Maass form invariants
| Level: | \( 101 \) |
| Weight: | \( 0 \) |
| Character: | 101.1 |
| Symmetry: | odd |
| Fricke sign: | not computed rigorously |
| Spectral parameter: | \(1.11356288230187048505356429167 \pm 5 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.99375829 \pm 1.0 \) | \(a_{3}= -1.56850133 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{4}= -0.01244858 \pm 1.0 \) | \(a_{5}= -1.75856336 \pm 9.3 \cdot 10^{-1} \) | \(a_{6}= -1.55870795 \pm 1.1 \) |
| \(a_{7}= +1.25532080 \pm 8.9 \cdot 10^{-1} \) | \(a_{8}= -1.00612909 \pm 1.0 \) | \(a_{9}= +1.46018936 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{10}= -1.74758329 \pm 1.0 \) | \(a_{11}= +0.34461812 \pm 8.5 \cdot 10^{-1} \) | \(a_{12}= +0.01952559 \pm 1.1 \) |
| \(a_{13}= -0.12162129 \pm 8.4 \cdot 10^{-1} \) | \(a_{14}= +1.24748287 \pm 1.0 \) | \(a_{15}= +2.75830335 \pm 1.0 \) |
| \(a_{16}= -0.98739849 \pm 1.0 \) | \(a_{17}= -1.18243716 \pm 8.2 \cdot 10^{-1} \) | \(a_{18}= +1.45107228 \pm 1.1 \) |
| \(a_{19}= -1.00618153 \pm 8.9 \cdot 10^{-1} \) | \(a_{20}= +0.02189157 \pm 1.1 \) | \(a_{21}= -1.96896837 \pm 1.0 \) |
| \(a_{22}= +0.34246639 \pm 1.0 \) | \(a_{23}= -0.42077890 \pm 8.3 \cdot 10^{-1} \) | \(a_{24}= +1.57811162 \pm 1.1 \) |
| \(a_{25}= +2.09253683 \pm 9.3 \cdot 10^{-1} \) | \(a_{26}= -0.12086191 \pm 9.5 \cdot 10^{-1} \) | \(a_{27}= -0.72180301 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{28}= -0.01562693 \pm 1.0 \) | \(a_{29}= -1.37125589 \pm 8.5 \cdot 10^{-1} \) | \(a_{30}= +2.74108115 \pm 1.2 \) |
| \(a_{31}= +0.03257429 \pm 8.3 \cdot 10^{-1} \) | \(a_{32}= +0.02489570 \pm 9.7 \cdot 10^{-1} \) | \(a_{33}= -0.54053286 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{34}= -1.17505429 \pm 9.7 \cdot 10^{-1} \) | \(a_{35}= -2.20755671 \pm 9.5 \cdot 10^{-1} \) | \(a_{36}= -0.01817724 \pm 1.0 \) |
| \(a_{37}= +0.61798923 \pm 8.0 \cdot 10^{-1} \) | \(a_{38}= -0.99989917 \pm 1.0 \) | \(a_{39}= +0.19076279 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{40}= +1.76933819 \pm 1.1 \) | \(a_{41}= +0.51955784 \pm 8.5 \cdot 10^{-1} \) | \(a_{42}= -1.95667457 \pm 1.3 \) |
| \(a_{43}= +1.07915412 \pm 8.6 \cdot 10^{-1} \) | \(a_{44}= -0.00429000 \pm 1.1 \) | \(a_{45}= -2.56783033 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{46}= -0.41815166 \pm 1.0 \) | \(a_{47}= +0.13080785 \pm 8.2 \cdot 10^{-1} \) | \(a_{48}= +1.54873267 \pm 1.2 \) |
| \(a_{49}= +0.57582511 \pm 8.4 \cdot 10^{-1} \) | \(a_{50}= +2.07947148 \pm 1.0 \) | \(a_{51}= +1.85465048 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{52}= +0.00151401 \pm 9.8 \cdot 10^{-1} \) | \(a_{53}= -0.85821434 \pm 8.7 \cdot 10^{-1} \) | \(a_{54}= -0.71729623 \pm 1.1 \) |
| \(a_{55}= -0.60603154 \pm 9.5 \cdot 10^{-1} \) | \(a_{56}= -1.26301222 \pm 1.0 \) | \(a_{57}= +1.57819387 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{58}= -1.36269409 \pm 1.0 \) | \(a_{59}= +0.30819767 \pm 8.2 \cdot 10^{-1} \) | \(a_{60}= -0.03433689 \pm 1.3 \) |
| \(a_{61}= -0.31137888 \pm 8.8 \cdot 10^{-1} \) | \(a_{62}= +0.03237090 \pm 9.8 \cdot 10^{-1} \) | \(a_{63}= +1.83300238 \pm 1.1 \) |
| \(a_{64}= +1.01213875 \pm 9.0 \cdot 10^{-1} \) | \(a_{65}= +0.21387833 \pm 8.5 \cdot 10^{-1} \) | \(a_{66}= -0.53715789 \pm 1.1 \) |
| \(a_{67}= -1.96831225 \pm 7.9 \cdot 10^{-1} \) | \(a_{68}= +0.01471964 \pm 9.9 \cdot 10^{-1} \) | \(a_{69}= +0.65999094 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{70}= -2.19377324 \pm 1.1 \) | \(a_{71}= -0.54508923 \pm 8.5 \cdot 10^{-1} \) | \(a_{72}= -1.46913604 \pm 1.0 \) |
| \(a_{73}= -0.82770075 \pm 8.1 \cdot 10^{-1} \) | \(a_{74}= +0.61413065 \pm 9.1 \cdot 10^{-1} \) | \(a_{75}= -3.28214009 \pm 1.0 \) |
| \(a_{76}= +0.01252551 \pm 1.1 \) | \(a_{77}= +0.43260541 \pm 9.1 \cdot 10^{-1} \) | \(a_{78}= +0.18957171 \pm 1.0 \) |
| \(a_{79}= -0.96371446 \pm 7.8 \cdot 10^{-1} \) | \(a_{80}= +1.73639927 \pm 1.1 \) | \(a_{81}= -0.32804271 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{82}= +0.51631384 \pm 1.0 \) | \(a_{83}= -0.11607115 \pm 8.1 \cdot 10^{-1} \) | \(a_{84}= +0.02451083 \pm 1.1 \) |
| \(a_{85}= +2.07938646 \pm 9.1 \cdot 10^{-1} \) | \(a_{86}= +1.07241613 \pm 1.0 \) | \(a_{87}= +2.15081231 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{88}= -0.34672961 \pm 1.2 \) | \(a_{89}= -0.37208018 \pm 8.0 \cdot 10^{-1} \) | \(a_{90}= -2.55179739 \pm 1.1 \) |
| \(a_{91}= -0.15267342 \pm 8.7 \cdot 10^{-1} \) | \(a_{92}= +0.00523808 \pm 1.0 \) | \(a_{93}= -0.05109268 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{94}= +0.12999111 \pm 9.4 \cdot 10^{-1} \) | \(a_{95}= +1.76943039 \pm 9.0 \cdot 10^{-1} \) | \(a_{96}= -0.03904888 \pm 1.1 \) |
| \(a_{97}= +1.51542924 \pm 8.3 \cdot 10^{-1} \) | \(a_{98}= +0.57222979 \pm 9.8 \cdot 10^{-1} \) | \(a_{99}= +0.50320668 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{100}= -0.02604907 \pm 1.1 \) | \(a_{101}= \pm0.09950372 \pm 1.0 \cdot 10^{-8} \) | \(a_{102}= +1.84307048 \pm 1.0 \) |
| \(a_{103}= -0.25214949 \pm 7.8 \cdot 10^{-1} \) | \(a_{104}= +0.12236646 \pm 9.8 \cdot 10^{-1} \) | \(a_{105}= +3.46254858 \pm 1.1 \) |
| \(a_{106}= -0.85285582 \pm 1.0 \) | \(a_{107}= +0.55457780 \pm 7.8 \cdot 10^{-1} \) | \(a_{108}= +0.00898541 \pm 1.0 \) |
| \(a_{109}= -0.96786821 \pm 8.5 \cdot 10^{-1} \) | \(a_{110}= -0.60224762 \pm 1.1 \) | \(a_{111}= -0.96931497 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{112}= -1.23949935 \pm 1.1 \) | \(a_{113}= +1.82844193 \pm 8.1 \cdot 10^{-1} \) | \(a_{114}= +1.56833999 \pm 1.1 \) |
