | \(a_{539}= -0.24460780 \pm 8.7 \cdot 10^{-8} \) | \(a_{540}= -3.21003557 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{541}= -1.46699695 \pm 1.0 \cdot 10^{-7} \) | \(a_{542}= +0.86062122 \pm 8.1 \cdot 10^{-8} \) | \(a_{543}= +0.11560812 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{544}= +0.37879582 \pm 7.8 \cdot 10^{-8} \) | \(a_{545}= -0.69608082 \pm 7.2 \cdot 10^{-8} \) | \(a_{546}= +0.47034651 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{547}= +0.99968659 \pm 1.3 \cdot 10^{-7} \) | \(a_{548}= -3.95344062 \pm 7.1 \cdot 10^{-8} \) | \(a_{549}= +0.18061041 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{550}= -0.20768816 \pm 2.1 \cdot 10^{-7} \) | \(a_{551}= +1.16807890 \pm 8.8 \cdot 10^{-8} \) | \(a_{552}= +1.89947282 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{553}= -0.07816346 \pm 6.6 \cdot 10^{-8} \) | \(a_{554}= -0.73197433 \pm 6.0 \cdot 10^{-8} \) | \(a_{555}= +1.10846171 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{556}= +1.79930104 \pm 1.2 \cdot 10^{-7} \) | \(a_{557}= +1.20399167 \pm 8.8 \cdot 10^{-8} \) | \(a_{558}= +0.95725609 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{559}= -1.05719682 \pm 6.6 \cdot 10^{-8} \) | \(a_{560}= +1.90229703 \pm 6.3 \cdot 10^{-8} \) | \(a_{561}= -0.01828754 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{562}= -1.52293221 \pm 1.0 \cdot 10^{-7} \) | \(a_{563}= +1.81512752 \pm 6.9 \cdot 10^{-8} \) | \(a_{564}= -1.89236933 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{565}= +1.42252966 \pm 7.1 \cdot 10^{-8} \) | \(a_{566}= -0.31074272 \pm 1.2 \cdot 10^{-7} \) | \(a_{567}= -0.00945630 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{568}= -2.27661262 \pm 1.1 \cdot 10^{-7} \) | \(a_{569}= +1.41307257 \pm 1.0 \cdot 10^{-7} \) | \(a_{570}= +2.13641757 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{571}= -1.26022177 \pm 1.2 \cdot 10^{-7} \) | \(a_{572}= -0.73866466 \pm 2.0 \cdot 10^{-7} \) | \(a_{573}= -0.71540527 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{574}= +0.97331600 \pm 1.0 \cdot 10^{-7} \) | \(a_{575}= -0.32169172 \pm 7.0 \cdot 10^{-8} \) | \(a_{576}= -2.30999469 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{577}= -0.07910082 \pm 1.2 \cdot 10^{-7} \) | \(a_{578}= +1.91531271 \pm 1.0 \cdot 10^{-7} \) | \(a_{579}= -0.16053783 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{580}= -2.45725268 \pm 1.3 \cdot 10^{-7} \) | \(a_{581}= +0.05047251 \pm 5.9 \cdot 10^{-8} \) | \(a_{582}= -0.77710413 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{583}= -0.22772044 \pm 1.2 \cdot 10^{-7} \) | \(a_{584}= +0.61577326 \pm 9.2 \cdot 10^{-8} \) | \(a_{585}= +0.63375409 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{586}= -2.32747574 \pm 9.5 \cdot 10^{-8} \) | \(a_{587}= -0.06518698 \pm 6.3 \cdot 10^{-8} \) | \(a_{588}= -1.39043016 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{589}= -1.23390007 \pm 6.3 \cdot 10^{-8} \) | \(a_{590}= +0.54120757 \pm 1.0 \cdot 10^{-7} \) | \(a_{591}= +0.53464305 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{592}= +5.71789868 \pm 6.9 \cdot 10^{-8} \) | \(a_{593}= -0.12612699 \pm 8.6 \cdot 10^{-8} \) | \(a_{594}= +0.58680953 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{595}= -0.04902759 \pm 4.7 \cdot 10^{-8} \) | \(a_{596}= -4.69744773 \pm 9.9 \cdot 