| \(a_{115}= +0.73996487 \pm 8.7 \cdot 10^{-1} \) | \(a_{116}= +0.01707017 \pm 1.1 \) | \(a_{117}= -0.17758975 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{118}= +0.30627334 \pm 9.3 \cdot 10^{-1} \) | \(a_{119}= -1.48433498 \pm 8.4 \cdot 10^{-1} \) | \(a_{120}= -2.77520365 \pm 1.3 \) |
| \(a_{121}= -0.88124062 \pm 8.7 \cdot 10^{-1} \) | \(a_{122}= -0.30943469 \pm 1.0 \) | \(a_{123}= -0.81492549 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{124}= -0.00040551 \pm 9.5 \cdot 10^{-1} \) | \(a_{125}= -1.92128774 \pm 9.6 \cdot 10^{-1} \) | \(a_{126}= +1.82155753 \pm 1.3 \) |
| \(a_{127}= +1.26132183 \pm 8.6 \cdot 10^{-1} \) | \(a_{128}= +0.98092348 \pm 8.5 \cdot 10^{-1} \) | \(a_{129}= -1.69265124 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{130}= +0.21254292 \pm 9.8 \cdot 10^{-1} \) | \(a_{131}= +0.84490667 \pm 8.6 \cdot 10^{-1} \) | \(a_{132}= +0.00672885 \pm 1.2 \) |
| \(a_{133}= -1.26307803 \pm 9.1 \cdot 10^{-1} \) | \(a_{134}= -1.95602256 \pm 9.2 \cdot 10^{-1} \) | \(a_{135}= +1.26933373 \pm 9.0 \cdot 10^{-1} \) |
| \(a_{136}= +1.18968202 \pm 1.0 \) | \(a_{137}= +0.34075002 \pm 8.2 \cdot 10^{-1} \) | \(a_{138}= +0.65587010 \pm 1.1 \) |
| \(a_{139}= +0.73067476 \pm 8.8 \cdot 10^{-1} \) | \(a_{140}= +0.02748089 \pm 1.1 \) | \(a_{141}= -0.20517189 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{142}= -0.54168582 \pm 9.9 \cdot 10^{-1} \) | \(a_{143}= -0.04191282 \pm 8.1 \cdot 10^{-1} \) | \(a_{144}= -1.44178583 \pm 1.1 \) |
| \(a_{145}= +2.41143549 \pm 9.3 \cdot 10^{-1} \) | \(a_{146}= -0.82253278 \pm 1.0 \) | \(a_{147}= -0.90318062 \pm 1.0 \) |
| \(a_{148}= -0.00769306 \pm 9.8 \cdot 10^{-1} \) | \(a_{149}= -1.77328765 \pm 8.4 \cdot 10^{-1} \) | \(a_{150}= -3.26164715 \pm 1.1 \) |
| \(a_{151}= -1.05909264 \pm 8.3 \cdot 10^{-1} \) | \(a_{152}= +1.01234645 \pm 1.0 \) | \(a_{153}= -1.72657870 \pm 8.4 \cdot 10^{-1} \) |
| \(a_{154}= +0.42990431 \pm 1.1 \) | \(a_{155}= -0.05728380 \pm 8.0 \cdot 10^{-1} \) | \(a_{156}= -0.00237474 \pm 1.1 \) |
| \(a_{157}= -1.45256054 \pm 8.2 \cdot 10^{-1} \) | \(a_{158}= -0.95769724 \pm 9.9 \cdot 10^{-1} \) | \(a_{159}= +1.34610755 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{160}= -0.04378060 \pm 1.0 \) | \(a_{161}= -0.52821145 \pm 8.9 \cdot 10^{-1} \) | \(a_{162}= -0.32599448 \pm 1.1 \) |
| \(a_{163}= +0.74432757 \pm 8.0 \cdot 10^{-1} \) | \(a_{164}= -0.00646776 \pm 1.1 \) | \(a_{165}= +0.95055935 \pm 1.0 \) |
| \(a_{166}= -0.11534643 \pm 1.0 \) | \(a_{167}= +1.15684104 \pm 7.7 \cdot 10^{-1} \) | \(a_{168}= +1.98103234 \pm 1.1 \) |
| \(a_{169}= -0.98521032 \pm 8.1 \cdot 10^{-1} \) | \(a_{170}= +2.06640324 \pm 1.0 \) | \(a_{171}= -1.46921258 \pm 1.0 \) |
| \(a_{172}= -0.01343389 \pm 1.0 \) | \(a_{173}= -0.16319137 \pm 7.8 \cdot 10^{-1} \) | \(a_{174}= +2.13738314 \pm 1.1 \) |
| \(a_{175}= +2.62679969 \pm 9.1 \cdot 10^{-1} \) | \(a_{176}= -0.34027468 \pm 1.2 \) | \(a_{177}= -0.48340744 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{178}= -0.36975700 \pm 1.0 \) | \(a_{179}= +0.93406763 \pm 8.3 \cdot 10^{-1} \) | \(a_{180}= +0.03196578 \pm 1.0 \) |
| \(a_{181}= -0.78900435 \pm 8.1 \cdot 10^{-1} \) | \(a_{182}= -0.15172018 \pm 9.6 \cdot 10^{-1} \) | \(a_{183}= +0.48839714 \pm 1.0 \) |
| \(a_{184}= +0.42335705 \pm 1.1 \) | \(a_{185}= -1.08677103 \pm 8.9 \cdot 10^{-1} \) | \(a_{186}= -0.05077369 \pm 1.0 \) |
| \(a_{187}= -0.40748844 \pm 8.4 \cdot 10^{-1} \) | \(a_{188}= -0.00162836 \pm 1.0 \) | \(a_{189}= -0.90609250 \pm 1.1 \) |
| \(a_{190}= +1.75838248 \pm 1.0 \) | \(a_{191}= -1.17792368 \pm 8.8 \cdot 10^{-1} \) | \(a_{192}= -1.58753772 \pm 1.0 \) |
| \(a_{193}= -1.27325163 \pm 8.1 \cdot 10^{-1} \) | \(a_{194}= +1.50596726 \pm 1.0 \) | \(a_{195}= -0.33546775 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{196}= -0.00716819 \pm 9.3 \cdot 10^{-1} \) | \(a_{197}= +0.83604182 \pm 8.8 \cdot 10^{-1} \) | \(a_{198}= +0.50006478 \pm 1.1 \) |
| \(a_{199}= -0.69104700 \pm 7.5 \cdot 10^{-1} \) | \(a_{200}= -2.10535791 \pm 1.1 \) | \(a_{201}= +3.08729411 \pm 8.7 \cdot 10^{-1} \) |
| \(a_{202}= \pm0.09888265 \pm 1.0 \cdot 10^{-1} \) | \(a_{203}= -1.72136257 \pm 9.0 \cdot 10^{-1} \) | \(a_{204}= -0.02308771 \pm 1.1 \) |
| \(a_{205}= -0.91367351 \pm 8.7 \cdot 10^{-1} \) | \(a_{206}= -0.25057512 \pm 9.1 \cdot 10^{-1} \) | \(a_{207}= -0.61441564 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{208}= +0.12008844 \pm 1.0 \) | \(a_{209}= -0.34674767 \pm 7.9 \cdot 10^{-1} \) | \(a_{210}= +3.44092922 \pm 1.4 \) |
| \(a_{211}= -0.18700868 \pm 8.3 \cdot 10^{-1} \) | \(a_{212}= +0.01068352 \pm 1.0 \) | \(a_{213}= +0.85497146 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{214}= +0.55111514 \pm 9.5 \cdot 10^{-1} \) | \(a_{215}= -1.89775706 \pm 9.8 \cdot 10^{-1} \) | \(a_{216}= +0.72622554 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{217}= +0.04089109 \pm 9.3 \cdot 10^{-1} \) | \(a_{218}= -0.96182506 \pm 1.0 \) | \(a_{219}= +1.29824707 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{220}= +0.00754422 \pm 1.2 \) | \(a_{221}= +0.14380927 \pm 8.6 \cdot 10^{-1} \) | \(a_{222}= -0.96326278 \pm 1.0 \) |
| \(a_{223}= -0.02781765 \pm 7.7 \cdot 10^{-1} \) | \(a_{224}= +0.03125204 \pm 9.9 \cdot 10^{-1} \) | \(a_{225}= +3.05549383 \pm 1.0 \) |
| \(a_{226}= +1.81702556 \pm 1.0 \) | \(a_{227}= +0.72751255 \pm 8.6 \cdot 10^{-1} \) | \(a_{228}= -0.01964626 \pm 1.2 \) |