10^{-8} \) | \(a_{597}= -1.01614363 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{598}= -1.56195463 \pm 1.5 \cdot 10^{-7} \) | \(a_{599}= -0.71515214 \pm 1.2 \cdot 10^{-7} \) | \(a_{600}= -0.74943627 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{601}= +0.87289673 \pm 7.6 \cdot 10^{-8} \) | \(a_{602}= -0.99254233 \pm 9.2 \cdot 10^{-8} \) | \(a_{603}= +0.08429529 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{604}= +4.99292721 \pm 4.4 \cdot 10^{-8} \) | \(a_{605}= +0.10587155 \pm 1.0 \cdot 10^{-7} \) | \(a_{606}= +1.57662580 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{607}= -0.72405574 \pm 1.2 \cdot 10^{-7} \) | \(a_{608}= +5.92557430 \pm 6.0 \cdot 10^{-8} \) | \(a_{609}= -0.20951484 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{610}= +0.66859821 \pm 1.2 \cdot 10^{-7} \) | \(a_{611}= +0.98783709 \pm 1.4 \cdot 10^{-7} \) | \(a_{612}= +0.16140587 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{613}= +1.09389351 \pm 1.5 \cdot 10^{-7} \) | \(a_{614}= -2.52546949 \pm 1.4 \cdot 10^{-7} \) | \(a_{615}= -0.84463973 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{616}= -0.44023504 \pm 2.0 \cdot 10^{-7} \) | \(a_{617}= +0.24929800 \pm 1.0 \cdot 10^{-7} \) | \(a_{618}= +1.31535454 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{619}= -1.86792711 \pm 9.0 \cdot 10^{-8} \) | \(a_{620}= +2.59571871 \pm 1.0 \cdot 10^{-7} \) | \(a_{621}= +0.90891927 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{622}= -3.09909769 \pm 1.1 \cdot 10^{-7} \) | \(a_{623}= +0.23341102 \pm 7.0 \cdot 10^{-8} \) | \(a_{624}= -2.10548101 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{625}= -1.22933968 \pm 5.6 \cdot 10^{-8} \) | \(a_{626}= -3.05996062 \pm 1.1 \cdot 10^{-7} \) | \(a_{627}= -0.28607540 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{628}= +2.82023788 \pm 8.8 \cdot 10^{-8} \) | \(a_{629}= -0.14736647 \pm 1.0 \cdot 10^{-7} \) | \(a_{630}= +0.59499588 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{631}= +0.73334696 \pm 7.4 \cdot 10^{-8} \) | \(a_{632}= +0.60471270 \pm 1.3 \cdot 10^{-7} \) | \(a_{633}= -0.02885428 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{634}= +1.99560317 \pm 1.2 \cdot 10^{-7} \) | \(a_{635}= +1.26850983 \pm 9.8 \cdot 10^{-8} \) | \(a_{636}= -1.29443689 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{637}= +0.72581946 \pm 7.9 \cdot 10^{-8} \) | \(a_{638}= +0.44919729 \pm 2.4 \cdot 10^{-7} \) | \(a_{639}= -0.41201485 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{640}= -3.99907212 \pm 9.5 \cdot 10^{-8} \) | \(a_{641}= -1.23731342 \pm 7.9 \cdot 10^{-8} \) | \(a_{642}= +1.19693028 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{643}= -0.74349431 \pm 1.0 \cdot 10^{-7} \) | \(a_{644}= -1.07415922 \pm 3.7 \cdot 10^{-8} \) | \(a_{645}= +0.86132426 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{646}= -0.28402994 \pm 9.3 \cdot 10^{-8} \) | \(a_{647}= +0.31274159 \pm 1.0 \cdot 10^{-7} \) | \(a_{648}= +0.07315877 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{649}= -0.07247000 \pm 1.5 \cdot 10^{-7} \) | \(a_{650}= +0.61626859 \pm 7.9 \cdot 10^{-8} \) | \(a_{651}= +0.22132099 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{652}= -0.92993633 \pm 9.7 \cdot 10^{-8} \) | \(a_{653}= -1.02641044 \pm 1.0 \cdot 10^{-7} \) | \(a_{654}= +0.72331231 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{655}= -0.59677167 \pm 7.5 \cdot 10^{-8} \) | \(a_{656}= -4.35699701 \pm 1.2 \cdot 10^{-7} \) | \(a_{657}= +0.11144089 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{658}= +0.92742440 \pm 5.0 \cdot 10^{-8} \) | \(a_{659}= -1.10055932 \pm 9.5 \cdot 10^{-8} \) | \(a_{660}= +0.60180827 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{661}= +1.39917975 \pm 1.0 \cdot 10^{-7} \) | \(a_{662}= +1.53794130 \pm 1.4 \cdot 10^{-7} \) | \(a_{663}= +0.05426422 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{664}= -0.39048130 \pm 1.2 \cdot 10^{-7} \) | \(a_{665}= -0.76694781 \pm 5.4 \cdot 10^{-8} \) | \(a_{666}= +1.78843059 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{667}= +0.69576933 \pm 1.2 \cdot 10^{-7} \) | \(a_{668}= -0.64783618 \pm 9.4 \cdot 10^{-8} \) | \(a_{669}= +0.59350965 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{670}= +0.31205111 \pm 1.0 \cdot 10^{-7} \) | \(a_{671}= -0.08952814 \pm 9.5 \cdot 10^{-8} \) | \(a_{672}= -1.06285266 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{673}= +0.90836905 \pm 9.5 \cdot 10^{-8} \) | \(a_{674}= -0.29554152 \pm 1.5 \cdot 10^{-7} \) | \(a_{675}= -0.35861375 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{676}= -0.54648058 \pm 7.2 \cdot 10^{-8} \) | \(a_{677}= +1.36989211 \pm 9.9 \cdot 10^{-8} \) | \(a_{678}= -1.47818067 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{679}= +0.27897089 \pm 9.4 \cdot 10^{-8} \) | \(a_{680}= +0.37930263 \pm 1.3 \cdot 10^{-7} \) | \(a_{681}= +0.21389052 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{682}= -0.47450953 \pm 2.1 \cdot 10^{-7} \) | \(a_{683}= -1.13743377 \pm 1.3 \cdot 10^{-7} \) | \(a_{684}= +2.52490237 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{685}= -1.68137845 \pm 6.9 \cdot 10^{-8} \) | \(a_{686}= +1.52138417 \pm 9.5 \cdot 10^{-8} \) | \(a_{687}= -0.31066399 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{688}= +4.44306265 \pm 9.8 \cdot 10^{-8} \) | \(a_{689}= +0.67570994 \pm 8.5 \cdot 10^{-8} \) | \(a_{690}= +1.27256286 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{691}= -0.58903046 \pm 8.0 \cdot 10^{-8} \) | \(a_{692}= +0.22316863 \pm 5.0 \cdot 10^{-8} \) | \(a_{693}= -0.07967248 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{694}= -2.57496532 \pm 9.3 \cdot 10^{-8} \) | \(a_{695}= +0.76523370 \pm 1.0 \cdot 10^{-7} \) | \(a_{696}= +1.62091447 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{697}= +0.11229217 \pm 6.0 \cdot 10^{-8} \) | \(a_{698}= +1.99708161 \pm 1.3 \cdot 10^{-7} \) | \(a_{699}= +0.36780703 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{700}= +0.42380910 \pm 5.6 \cdot 10^{-8} \) | \(a_{701}= +1.50461467 \pm 1.3 \cdot 10^{-7} \) | \(a_{702}= -1.74122726 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{703}= -2.30528137 \pm 9.5 \cdot 10^{-8} \) | \(a_{704}= +1.14505879 \pm 9.1 \cdot 10^{-8} \) | \(a_{705}= -0.80481518 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{706}= -3.41412759 \pm 8.3 \cdot 10^{-8} \) | \(a_{707}= -0.56598940 \pm 1.0 \cdot 10^{-7} \) | \(a_{708}= -0.41194298 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{709}= +1.56951581 \pm 1.5 \cdot 10^{-7} \) | \(a_{710}= -1.52522986 \pm 8.5 \cdot 10^{-8} \) | \(a_{711}= +0.10943918 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{712}= -1.80578754 \pm 8.6 \cdot 10^{-8} \) | \(a_{713}= -0.73497589 \pm 6.0 \cdot 10^{-8} \) | \(a_{714}= +0.05094561 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{715}= -0.31415037 \pm 2.0 \cdot 10^{-7} \) | \(a_{716}= -1.47164445 \pm 8.7 \cdot 10^{-8} \) | \(a_{717}= +0.66347722 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{718}= +0.92994951 \pm 1.3 \cdot 10^{-7} \) | \(a_{719}= +1.26081009 \pm 1.1 \cdot 10^{-7} \) | \(a_{720}= -2.66346725 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{721}= -0.47219621 \pm 7.2 \cdot 10^{-8} \) | \(a_{722}= -2.50966423 \pm 1.0 \cdot 10^{-7} \) | \(a_{723}= -0.39377993 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{724}= +0.50578879 \pm 1.2 \cdot 10^{-7} \) | \(a_{725}= -0.27451552 \pm 7.2 \cdot 10^{-8} \) | \(a_{726}= -0.11001337 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{727}= +1.18887430 \pm 1.0 \cdot 10^{-7} \) | \(a_{728}= +1.30629993 \pm 6.8 \cdot 10^{-8} \) | \(a_{729}= +0.64326393 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{730}= +0.41254088 \pm 7.9 \cdot 10^{-8} \) | \(a_{731}= -0.11451033 \pm 7.3 \cdot 10^{-8} \) | \(a_{732}= -0.50890704 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{733}= +1.18371529 \pm 1.4 \cdot 10^{-7} \) | \(a_{734}= +1.93068205 \pm 1.1 \cdot 10^{-7} \) | \(a_{735}= -0.59134297 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{736}= +3.52958423 \pm 6.1 \cdot 10^{-8} \) | \(a_{737}= -0.04178497 \pm 1.1 \cdot 10^{-7} \) | \(a_{738}= -1.36277104 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{739}= -1.50308750 \pm 1.3 \cdot 10^{-7} \) | \(a_{740}= +4.84955152 \pm 8.3 \cdot 10^{-8} \) | \(a_{741}= +0.84886536 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{742}= +0.63438586 \pm 8.3 \cdot 10^{-8} \) | \(a_{743}= -0.42105649 \pm 9.0 \cdot 10^{-8} \) | \(a_{744}= -1.71225290 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{745}= -1.99780093 \pm 1.1 \cdot 10^{-7} \) | \(a_{746}= -0.37640608 \pm 1.2 \cdot 10^{-7} \) | \(a_{747}= -0.07066819 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{748}= -0.08000850 \pm 1.9 \cdot 10^{-7} \) | \(a_{749}= -0.42968335 \pm 4.3 \cdot 10^{-8} \) | \(a_{750}= +0.90723243 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{751}= -0.73055605 \pm 1.3 \cdot 10^{-7} \) | \(a_{752}= -4.15156571 \pm 1.3 \cdot 10^{-7} \) | \(a_{753}= -0.39763134 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{754}= -1.33289344 \pm 1.3 \cdot 10^{-7} \) | \(a_{755}= +2.12346687 \pm 5.7 \cdot 10^{-8} \) | \(a_{756}= -1.19744536 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{757}= +0.18004845 \pm 1.2 \cdot 10^{-7} \) | \(a_{758}= -1.40999147 \pm 1.2 \cdot 10^{-7} \) | \(a_{759}= -0.17040158 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{760}= +5.93350231 \pm 6.9 \cdot 10^{-8} \) | \(a_{761}= +1.30441703 \pm 7.7 \cdot 10^{-8} \) | \(a_{762}= -1.31813541 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{763}= -0.25966028 \pm 4.8 \cdot 10^{-8} \) | \(a_{764}= -3.12991840 \pm 9.8 \cdot 10^{-8} \) | \(a_{765}= +0.06864511 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{766}= +1.48746440 \pm 1.3 \cdot 10^{-7} \) | \(a_{767}= +0.21503865 \pm 1.0 \cdot 10^{-7} \) | \(a_{768}= +1.77854361 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{769}= -0.93126245 \pm 1.2 \cdot 10^{-7} \) | \(a_{770}= -0.29493802 \pm 2.9 \cdot 10^{-7} \) | \(a_{771}= -0.19195326 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{772}= -0.70235758 \pm 6.3 \cdot 10^{-8} \) | \(a_{773}= -1.07833753 \pm 9.0 \cdot 10^{-8} \) | \(a_{774}= +1.38969044 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{775}= +0.28998445 \pm 6.4 \cdot 10^{-8} \) | \(a_{776}= -2.15826214 \pm 1.3 \cdot 10^{-7} \) | \(a_{777}= +0.41349147 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{778}= +2.86479849 \pm 1.1 \cdot 10^{-7} \) | \(a_{779}= +1.75660756 \pm 8.9 \cdot 10^{-8} \) | \(a_{780}= -1.78573269 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{781}= +0.20423477 \pm 1.2 \cdot 10^{-7} \) | \(a_{782}= -0.16918320 \pm 5.2 \cdot 10^{-8} \) | \(a_{783}= +0.77562594 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{784}= -3.05038877 \pm 9.0 \cdot 10^{-8} \) | \(a_{785}= +1.19943301 \pm 8.1 \cdot 10^{-8} \) | \(a_{786}= +0.62011807 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{787}= +1.18132342 \pm 7.8 \cdot 10^{-8} \) | \(a_{788}= +2.33907855 \pm 1.1 \cdot 10^{-7} \) | \(a_{789}= -0.75825814 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{790}= +0.40513079 \pm 1.3 \cdot 10^{-7} \) | \(a_{791}= +0.53064880 \pm 6.6 \cdot 10^{-8} \) | \(a_{792}= +0.61638723 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{793}= +0.26565493 \pm 7.3 \cdot 10^{-8} \) | \(a_{794}= -1.29374442 \pm 1.5 \cdot 10^{-7} \) | \(a_{795}= -0.55051751 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{796}= -4.44565726 \pm 1.1 \cdot 10^{-7} \) | \(a_{797}= -0.87810689 \pm 8.3 \cdot 10^{-8} \) | \(a_{798}= +0.79695170 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{799}= +0.10699762 \pm 8.3 \cdot 10^{-8} \) | \(a_{800}= -1.39259609 \pm 6.6 \cdot 10^{-8} \) | \(a_{801}= -0.32680627 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{802}= +2.65732690 \pm 9.9 \cdot 10^{-8} \) | \(a_{803}= -0.05524098 \pm 1.0 \cdot 10^{-7} \) | \(a_{804}= -0.23751934 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{805}= -0.45683452 \pm 3.6 \cdot 10^{-8} \) | \(a_{806}= +1.40800190 \pm 7.4 \cdot 10^{-8} \) | \(a_{807}= +0.37357106 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{808}= +4.37878482 \pm 1.5 \cdot 10^{-7} \) | \(a_{809}= +0.89341913 \pm 1.5 \cdot 10^{-7} \) | \(a_{810}= +0.04901314 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{811}= -1.21078195 \pm 9.4 \cdot 10^{-8} \) | \(a_{812}= -0.91663340 \pm 4.3 \cdot 10^{-8} \) | \(a_{813}= -0.27859643 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{814}= -0.88652072 \pm 2.2 \cdot 10^{-7} \) | \(a_{815}= -0.39549725 \pm 8.5 \cdot 10^{-8} \) | \(a_{816}= -0.22805528 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{817}= -1.79130658 \pm 7.9 \cdot 10^{-8} \) | \(a_{818}= +0.95114686 \pm 8.4 \cdot 10^{-8} \) | \(a_{819}= +0.23641043 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{820}= -3.69532282 \pm 9.2 \cdot 10^{-8} \) | \(a_{821}= -0.97241136 \pm 9.1 \cdot 10^{-8} \) | \(a_{822}= +1.74715592 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{823}= +0.62660846 \pm 6.8 \cdot 10^{-8} \) | \(a_{824}= +3.65315250 \pm 8.7 \cdot 10^{-8} \) | \(a_{825}= +0.06723188 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{826}= +0.20188764 \pm 1.2 \cdot 10^{-7} \) | \(a_{827}= -0.07099731 \pm 8.4 \cdot 10^{-8} \) | \(a_{828}= +1.50396487 