| \(a_{229}= +0.36700211 \pm 7.7 \cdot 10^{-1} \) | \(a_{230}= +0.73534471 \pm 1.0 \) | \(a_{231}= -0.67854076 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{232}= +1.37965765 \pm 1.1 \) | \(a_{233}= -0.05003918 \pm 8.0 \cdot 10^{-1} \) | \(a_{234}= -0.17648093 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{235}= -0.23003344 \pm 8.4 \cdot 10^{-1} \) | \(a_{236}= -0.00383663 \pm 8.8 \cdot 10^{-1} \) | \(a_{237}= +1.51158433 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{238}= -1.47506712 \pm 1.0 \) | \(a_{239}= +0.78952759 \pm 8.2 \cdot 10^{-1} \) | \(a_{240}= -2.72353901 \pm 1.3 \) |
| \(a_{241}= +1.33740589 \pm 7.9 \cdot 10^{-1} \) | \(a_{242}= -0.87573836 \pm 1.2 \) | \(a_{243}= +1.23633740 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{244}= +0.00387622 \pm 1.0 \) | \(a_{245}= -1.01262290 \pm 8.5 \cdot 10^{-1} \) | \(a_{246}= -0.80983728 \pm 1.1 \) |
| \(a_{247}= +0.12237282 \pm 8.8 \cdot 10^{-1} \) | \(a_{248}= -0.03277386 \pm 1.0 \) | \(a_{249}= +0.18205735 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{250}= -1.90929168 \pm 1.0 \) | \(a_{251}= +0.42352892 \pm 8.6 \cdot 10^{-1} \) | \(a_{252}= -0.02281821 \pm 1.1 \) |
| \(a_{253}= -0.14500774 \pm 9.2 \cdot 10^{-1} \) | \(a_{254}= +1.25344644 \pm 9.4 \cdot 10^{-1} \) | \(a_{255}= -3.26151380 \pm 1.0 \) |
| \(a_{256}= -0.03733993 \pm 9.1 \cdot 10^{-1} \) | \(a_{257}= -1.02014902 \pm 8.0 \cdot 10^{-1} \) | \(a_{258}= -1.68208271 \pm 1.1 \) |
| \(a_{259}= +0.77577315 \pm 8.0 \cdot 10^{-1} \) | \(a_{260}= -0.00266248 \pm 1.0 \) | \(a_{261}= -2.00228923 \pm 8.7 \cdot 10^{-1} \) |
| \(a_{262}= +0.83963126 \pm 1.0 \) | \(a_{263}= -0.67867958 \pm 8.2 \cdot 10^{-1} \) | \(a_{264}= +0.54384473 \pm 1.2 \) |
| \(a_{265}= +1.50922119 \pm 9.1 \cdot 10^{-1} \) | \(a_{266}= -1.25519168 \pm 1.1 \) | \(a_{267}= +0.58360707 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{268}= +0.02450264 \pm 9.8 \cdot 10^{-1} \) | \(a_{269}= -0.76217354 \pm 8.4 \cdot 10^{-1} \) | \(a_{270}= +1.26140830 \pm 1.1 \) |
| \(a_{271}= -1.51716649 \pm 8.5 \cdot 10^{-1} \) | \(a_{272}= +1.16753430 \pm 1.0 \) | \(a_{273}= +0.23946803 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{274}= +0.33862245 \pm 9.1 \cdot 10^{-1} \) | \(a_{275}= +0.72112460 \pm 9.0 \cdot 10^{-1} \) | \(a_{276}= -0.00821594 \pm 1.1 \) |
| \(a_{277}= +1.43825782 \pm 8.4 \cdot 10^{-1} \) | \(a_{278}= +0.72611260 \pm 1.0 \) | \(a_{279}= +0.04756453 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{280}= +2.22108255 \pm 1.1 \) | \(a_{281}= +0.09405054 \pm 8.0 \cdot 10^{-1} \) | \(a_{282}= -0.20389084 \pm 1.0 \) |
| \(a_{283}= +1.19707951 \pm 8.7 \cdot 10^{-1} \) | \(a_{284}= +0.00678555 \pm 9.8 \cdot 10^{-1} \) | \(a_{285}= -2.77534827 \pm 1.0 \) |
| \(a_{286}= -0.04165111 \pm 8.9 \cdot 10^{-1} \) | \(a_{287}= +0.65221043 \pm 8.8 \cdot 10^{-1} \) | \(a_{288}= +0.03635236 \pm 1.0 \) |
| \(a_{289}= +0.39815278 \pm 7.5 \cdot 10^{-1} \) | \(a_{290}= +2.39637903 \pm 1.1 \) | \(a_{291}= -2.37694794 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{292}= +0.01030370 \pm 1.0 \) | \(a_{293}= -0.14373992 \pm 8.4 \cdot 10^{-1} \) | \(a_{294}= -0.89754138 \pm 1.2 \) |
| \(a_{295}= -0.54198399 \pm 8.7 \cdot 10^{-1} \) | \(a_{296}= -0.62177570 \pm 9.9 \cdot 10^{-1} \) | \(a_{297}= -0.24874587 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{298}= -1.76221565 \pm 9.8 \cdot 10^{-1} \) | \(a_{299}= +0.05117558 \pm 7.6 \cdot 10^{-1} \) | \(a_{300}= +0.04085790 \pm 1.2 \) |
| \(a_{301}= +1.35468188 \pm 8.7 \cdot 10^{-1} \) | \(a_{302}= -1.05247992 \pm 1.0 \) | \(a_{303}= \pm0.15607172 \pm 9.5 \cdot 10^{-2} \) |
| \(a_{304}= +0.99350011 \pm 1.0 \) | \(a_{305}= +0.54757836 \pm 9.5 \cdot 10^{-1} \) | \(a_{306}= -1.71579832 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{307}= -1.28052293 \pm 8.2 \cdot 10^{-1} \) | \(a_{308}= -0.00538530 \pm 1.1 \) | \(a_{309}= +0.39549602 \pm 8.4 \cdot 10^{-1} \) |
| \(a_{310}= -0.05692614 \pm 9.2 \cdot 10^{-1} \) | \(a_{311}= -1.27703559 \pm 8.6 \cdot 10^{-1} \) | \(a_{312}= -0.19193160 \pm 1.1 \) |
| \(a_{313}= +0.63488715 \pm 8.5 \cdot 10^{-1} \) | \(a_{314}= -1.44349111 \pm 9.7 \cdot 10^{-1} \) | \(a_{315}= -3.22344432 \pm 1.1 \) |
| \(a_{316}= +0.01199686 \pm 1.0 \) | \(a_{317}= +0.60238906 \pm 7.4 \cdot 10^{-1} \) | \(a_{318}= +1.33770279 \pm 1.0 \) |
| \(a_{319}= -0.47255864 \pm 8.5 \cdot 10^{-1} \) | \(a_{320}= -1.77990651 \pm 9.3 \cdot 10^{-1} \) | \(a_{321}= -0.86985426 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{322}= -0.52491340 \pm 1.1 \) | \(a_{323}= +1.18974404 \pm 8.5 \cdot 10^{-1} \) | \(a_{324}= +0.00408367 \pm 1.1 \) |
| \(a_{325}= -0.25449654 \pm 8.3 \cdot 10^{-1} \) | \(a_{326}= +0.73968016 \pm 9.7 \cdot 10^{-1} \) | \(a_{327}= +1.51809950 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{328}= -0.52274121 \pm 1.1 \) | \(a_{329}= +0.16420546 \pm 9.1 \cdot 10^{-1} \) | \(a_{330}= +0.94462429 \pm 1.2 \) |
| \(a_{331}= +1.24277659 \pm 7.7 \cdot 10^{-1} \) | \(a_{332}= +0.00144494 \pm 1.1 \) | \(a_{333}= +0.90237944 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{334}= +1.14961797 \pm 8.9 \cdot 10^{-1} \) | \(a_{335}= +3.46139481 \pm 8.7 \cdot 10^{-1} \) | \(a_{336}= +1.94415241 \pm 1.3 \) |
| \(a_{337}= -0.08646875 \pm 7.9 \cdot 10^{-1} \) | \(a_{338}= -0.97905889 \pm 9.8 \cdot 10^{-1} \) | \(a_{339}= -2.86790775 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{340}= -0.02588536 \pm 1.0 \) | \(a_{341}= +0.01122568 \pm 8.5 \cdot 10^{-1} \) | \(a_{342}= -1.46003916 \pm 1.2 \) |
| \(a_{343}= -0.53247702 \pm 8.7 \cdot 10^{-1} \) | \(a_{344}= -1.08576617 \pm 1.1 \) | \(a_{345}= -1.16063352 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{346}= -0.16217244 \pm 9.6 \cdot 10^{-1} \) | \(a_{347}= +0.72637726 \pm 7.9 \cdot 10^{-1} \) | \(a_{348}= -0.02677451 \pm 1.1 \) |