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{829}= +1.52173939 \pm 8.1 \cdot 10^{-8} \) | \(a_{830}= -0.26160522 \pm 1.3 \cdot 10^{-7} \) | \(a_{831}= +0.23695144 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{832}= -3.39770824 \pm 7.6 \cdot 10^{-8} \) | \(a_{833}= +0.07861717 \pm 7.0 \cdot 10^{-8} \) | \(a_{834}= -0.79517053 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{835}= -0.27552147 \pm 7.8 \cdot 10^{-8} \) | \(a_{836}= -1.25158801 \pm 1.9 \cdot 10^{-7} \) | \(a_{837}= -0.81933242 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{838}= -1.65851757 \pm 9.9 \cdot 10^{-8} \) | \(a_{839}= -0.73033699 \pm 1.2 \cdot 10^{-7} \) | \(a_{840}= -1.06427469 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{841}= -0.40626548 \pm 1.2 \cdot 10^{-7} \) | \(a_{842}= -0.44686955 \pm 9.8 \cdot 10^{-8} \) | \(a_{843}= +0.49299677 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{844}= -0.12623828 \pm 8.5 \cdot 10^{-8} \) | \(a_{845}= -0.23241545 \pm 7.7 \cdot 10^{-8} \) | \(a_{846}= -1.29851673 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{847}= +0.03949346 \pm 8.3 \cdot 10^{-8} \) | \(a_{848}= -2.83979438 \pm 1.0 \cdot 10^{-7} \) | \(a_{849}= +0.10059224 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{850}= +0.06675116 \pm 8.5 \cdot 10^{-8} \) | \(a_{851}= -1.37314703 \pm 3.5 \cdot 10^{-8} \) | \(a_{852}= +1.16093671 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{853}= -0.36254431 \pm 9.9 \cdot 10^{-8} \) | \(a_{854}= +0.24940840 \pm 6.5 \cdot 10^{-8} \) | \(a_{855}= +1.07382830 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{856}= +3.32425117 \pm 7.7 \cdot 10^{-8} \) | \(a_{857}= -1.22172589 \pm 1.1 \cdot 10^{-7} \) | \(a_{858}= +0.32644030 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{859}= -0.84006309 \pm 9.0 \cdot 10^{-8} \) | \(a_{860}= +3.76831812 \pm 1.0 \cdot 10^{-7} \) | \(a_{861}= -0.31507748 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{862}= +3.13343876 \pm 9.8 \cdot 10^{-8} \) | \(a_{863}= +0.81318681 \pm 8.6 \cdot 10^{-8} \) | \(a_{864}= +3.93469066 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{865}= +0.09491250 \pm 8.4 \cdot 10^{-8} \) | \(a_{866}= -1.12657816 \pm 7.5 \cdot 10^{-8} \) | \(a_{867}= -0.62001642 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{868}= +0.96828563 \pm 3.4 \cdot 10^{-8} \) | \(a_{869}= -0.05424874 \pm 1.2 \cdot 10^{-7} \) | \(a_{870}= +1.08594108 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{871}= +0.12398764 \pm 1.0 \cdot 10^{-7} \) | \(a_{872}= +2.00886537 \pm 1.1 \cdot 10^{-7} \) | \(a_{873}= -0.39059612 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{874}= -2.64656453 \pm 6.6 \cdot 10^{-8} \) | \(a_{875}= -0.32568536 \pm 6.7 \cdot 10^{-8} \) | \(a_{876}= -0.31400765 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{877}= +1.71347926 \pm 1.0 \cdot 10^{-7} \) | \(a_{878}= -1.99098733 \pm 8.0 \cdot 10^{-8} \) | \(a_{879}= +0.75343999 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{880}= +1.32027428 \pm 2.2 \cdot 10^{-7} \) | \(a_{881}= +0.11298324 \pm 9.5 \cdot 10^{-8} \) | \(a_{882}= -0.95409326 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{883}= -1.03267087 \pm 1.1 \cdot 10^{-7} \) | \(a_{884}= +0.23740750 \pm 4.4 \cdot 10^{-8} \) | \(a_{885}= -0.17519728 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{886}= +0.43578132 \pm 1.1 \cdot 10^{-7} \) | \(a_{887}= -0.00031528 \pm 1.2 \cdot 10^{-7} \) | \(a_{888}= -3.19898247 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{889}= +0.47319451 \pm 7.5 \cdot 10^{-8} \) | \(a_{890}= -1.20979786 \pm 7.7 \cdot 10^{-8} \) | \(a_{891}= -0.00656307 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{892}= +2.59662161 \pm 7.0 \cdot 10^{-8} \) | \(a_{893}= +1.67378395 \pm 7.5 \cdot 10^{-8} \) | \(a_{894}= +2.07595722 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{895}= -0.62588300 \pm 1.1 \cdot 10^{-7} \) | \(a_{896}= -1.49178109 \pm 8.5 \cdot 10^{-8} \) | \(a_{897}= +0.50562893 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{898}= -1.78956313 \pm 8.8 \cdot 10^{-8} \) | \(a_{899}= -0.62719142 \pm 1.0 \cdot 10^{-7} \) | \(a_{900}= -0.59338876 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{901}= +0.07318956 \pm 9.6 \cdot 10^{-8} \) | \(a_{902}= +0.67552231 \pm 2.3 \cdot 10^{-7} \) | \(a_{903}= +0.32130134 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{904}= -4.10537178 \pm 1.3 \cdot 10^{-7} \) | \(a_{905}= +0.21510943 \pm 1.2 \cdot 10^{-7} \) | \(a_{906}= -2.20653936 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{907}= +0.89712486 \pm 1.1 \cdot 10^{-7} \) | \(a_{908}= +0.93577709 \pm 6.6 \cdot 10^{-8} \) | \(a_{909}= +0.79245997 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{910}= +0.87516323 \pm 5.8 \cdot 10^{-8} \) | \(a_{911}= -0.77212472 \pm 1.2 \cdot 10^{-7} \) | \(a_{912}= -3.56751166 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{913}= +0.03503005 \pm 1.0 \cdot 10^{-7} \) | \(a_{914}= -1.56396944 \pm 9.4 \cdot 10^{-8} \) | \(a_{915}= -0.21643561 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{916}= -1.35916379 \pm 1.0 \cdot 10^{-7} \) | \(a_{917}= -0.22261481 \pm 4.1 \cdot 10^{-8} \) | \(a_{918}= -0.18860112 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{919}= -0.08154449 \pm 1.1 \cdot 10^{-7} \) | \(a_{920}= +3.53430658 \pm 7.7 \cdot 10^{-8} \) | \(a_{921}= +0.81753363 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{922}= -2.53577212 \pm 7.3 \cdot 10^{-8} \) | \(a_{923}= -0.60602141 \pm 9.7 \cdot 10^{-8} \) | \(a_{924}= +0.22449362 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{925}= +0.54177463 \pm 5.8 \cdot 10^{-8} \) | \(a_{926}= +3.64229705 \pm 1.2 \cdot 10^{-7} \) | \(a_{927}= +0.66113711 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{928}= +3.01196949 \pm 1.0 \cdot 10^{-7} \) | \(a_{929}= +0.60166852 \pm 7.8 \cdot 10^{-8} \) | \(a_{930}= -1.14713379 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{931}= +1.22982319 \pm 6.0 \cdot 10^{-8} \) | \(a_{932}= +1.60916619 \pm 8.3 \cdot 10^{-8} \) | \(a_{933}= +1.00322597 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{934}= -1.28786833 \pm 5.6 \cdot 10^{-8} \) | \(a_{935}= -0.03402721 \pm 1.9 \cdot 10^{-7} \) | \(a_{936}= -1.82899255 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{937}= +0.44969550 \pm 1.1 \cdot 10^{-7} \) | \(a_{938}= +0.11640499 \pm 8.9 \cdot 10^{-8} \) | \(a_{939}= +0.99055670 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{940}= -3.52108929 \pm 1.2 \cdot 10^{-7} \) | \(a_{941}= -1.93427368 \pm 1.0 \cdot 10^{-7} \) | \(a_{942}= -1.24635622 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{943}= +1.04632801 \pm 3.6 \cdot 10^{-8} \) | \(a_{944}= -0.90373920 \pm 1.5 \cdot 10^{-7} \) | \(a_{945}= -0.50926750 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{946}= -0.68886620 \pm 2.1 \cdot 10^{-7} \) | \(a_{947}= +1.83741339 \pm 8.3 \cdot 10^{-8} \) | \(a_{948}= -0.30836742 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{949}= +0.16391536 \pm 1.1 \cdot 10^{-7} \) | \(a_{950}= +1.04420101 \pm 6.9 \cdot 10^{-8} \) | \(a_{951}= -0.64600769 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{952}= +0.14149194 \pm 5.4 \cdot 10^{-8} \) | \(a_{953}= -1.16767622 \pm 7.8 \cdot 10^{-8} \) | \(a_{954}= -0.88822405 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{955}= -1.33113858 \pm 8.2 \cdot 10^{-8} \) | \(a_{956}= +2.90273169 \pm 8.9 \cdot 10^{-8} \) | \(a_{957}= -0.14541213 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{958}= +1.99972976 \pm 7.6 \cdot 10^{-8} \) | \(a_{959}= -0.62720764 \pm 4.8 \cdot 10^{-8} \) | \(a_{960}= +2.76819649 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{961}= -0.33746638 \pm 8.7 \cdot 10^{-8} \) | \(a_{962}= +2.63055382 \pm 5.3 \cdot 10^{-8} \) | \(a_{963}= +0.60161348 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{964}= -1.72279840 \pm 8.5 \cdot 10^{-8} \) | \(a_{965}= -0.29870915 \pm 8.8 \cdot 10^{-8} \) | \(a_{966}= +0.47470642 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{967}= +0.25871374 \pm 1.1 \cdot 10^{-7} \) | \(a_{968}= -0.30554166 \pm 1.2 \cdot 10^{-7} \) | \(a_{969}= +0.09194489 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{970}= -1.44594027 \pm 1.2 \cdot 10^{-7} \) | \(a_{971}= -0.63412722 \pm 9.3 \cdot 10^{-8} \) | \(a_{972}= +2.71906573 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{973}= +0.28545651 \pm 8.5 \cdot 10^{-8} \) | \(a_{974}= +1.21658358 \pm 1.5 \cdot 10^{-7} \) | \(a_{975}= -0.19949570 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{976}= -1.11646335 \pm 1.2 \cdot 10^{-7} \) | \(a_{977}= +0.22226555 \pm 1.4 \cdot 10^{-7} \) | \(a_{978}= +0.41096956 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{979}= +0.16199708 \pm 1.0 \cdot 10^{-7} \) | \(a_{980}= -2.58714229 \pm 1.0 \cdot 10^{-7} \) | \(a_{981}= +0.36355872 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{982}= -2.14080008 \pm 9.2 \cdot 10^{-8} \) | \(a_{983}= -1.84216524 \pm 1.2 \cdot 10^{-7} \) | \(a_{984}= +2.43760127 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{985}= +0.99479836 \pm 7.4 \cdot 10^{-8} \) | \(a_{986}= -0.14437242 \pm 9.8 \cdot 10^{-8} \) | \(a_{987}= -0.30022166 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{988}= +3.71381010 \pm 3.6 \cdot 10^{-8} \) | \(a_{989}= -1.06699657 \pm 3.6 \cdot 10^{-8} \) | \(a_{990}= +0.41295221 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{991}= -1.15872065 \pm 1.0 \cdot 10^{-7} \) | \(a_{992}= -3.18169378 \pm 7.1 \cdot 10^{-8} \) | \(a_{993}= -0.49785545 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{994}= -0.56895925 \pm 9.3 \cdot 10^{-8} \) | \(a_{995}= -1.89071571 \pm 1.0 \cdot 10^{-7} \) | \(a_{996}= +0.19912218 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{997}= -0.79004763 \pm 1.1 \cdot 10^{-7} \) | \(a_{998}= +0.39895999 \pm 1.5 \cdot 10^{-7} \) | \(a_{999}= -1.53074936 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{1000}= +2.51966927 \pm 9.1 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000