| \(a_{349}= -1.68785603 \pm 8.6 \cdot 10^{-1} \) | \(a_{350}= +2.61039854 \pm 1.1 \) | \(a_{351}= +0.08778645 \pm 8.2 \cdot 10^{-1} \) |
| \(a_{352}= +0.00857949 \pm 1.0 \) | \(a_{353}= -1.53236760 \pm 8.7 \cdot 10^{-1} \) | \(a_{354}= -0.48038917 \pm 1.0 \) |
| \(a_{355}= +0.95857201 \pm 9.0 \cdot 10^{-1} \) | \(a_{356}= +0.00463186 \pm 1.0 \) | \(a_{357}= +2.32817662 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{358}= +0.92823553 \pm 1.0 \) | \(a_{359}= +0.28692560 \pm 7.6 \cdot 10^{-1} \) | \(a_{360}= +2.58356358 \pm 1.1 \) |
| \(a_{361}= +0.01239718 \pm 9.1 \cdot 10^{-1} \) | \(a_{362}= -0.78407797 \pm 9.2 \cdot 10^{-1} \) | \(a_{363}= +1.38222429 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{364}= +0.00190055 \pm 9.9 \cdot 10^{-1} \) | \(a_{365}= +1.45556126 \pm 8.4 \cdot 10^{-1} \) | \(a_{366}= +0.48534771 \pm 1.0 \) |
| \(a_{367}= -0.74730210 \pm 8.5 \cdot 10^{-1} \) | \(a_{368}= +0.41547560 \pm 1.1 \) | \(a_{369}= +0.75865129 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{370}= -1.07998546 \pm 1.0 \) | \(a_{371}= -1.07733214 \pm 9.0 \cdot 10^{-1} \) | \(a_{372}= +0.00063602 \pm 1.0 \) |
| \(a_{373}= -0.47395885 \pm 7.7 \cdot 10^{-1} \) | \(a_{374}= -0.40494415 \pm 9.3 \cdot 10^{-1} \) | \(a_{375}= +3.01353626 \pm 1.1 \) |
| \(a_{376}= -0.13160933 \pm 1.0 \) | \(a_{377}= +0.16677358 \pm 8.3 \cdot 10^{-1} \) | \(a_{378}= -0.90043504 \pm 1.3 \) |
| \(a_{379}= -0.80401872 \pm 8.0 \cdot 10^{-1} \) | \(a_{380}= -0.02202685 \pm 1.1 \) | \(a_{381}= -1.97838096 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{382}= -1.17056900 \pm 1.0 \) | \(a_{383}= +0.40554028 \pm 8.1 \cdot 10^{-1} \) | \(a_{384}= -1.53857663 \pm 1.0 \) |
| \(a_{385}= -0.76076247 \pm 1.0 \) | \(a_{386}= -1.26530174 \pm 9.4 \cdot 10^{-1} \) | \(a_{387}= +1.57576621 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{388}= -0.01886492 \pm 1.0 \) | \(a_{389}= +1.02543849 \pm 8.1 \cdot 10^{-1} \) | \(a_{390}= -0.33337316 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{391}= +0.49754360 \pm 7.8 \cdot 10^{-1} \) | \(a_{392}= -0.57935322 \pm 8.8 \cdot 10^{-1} \) | \(a_{393}= -1.32523453 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{394}= +0.83082180 \pm 1.0 \) | \(a_{395}= +1.69474950 \pm 8.8 \cdot 10^{-1} \) | \(a_{396}= -0.00626420 \pm 1.0 \) |
| \(a_{397}= -0.08153543 \pm 8.2 \cdot 10^{-1} \) | \(a_{398}= -0.68673225 \pm 9.1 \cdot 10^{-1} \) | \(a_{399}= +1.98113559 \pm 1.1 \) |
| \(a_{400}= -2.06616345 \pm 1.0 \) | \(a_{401}= -0.24628736 \pm 8.2 \cdot 10^{-1} \) | \(a_{402}= +3.06801774 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{403}= -0.00396172 \pm 8.6 \cdot 10^{-1} \) | \(a_{404}= \pm0.00123868 \pm 1.0 \cdot 10^{-1} \) | \(a_{405}= +0.57688272 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{406}= -1.71061478 \pm 1.1 \) | \(a_{407}= +0.21296984 \pm 7.8 \cdot 10^{-1} \) | \(a_{408}= -1.86601403 \pm 1.2 \) |
| \(a_{409}= +0.08651661 \pm 8.7 \cdot 10^{-1} \) | \(a_{410}= -0.90796875 \pm 1.1 \) | \(a_{411}= -0.53446574 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{412}= +0.00313888 \pm 9.5 \cdot 10^{-1} \) | \(a_{413}= +0.38688616 \pm 8.4 \cdot 10^{-1} \) | \(a_{414}= -0.61057939 \pm 1.0 \) |
| \(a_{415}= +0.20411803 \pm 8.5 \cdot 10^{-1} \) | \(a_{416}= -0.00302784 \pm 9.7 \cdot 10^{-1} \) | \(a_{417}= -1.14606196 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{418}= -0.34458265 \pm 9.6 \cdot 10^{-1} \) | \(a_{419}= +0.58282578 \pm 8.2 \cdot 10^{-1} \) | \(a_{420}= -0.04310371 \pm 1.3 \) |
| \(a_{421}= +1.88254811 \pm 8.5 \cdot 10^{-1} \) | \(a_{422}= -0.18584105 \pm 9.7 \cdot 10^{-1} \) | \(a_{423}= +0.19100384 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{424}= +0.86347268 \pm 1.0 \) | \(a_{425}= -2.47428827 \pm 8.9 \cdot 10^{-1} \) | \(a_{426}= +0.84963321 \pm 1.0 \) |
| \(a_{427}= -0.39087960 \pm 9.1 \cdot 10^{-1} \) | \(a_{428}= -0.00690368 \pm 1.0 \) | \(a_{429}= +0.06574015 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{430}= -1.88590793 \pm 1.1 \) | \(a_{431}= +1.37237184 \pm 7.7 \cdot 10^{-1} \) | \(a_{432}= +0.71270573 \pm 1.0 \) |
| \(a_{433}= +0.76951737 \pm 7.9 \cdot 10^{-1} \) | \(a_{434}= +0.04063576 \pm 1.0 \) | \(a_{435}= -3.78233209 \pm 1.1 \) |
| \(a_{436}= +0.01204857 \pm 1.0 \) | \(a_{437}= +0.42337911 \pm 7.8 \cdot 10^{-1} \) | \(a_{438}= +1.29014111 \pm 1.1 \) |
| \(a_{439}= -0.49285121 \pm 7.9 \cdot 10^{-1} \) | \(a_{440}= +0.60974475 \pm 1.3 \) | \(a_{441}= +0.84081199 \pm 1.1 \) |
| \(a_{442}= +0.14291136 \pm 1.0 \) | \(a_{443}= +0.51376626 \pm 8.1 \cdot 10^{-1} \) | \(a_{444}= +0.01206658 \pm 1.1 \) |
| \(a_{445}= +0.65432525 \pm 8.8 \cdot 10^{-1} \) | \(a_{446}= -0.02764396 \pm 9.5 \cdot 10^{-1} \) | \(a_{447}= +2.78139838 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{448}= +1.27055625 \pm 9.4 \cdot 10^{-1} \) | \(a_{449}= -1.67233805 \pm 8.1 \cdot 10^{-1} \) | \(a_{450}= +3.03641603 \pm 1.1 \) |
| \(a_{451}= +0.17904866 \pm 7.9 \cdot 10^{-1} \) | \(a_{452}= -0.02276146 \pm 1.1 \) | \(a_{453}= +1.66118485 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{454}= +0.72297015 \pm 9.6 \cdot 10^{-1} \) | \(a_{455}= +0.26848536 \pm 8.4 \cdot 10^{-1} \) | \(a_{456}= -1.58786356 \pm 1.0 \) |
| \(a_{457}= +1.03404238 \pm 8.1 \cdot 10^{-1} \) | \(a_{458}= +0.36471062 \pm 9.1 \cdot 10^{-1} \) | \(a_{459}= +0.85348495 \pm 7.7 \cdot 10^{-1} \) |
| \(a_{460}= -0.00921149 \pm 1.1 \) | \(a_{461}= -0.03179522 \pm 8.4 \cdot 10^{-1} \) | \(a_{462}= -0.67430413 \pm 1.2 \) |
| \(a_{463}= +0.13320015 \pm 8.3 \cdot 10^{-1} \) | \(a_{464}= +1.35397323 \pm 1.1 \) | \(a_{465}= +0.08984956 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{466}= -0.04972673 \pm 9.4 \cdot 10^{-1} \) | \(a_{467}= -1.21391913 \pm 8.3 \cdot 10^{-1} \) | \(a_{468}= +0.00221071 \pm 1.0 \) |
| \(a_{469}= -2.47085833 \pm 8.9 \cdot 10^{-1} \) | \(a_{470}= -0.22859716 \pm 9.9 \cdot 10^{-1} \) | \(a_{471}= +2.27833849 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{472}= -0.31008601 \pm 8.7 \cdot 10^{-1} \) | \(a_{473}= +0.37189530 \pm 8.3 \cdot 10^{-1} \) | \(a_{474}= +1.50214636 \pm 1.1 \) |
| \(a_{475}= -2.10546761 \pm 9.2 \cdot 10^{-1} \) | \(a_{476}= +0.01847784 \pm 9.8 \cdot 10^{-1} \) | \(a_{477}= -1.25315293 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{478}= +0.78459796 \pm 9.8 \cdot 10^{-1} \) | \(a_{479}= -0.90298267 \pm 8.8 \cdot 10^{-1} \) | \(a_{480}= +0.06866979 \pm 1.2 \) |
| \(a_{481}= -0.07516048 \pm 8.0 \cdot 10^{-1} \) | \(a_{482}= +1.32905543 \pm 9.2 \cdot 10^{-1} \) | \(a_{483}= +0.82849868 \pm 1.0 \) |
| \(a_{484}= +0.01097016 \pm 1.3 \) | \(a_{485}= -2.66497295 \pm 9.4 \cdot 10^{-1} \) | \(a_{486}= +1.22861796 \pm 1.2 \) |
| \(a_{487}= -1.42107626 \pm 9.4 \cdot 10^{-1} \) | \(a_{488}= +0.31328672 \pm 1.0 \) | \(a_{489}= -1.16747642 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{490}= -1.00630033 \pm 9.8 \cdot 10^{-1} \) | \(a_{491}= -1.19932402 \pm 8.0 \cdot 10^{-1} \) | \(a_{492}= +0.01014463 \pm 1.2 \) |
| \(a_{493}= +1.62142065 \pm 8.5 \cdot 10^{-1} \) | \(a_{494}= +0.12160879 \pm 1.0 \) | \(a_{495}= -0.88491902 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{496}= -0.03216374 \pm 1.0 \) | \(a_{497}= -0.68426046 \pm 8.3 \cdot 10^{-1} \) | \(a_{498}= +0.18092062 \pm 1.0 \) |
| \(a_{499}= -0.92296023 \pm 8.0 \cdot 10^{-1} \) | \(a_{500}= +0.02391725 \pm 1.1 \) | \(a_{501}= -1.81450300 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{502}= +0.42088449 \pm 1.0 \) | \(a_{503}= -0.69851030 \pm 8.8 \cdot 10^{-1} \) | \(a_{504}= -1.84423329 \pm 1.1 \) |
| \(a_{505}= \pm0.17498359 \pm 9.2 \cdot 10^{-2} \) | \(a_{506}= -0.14410235 \pm 1.2 \) | \(a_{507}= +1.54530053 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{508}= -0.01570162 \pm 9.5 \cdot 10^{-1} \) | \(a_{509}= +0.17879110 \pm 8.5 \cdot 10^{-1} \) | \(a_{510}= -3.24114964 \pm 1.2 \) |
| \(a_{511}= -1.03902787 \pm 8.4 \cdot 10^{-1} \) | \(a_{512}= -1.01803027 \pm 1.0 \) | \(a_{513}= +0.72626338 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{514}= -1.01377943 \pm 9.3 \cdot 10^{-1} \) | \(a_{515}= +0.44341995 \pm 8.3 \cdot 10^{-1} \) | \(a_{516}= +0.02107106 \pm 1.1 \) |
| \(a_{517}= +0.04507866 \pm 9.2 \cdot 10^{-1} \) | \(a_{518}= +0.77092942 \pm 9.3 \cdot 10^{-1} \) | \(a_{519}= +0.25596537 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{520}= -0.21518876 \pm 1.1 \) | \(a_{521}= +1.52359501 \pm 8.4 \cdot 10^{-1} \) | \(a_{522}= -1.98978739 \pm 1.0 \) |
| \(a_{523}= +1.67640953 \pm 8.7 \cdot 10^{-1} \) | \(a_{524}= -0.01051785 \pm 1.1 \) | \(a_{525}= -4.12013039 \pm 1.1 \) |
| \(a_{526}= -0.67444207 \pm 9.3 \cdot 10^{-1} \) | \(a_{527}= -0.03851694 \pm 8.0 \cdot 10^{-1} \) | \(a_{528}= +0.53372023 \pm 1.2 \) |
| \(a_{529}= -0.82294748 \pm 8.5 \cdot 10^{-1} \) | \(a_{530}= +1.49979797 \pm 1.0 \) | \(a_{531}= +0.45002603 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{532}= +0.01572350 \pm 1.1 \) | \(a_{533}= -0.06318917 \pm 8.7 \cdot 10^{-1} \) | \(a_{534}= +0.57996318 \pm 1.1 \) |
| \(a_{535}= -0.97525824 \pm 8.4 \cdot 10^{-1} \) | \(a_{536}= +1.98037222 \pm 1.0 \) | \(a_{537}= -1.46508332 \pm 1.0 \) |
| \(a_{538}= -0.75741471 \pm 1.0 \) | \(a_{539}= +0.19843935 \pm 8.0 \cdot 10^{-1} \) | \(a_{540}= -0.01580138 \pm 1.0 \) |
| \(a_{541}= -0.11557484 \pm 8.6 \cdot 10^{-1} \) | \(a_{542}= -1.50769365 \pm 9.4 \cdot 10^{-1} \) | \(a_{543}= +1.23755185 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{544}= -0.02943756 \pm 9.0 \cdot 10^{-1} \) | \(a_{545}= +1.70205413 \pm 9.8 \cdot 10^{-1} \) | \(a_{546}= +0.23797282 \pm 1.0 \) |
| \(a_{547}= -0.68715859 \pm 8.2 \cdot 10^{-1} \) | \(a_{548}= -0.00424186 \pm 9.4 \cdot 10^{-1} \) | \(a_{549}= -0.45467121 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{550}= +0.71662207 \pm 1.0 \) | \(a_{551}= +1.37972955 \pm 9.1 \cdot 10^{-1} \) | \(a_{552}= -0.66403475 \pm 1.1 \) |
| \(a_{553}= -1.20976836 \pm 8.2 \cdot 10^{-1} \) | \(a_{554}= +1.42927766 \pm 8.5 \cdot 10^{-1} \) | \(a_{555}= +1.70459833 \pm 1.0 \) |
| \(a_{556}= -0.00909586 \pm 9.7 \cdot 10^{-1} \) | \(a_{557}= +0.84140822 \pm 8.5 \cdot 10^{-1} \) | \(a_{558}= +0.04726753 \pm 1.1 \) |
| \(a_{559}= -0.13124786 \pm 7.8 \cdot 10^{-1} \) | \(a_{560}= +2.17973370 \pm 1.1 \) | \(a_{561}= +0.63914486 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{562}= +0.09346329 \pm 9.9 \cdot 10^{-1} \) | \(a_{563}= -0.30681248 \pm 8.2 \cdot 10^{-1} \) | \(a_{564}= +0.00255411 \pm 1.1 \) |
| \(a_{565}= -3.21542448 \pm 9.3 \cdot 10^{-1} \) | \(a_{566}= +1.18960521 \pm 1.0 \) | \(a_{567}= -0.41179801 \pm 1.0 \) |
| \(a_{568}= +0.54842901 \pm 9.6 \cdot 10^{-1} \) | \(a_{569}= -1.22481377 \pm 8.6 \cdot 10^{-1} \) | \(a_{570}= -2.75801964 \pm 1.3 \) |
| \(a_{571}= +1.40176789 \pm 8.5 \cdot 10^{-1} \) | \(a_{572}= +0.00052175 \pm 8.8 \cdot 10^{-1} \) | \(a_{573}= +1.84757114 \pm 1.0 \) |
| \(a_{574}= +0.64813818 \pm 1.0 \) | \(a_{575}= -0.88049356 \pm 7.6 \cdot 10^{-1} \) | \(a_{576}= +1.47791126 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{577}= -1.58872756 \pm 9.2 \cdot 10^{-1} \) | \(a_{578}= +0.39566679 \pm 9.0 \cdot 10^{-1} \) | \(a_{579}= +1.99709278 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{580}= -0.03001887 \pm 1.1 \) | \(a_{581}= -0.14570622 \pm 8.1 \cdot 10^{-1} \) | \(a_{582}= -2.36210683 \pm 1.2 \) |
| \(a_{583}= -0.29575560 \pm 9.0 \cdot 10^{-1} \) | \(a_{584}= +0.83277214 \pm 1.0 \) | \(a_{585}= +0.31230221 \pm 7.9 \cdot 10^{-1} \) |
| \(a_{586}= -0.14284243 \pm 1.0 \) | \(a_{587}= -1.73799013 \pm 8.5 \cdot 10^{-1} \) | \(a_{588}= +0.01124331 \pm 1.0 \) |
| \(a_{589}= -0.03277557 \pm 8.1 \cdot 10^{-1} \) | \(a_{590}= -0.53860000 \pm 9.8 \cdot 10^{-1} \) | \(a_{591}= -1.31133011 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{592}= -0.61020039 \pm 9.9 \cdot 10^{-1} \) | \(a_{593}= -0.27779747 \pm 7.8 \cdot 10^{-1} \) | \(a_{594}= -0.24719276 \pm 1.0 \) |
| \(a_{595}= +2.61029181 \pm 9.3 \cdot 10^{-1} \) | \(a_{596}= +0.02207487 \pm 1.0 \) | \(a_{597}= +1.08390592 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{598}= +0.05085605 \pm 8.0 \cdot 10^{-1} \) | \(a_{599}= +1.46340829 \pm 8.9 \cdot 10^{-1} \) | \(a_{600}= +3.30224995 \pm 1.3 \) |
| \(a_{601}= +1.34335262 \pm 8.7 \cdot 10^{-1} \) | \(a_{602}= +1.34622358 \pm 1.0 \) | \(a_{603}= -2.87410281 \pm 8.4 \cdot 10^{-1} \) |
| \(a_{604}= +0.01318415 \pm 1.1 \) | \(a_{605}= +1.54971434 \pm 9.9 \cdot 10^{-1} \) | \(a_{606}= \pm0.15509724 \pm 1.1 \cdot 10^{-1} \) |
| \(a_{607}= +0.74783932 \pm 7.5 \cdot 10^{-1} \) | \(a_{608}= -0.02504955 \pm 9.7 \cdot 10^{-1} \) | \(a_{609}= +2.69995397 \pm 1.0 \) |
| \(a_{610}= +0.54415940 \pm 1.0 \) | \(a_{611}= -0.01590896 \pm 8.8 \cdot 10^{-1} \) | \(a_{612}= +0.02149342 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{613}= +0.99172599 \pm 7.9 \cdot 10^{-1} \) | \(a_{614}= -1.27252765 \pm 9.9 \cdot 10^{-1} \) | \(a_{615}= +1.43309522 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{616}= -0.43525602 \pm 1.1 \) | \(a_{617}= -1.65170791 \pm 7.6 \cdot 10^{-1} \) | \(a_{618}= +0.39302663 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{619}= +0.50480429 \pm 7.7 \cdot 10^{-1} \) | \(a_{620}= +0.00071311 \pm 9.1 \cdot 10^{-1} \) | \(a_{621}= +0.30371886 \pm 8.4 \cdot 10^{-1} \) |
| \(a_{622}= -1.26906204 \pm 1.0 \) | \(a_{623}= -0.46707905 \pm 7.9 \cdot 10^{-1} \) | \(a_{624}= -0.18835847 \pm 1.2 \) |
| \(a_{625}= +1.28616261 \pm 9.8 \cdot 10^{-1} \) | \(a_{626}= +0.63092309 \pm 1.0 \) | \(a_{627}= +0.54387308 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{628}= +0.01808230 \pm 9.9 \cdot 10^{-1} \) | \(a_{629}= -0.73073198 \pm 7.7 \cdot 10^{-1} \) | \(a_{630}= -3.20331786 \pm 1.4 \) |
| \(a_{631}= +0.81082552 \pm 8.5 \cdot 10^{-1} \) | \(a_{632}= +0.96961918 \pm 1.0 \) | \(a_{633}= +0.29332276 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{634}= +0.59862786 \pm 8.9 \cdot 10^{-1} \) | \(a_{635}= -2.21810988 \pm 9.7 \cdot 10^{-1} \) | \(a_{636}= -0.01675709 \pm 1.0 \) |
| \(a_{637}= -0.07003245 \pm 7.7 \cdot 10^{-1} \) | \(a_{638}= -0.46960808 \pm 1.0 \) | \(a_{639}= -0.79593188 \pm 9.0 \cdot 10^{-1} \) |
| \(a_{640}= -1.72501259 \pm 9.1 \cdot 10^{-1} \) | \(a_{641}= +1.19059547 \pm 7.6 \cdot 10^{-1} \) | \(a_{642}= -0.86442307 \pm 1.0 \) |
| \(a_{643}= -1.06360854 \pm 8.7 \cdot 10^{-1} \) | \(a_{644}= +0.00657548 \pm 1.0 \) | \(a_{645}= +2.97662844 \pm 1.0 \) |
| \(a_{646}= +1.18231554 \pm 1.0 \) | \(a_{647}= +1.09732049 \pm 8.1 \cdot 10^{-1} \) | \(a_{648}= +0.33005266 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{649}= +0.10621028 \pm 8.4 \cdot 10^{-1} \) | \(a_{650}= -0.25290752 \pm 9.3 \cdot 10^{-1} \) | \(a_{651}= -0.06413758 \pm 1.0 \) |
| \(a_{652}= -0.00926581 \pm 1.0 \) | \(a_{653}= -0.76736577 \pm 7.9 \cdot 10^{-1} \) | \(a_{654}= +1.50862085 \pm 1.2 \) |
| \(a_{655}= -1.48581889 \pm 9.5 \cdot 10^{-1} \) | \(a_{656}= -0.51300956 \pm 1.1 \) | \(a_{657}= -1.20859740 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{658}= +0.16318021 \pm 9.7 \cdot 10^{-1} \) | \(a_{659}= -0.31596337 \pm 8.4 \cdot 10^{-1} \) | \(a_{660}= -0.01183310 \pm 1.3 \) |
| \(a_{661}= +1.13144329 \pm 8.2 \cdot 10^{-1} \) | \(a_{662}= +1.23501698 \pm 9.4 \cdot 10^{-1} \) | \(a_{663}= -0.22556453 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{664}= +0.11678230 \pm 1.1 \) | \(a_{665}= +2.22119830 \pm 9.3 \cdot 10^{-1} \) | \(a_{666}= +0.89674523 \pm 1.0 \) |
| \(a_{667}= +0.57699440 \pm 8.1 \cdot 10^{-1} \) | \(a_{668}= -0.01440101 \pm 9.6 \cdot 10^{-1} \) | \(a_{669}= +0.04363194 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{670}= +3.43978264 \pm 9.1 \cdot 10^{-1} \) | \(a_{671}= -0.10730658 \pm 8.7 \cdot 10^{-1} \) | \(a_{672}= -0.04901878 \pm 1.2 \) |
| \(a_{673}= +0.93451545 \pm 8.1 \cdot 10^{-1} \) | \(a_{674}= -0.08592886 \pm 9.5 \cdot 10^{-1} \) | \(a_{675}= -1.51039627 \pm 8.0 \cdot 10^{-1} \) |
| \(a_{676}= +0.01226447 \pm 9.9 \cdot 10^{-1} \) | \(a_{677}= -0.63713043 \pm 7.9 \cdot 10^{-1} \) | \(a_{678}= -2.85000119 \pm 1.1 \) |
| \(a_{679}= +1.90234599 \pm 8.8 \cdot 10^{-1} \) | \(a_{680}= -2.09212699 \pm 1.1 \) | \(a_{681}= -1.14110209 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{682}= +0.01115557 \pm 1.0 \) | \(a_{683}= -1.55084613 \pm 8.4 \cdot 10^{-1} \) | \(a_{684}= +0.01828955 \pm 1.1 \) |
| \(a_{685}= -0.59922927 \pm 9.2 \cdot 10^{-1} \) | \(a_{686}= -0.52915237 \pm 1.0 \) | \(a_{687}= -0.57564207 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{688}= -1.06555300 \pm 1.0 \) | \(a_{689}= +0.10437696 \pm 9.4 \cdot 10^{-1} \) | \(a_{690}= -1.15338679 \pm 1.2 \) |
| \(a_{691}= +1.25267411 \pm 7.6 \cdot 10^{-1} \) | \(a_{692}= +0.00203148 \pm 9.5 \cdot 10^{-1} \) | \(a_{693}= +0.63168455 \pm 1.0 \) |
| \(a_{694}= +0.72184194 \pm 9.4 \cdot 10^{-1} \) | \(a_{695}= -1.28493523 \pm 8.9 \cdot 10^{-1} \) | \(a_{696}= -2.16399044 \pm 1.2 \) |
| \(a_{697}= -0.61434323 \pm 8.2 \cdot 10^{-1} \) | \(a_{698}= -1.67731746 \pm 1.0 \) | \(a_{699}= +0.07848634 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{700}= -0.03269988 \pm 1.1 \) | \(a_{701}= -0.91464980 \pm 7.7 \cdot 10^{-1} \) | \(a_{702}= +0.08723832 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{703}= -0.62180807 \pm 7.8 \cdot 10^{-1} \) | \(a_{704}= +0.34880062 \pm 8.7 \cdot 10^{-1} \) | \(a_{705}= +0.36080700 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{706}= -1.52279983 \pm 1.0 \) | \(a_{707}= \pm0.12490909 \pm 8.8 \cdot 10^{-2} \) | \(a_{708}= +0.00601772 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{709}= -0.22597939 \pm 8.1 \cdot 10^{-1} \) | \(a_{710}= +0.95258692 \pm 1.0 \) | \(a_{711}= -1.40720275 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{712}= +0.37435995 \pm 1.0 \) | \(a_{713}= -0.01370654 \pm 8.1 \cdot 10^{-1} \) | \(a_{714}= +2.31364003 \pm 1.1 \) |
| \(a_{715}= +0.07370618 \pm 8.4 \cdot 10^{-1} \) | \(a_{716}= -0.01162779 \pm 1.0 \) | \(a_{717}= -1.23837259 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{718}= +0.28513410 \pm 9.2 \cdot 10^{-1} \) | \(a_{719}= +0.21941234 \pm 9.0 \cdot 10^{-1} \) | \(a_{720}= +2.53546662 \pm 1.1 \) |
| \(a_{721}= -0.31652785 \pm 7.9 \cdot 10^{-1} \) | \(a_{722}= +0.01231981 \pm 1.0 \) | \(a_{723}= -2.09771863 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{724}= +0.00982197 \pm 1.0 \) | \(a_{725}= -2.86939761 \pm 9.5 \cdot 10^{-1} \) | \(a_{726}= +1.37359401 \pm 1.3 \) |
| \(a_{727}= -0.84231022 \pm 8.0 \cdot 10^{-1} \) | \(a_{728}= +0.15360887 \pm 9.9 \cdot 10^{-1} \) | \(a_{729}= -1.61115015 \pm 1.0 \) |
| \(a_{730}= +1.44647305 \pm 1.0 \) | \(a_{731}= -1.27602934 \pm 8.5 \cdot 10^{-1} \) | \(a_{732}= -0.00607984 \pm 1.2 \) |
| \(a_{733}= -0.26439878 \pm 8.4 \cdot 10^{-1} \) | \(a_{734}= -0.74263613 \pm 9.5 \cdot 10^{-1} \) | \(a_{735}= +1.58829713 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{736}= -0.01047555 \pm 9.7 \cdot 10^{-1} \) | \(a_{737}= -0.67831468 \pm 7.9 \cdot 10^{-1} \) | \(a_{738}= +0.75391443 \pm 1.1 \) |
| \(a_{739}= -0.69842197 \pm 8.0 \cdot 10^{-1} \) | \(a_{740}= +0.01352874 \pm 1.0 \) | \(a_{741}= -0.19194163 \pm 9.1 \cdot 10^{-1} \) |
| \(a_{742}= -1.07060551 \pm 9.8 \cdot 10^{-1} \) | \(a_{743}= +1.43872553 \pm 9.0 \cdot 10^{-1} \) | \(a_{744}= +0.05140572 \pm 1.0 \) |
| \(a_{745}= +3.11843239 \pm 9.9 \cdot 10^{-1} \) | \(a_{746}= -0.47099955 \pm 9.1 \cdot 10^{-1} \) | \(a_{747}= -0.16948552 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{748}= +0.00507265 \pm 8.8 \cdot 10^{-1} \) | \(a_{749}= +0.69617164 \pm 8.1 \cdot 10^{-1} \) | \(a_{750}= +2.99472043 \pm 1.2 \) |
| \(a_{751}= -1.04157716 \pm 9.1 \cdot 10^{-1} \) | \(a_{752}= -0.12915922 \pm 1.1 \) | \(a_{753}= -0.66430433 \pm 1.0 \) |
| \(a_{754}= +0.16573227 \pm 1.0 \) | \(a_{755}= +1.86247777 \pm 9.3 \cdot 10^{-1} \) | \(a_{756}= +0.01127955 \pm 1.0 \) |
| \(a_{757}= +1.37408615 \pm 7.9 \cdot 10^{-1} \) | \(a_{758}= -0.79899865 \pm 8.9 \cdot 10^{-1} \) | \(a_{759}= +0.22744436 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{760}= -1.78027179 \pm 1.1 \) | \(a_{761}= -1.35527353 \pm 9.1 \cdot 10^{-1} \) | \(a_{762}= -1.96602843 \pm 1.1 \) |
| \(a_{763}= -1.21498262 \pm 8.3 \cdot 10^{-1} \) | \(a_{764}= +0.01466341 \pm 1.1 \) | \(a_{765}= +3.03629183 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{766}= +0.40300819 \pm 9.7 \cdot 10^{-1} \) | \(a_{767}= -0.03748333 \pm 8.1 \cdot 10^{-1} \) | \(a_{768}= +0.05856761 \pm 1.0 \) |
| \(a_{769}= -0.15750994 \pm 8.7 \cdot 10^{-1} \) | \(a_{770}= -0.75601247 \pm 1.1 \) | \(a_{771}= +1.60010183 \pm 8.3 \cdot 10^{-1} \) |
| \(a_{772}= +0.01585015 \pm 9.8 \cdot 10^{-1} \) | \(a_{773}= -1.30652186 \pm 7.7 \cdot 10^{-1} \) | \(a_{774}= +1.56592747 \pm 1.1 \) |
| \(a_{775}= +0.06816273 \pm 7.2 \cdot 10^{-1} \) | \(a_{776}= -1.52471437 \pm 1.0 \) | \(a_{777}= -1.21679878 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{778}= +1.01903590 \pm 9.2 \cdot 10^{-1} \) | \(a_{779}= -0.52276843 \pm 9.3 \cdot 10^{-1} \) | \(a_{780}= +0.00417606 \pm 1.1 \) |
| \(a_{781}= -0.18784726 \pm 7.7 \cdot 10^{-1} \) | \(a_{782}= +0.49443708 \pm 9.3 \cdot 10^{-1} \) | \(a_{783}= +0.98977462 \pm 8.5 \cdot 10^{-1} \) |
| \(a_{784}= -0.56856768 \pm 9.9 \cdot 10^{-1} \) | \(a_{785}= +2.55441457 \pm 8.6 \cdot 10^{-1} \) | \(a_{786}= -1.31696006 \pm 1.0 \) |
| \(a_{787}= -0.11443826 \pm 8.2 \cdot 10^{-1} \) | \(a_{788}= -0.01040747 \pm 1.1 \) | \(a_{789}= +1.06450770 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{790}= +1.68416789 \pm 1.0 \) | \(a_{791}= +2.29527659 \pm 8.5 \cdot 10^{-1} \) | \(a_{792}= -0.50628986 \pm 1.0 \) |
| \(a_{793}= +0.03787022 \pm 9.7 \cdot 10^{-1} \) | \(a_{794}= -0.08102633 \pm 1.0 \) | \(a_{795}= -2.36721068 \pm 1.0 \) |
| \(a_{796}= +0.00860254 \pm 9.2 \cdot 10^{-1} \) | \(a_{797}= -0.22046933 \pm 8.1 \cdot 10^{-1} \) | \(a_{798}= +1.96876583 \pm 1.4 \) |
| \(a_{799}= -0.15467178 \pm 7.9 \cdot 10^{-1} \) | \(a_{800}= +0.05209509 \pm 9.2 \cdot 10^{-1} \) | \(a_{801}= -0.54330644 \pm 8.4 \cdot 10^{-1} \) |
| \(a_{802}= -0.24474961 \pm 9.9 \cdot 10^{-1} \) | \(a_{803}= -0.28524007 \pm 8.4 \cdot 10^{-1} \) | \(a_{804}= -0.03843233 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{805}= +0.92889142 \pm 8.7 \cdot 10^{-1} \) | \(a_{806}= -0.00393700 \pm 1.0 \) | \(a_{807}= +1.19546778 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{808}= \pm0.10011359 \pm 1.0 \cdot 10^{-1} \) | \(a_{809}= -0.23638665 \pm 8.5 \cdot 10^{-1} \) | \(a_{810}= +0.57328080 \pm 1.1 \) |
| \(a_{811}= +0.96829344 \pm 8.6 \cdot 10^{-1} \) | \(a_{812}= +0.02142850 \pm 1.1 \) | \(a_{813}= +2.37967284 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{814}= +0.21164013 \pm 9.5 \cdot 10^{-1} \) | \(a_{815}= -1.30894454 \pm 8.6 \cdot 10^{-1} \) | \(a_{816}= -1.83127538 \pm 1.1 \) |
| \(a_{817}= -1.08582276 \pm 8.5 \cdot 10^{-1} \) | \(a_{818}= +0.08597639 \pm 1.0 \) | \(a_{819}= -0.22293165 \pm 1.0 \) |
| \(a_{820}= +0.01137391 \pm 1.3 \) | \(a_{821}= -0.84846380 \pm 8.1 \cdot 10^{-1} \) | \(a_{822}= -0.53112867 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{823}= -0.69153537 \pm 8.0 \cdot 10^{-1} \) | \(a_{824}= +0.25369444 \pm 9.9 \cdot 10^{-1} \) | \(a_{825}= -1.13108263 \pm 1.0 \) |
| \(a_{826}= +0.38447054 \pm 9.4 \cdot 10^{-1} \) | \(a_{827}= -1.09441894 \pm 8.7 \cdot 10^{-1} \) | \(a_{828}= +0.00764862 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{829}= +0.40214915 \pm 9.1 \cdot 10^{-1} \) | \(a_{830}= +0.20284358 \pm 1.0 \) | \(a_{831}= -2.25590473 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{832}= -0.12309737 \pm 9.9 \cdot 10^{-1} \) | \(a_{833}= -0.68087567 \pm 7.4 \cdot 10^{-1} \) | \(a_{834}= -1.13890624 \pm 1.0 \) |
| \(a_{835}= -2.03437413 \pm 9.1 \cdot 10^{-1} \) | \(a_{836}= +0.00431648 \pm 1.0 \) | \(a_{837}= -0.02351214 \pm 9.2 \cdot 10^{-1} \) |
| \(a_{838}= +0.57918672 \pm 1.0 \) | \(a_{839}= +0.78955921 \pm 8.2 \cdot 10^{-1} \) | \(a_{840}= -3.48376381 \pm 1.3 \) |
| \(a_{841}= +0.88033689 \pm 8.3 \cdot 10^{-1} \) | \(a_{842}= +1.87079390 \pm 1.0 \) | \(a_{843}= -0.14751812 \pm 8.7 \cdot 10^{-1} \) |
| \(a_{844}= +0.00232800 \pm 9.3 \cdot 10^{-1} \) | \(a_{845}= +1.73255123 \pm 8.3 \cdot 10^{-1} \) | \(a_{846}= +0.18981128 \pm 1.0 \) |
| \(a_{847}= -1.10623744 \pm 9.2 \cdot 10^{-1} \) | \(a_{848}= +0.84739780 \pm 1.0 \) | \(a_{849}= -1.87761700 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{850}= -2.45883938 \pm 9.7 \cdot 10^{-1} \) | \(a_{851}= -0.26003631 \pm 7.4 \cdot 10^{-1} \) | \(a_{852}= -0.01064319 \pm 1.0 \) |
| \(a_{853}= -0.09888974 \pm 7.9 \cdot 10^{-1} \) | \(a_{854}= -0.38843902 \pm 1.0 \) | \(a_{855}= +2.58369820 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{856}= -0.55797571 \pm 1.0 \) | \(a_{857}= +1.78859508 \pm 8.1 \cdot 10^{-1} \) | \(a_{858}= +0.06532972 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{859}= +1.64551815 \pm 8.4 \cdot 10^{-1} \) | \(a_{860}= +0.02362432 \pm 1.0 \) | \(a_{861}= -1.02299083 \pm 1.0 \) |
| \(a_{862}= +1.36380303 \pm 9.2 \cdot 10^{-1} \) | \(a_{863}= +0.02132910 \pm 7.8 \cdot 10^{-1} \) | \(a_{864}= -0.01796975 \pm 1.0 \) |
| \(a_{865}= +0.28698178 \pm 8.5 \cdot 10^{-1} \) | \(a_{866}= +0.76471265 \pm 9.5 \cdot 10^{-1} \) | \(a_{867}= -0.62450189 \pm 7.9 \cdot 10^{-1} \) |
| \(a_{868}= -0.00050906 \pm 9.5 \cdot 10^{-1} \) | \(a_{869}= -0.33211278 \pm 6.8 \cdot 10^{-1} \) | \(a_{870}= -3.75871607 \pm 1.3 \) |
| \(a_{871}= +0.23938819 \pm 7.4 \cdot 10^{-1} \) | \(a_{872}= +0.97379839 \pm 9.7 \cdot 10^{-1} \) | \(a_{873}= +2.21280919 \pm 1.0 \) |
| \(a_{874}= +0.42073561 \pm 1.0 \) | \(a_{875}= -2.41182760 \pm 9.3 \cdot 10^{-1} \) | \(a_{876}= -0.01616129 \pm 1.1 \) |
| \(a_{877}= +1.78520720 \pm 8.3 \cdot 10^{-1} \) | \(a_{878}= -0.48977394 \pm 9.0 \cdot 10^{-1} \) | \(a_{879}= +0.22545580 \pm 9.3 \cdot 10^{-1} \) |
| \(a_{880}= +0.59839344 \pm 1.3 \) | \(a_{881}= -0.35563276 \pm 8.4 \cdot 10^{-1} \) | \(a_{882}= +0.83556216 \pm 1.3 \) |
| \(a_{883}= +1.74314642 \pm 8.9 \cdot 10^{-1} \) | \(a_{884}= -0.00179022 \pm 1.0 \) | \(a_{885}= +0.85010093 \pm 9.9 \cdot 10^{-1} \) |
| \(a_{886}= +0.51055840 \pm 9.6 \cdot 10^{-1} \) | \(a_{887}= -0.57041571 \pm 8.5 \cdot 10^{-1} \) | \(a_{888}= +0.97525402 \pm 1.1 \) |
| \(a_{889}= +1.58336036 \pm 9.5 \cdot 10^{-1} \) | \(a_{890}= +0.65023978 \pm 1.1 \) | \(a_{891}= -0.11304921 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{892}= +0.00034630 \pm 1.0 \) | \(a_{893}= -0.13161618 \pm 8.1 \cdot 10^{-1} \) | \(a_{894}= +2.76403195 \pm 1.0 \) |
| \(a_{895}= -1.64261378 \pm 9.8 \cdot 10^{-1} \) | \(a_{896}= +1.23137114 \pm 9.2 \cdot 10^{-1} \) | \(a_{897}= -0.08026879 \pm 7.6 \cdot 10^{-1} \) |
| \(a_{898}= -1.66189632 \pm 9.5 \cdot 10^{-1} \) | \(a_{899}= -0.04466757 \pm 8.1 \cdot 10^{-1} \) | \(a_{900}= -0.03803651 \pm 1.2 \) |
| \(a_{901}= +1.01478244 \pm 8.8 \cdot 10^{-1} \) | \(a_{902}= +0.17793073 \pm 1.0 \) | \(a_{903}= -2.12481601 \pm 1.0 \) |
| \(a_{904}= -1.83964491 \pm 1.2 \) | \(a_{905}= +1.38751134 \pm 8.7 \cdot 10^{-1} \) | \(a_{906}= +1.65081278 \pm 1.0 \) |
| \(a_{907}= -0.15343505 \pm 7.7 \cdot 10^{-1} \) | \(a_{908}= -0.00905647 \pm 9.7 \cdot 10^{-1} \) | \(a_{909}= \pm0.14529427 \pm 9.5 \cdot 10^{-2} \) |
| \(a_{910}= +0.26680900 \pm 9.8 \cdot 10^{-1} \) | \(a_{911}= -0.22582741 \pm 8.3 \cdot 10^{-1} \) | \(a_{912}= -1.55830304 \pm 1.1 \) |
| \(a_{913}= -0.04000012 \pm 8.6 \cdot 10^{-1} \) | \(a_{914}= +1.02758606 \pm 8.4 \cdot 10^{-1} \) | \(a_{915}= -0.85887564 \pm 1.0 \) |
| \(a_{916}= -0.00456865 \pm 9.3 \cdot 10^{-1} \) | \(a_{917}= +1.06062677 \pm 8.8 \cdot 10^{-1} \) | \(a_{918}= +0.84815599 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{919}= +0.41993727 \pm 9.3 \cdot 10^{-1} \) | \(a_{920}= -0.74449868 \pm 1.1 \) | \(a_{921}= +2.00849784 \pm 9.5 \cdot 10^{-1} \) |
| \(a_{922}= -0.03159669 \pm 9.9 \cdot 10^{-1} \) | \(a_{923}= +0.06629433 \pm 8.6 \cdot 10^{-1} \) | \(a_{924}= +0.00844685 \pm 1.1 \) |
| \(a_{925}= +1.29316261 \pm 9.6 \cdot 10^{-1} \) | \(a_{926}= +0.13236848 \pm 1.0 \) | \(a_{927}= -0.36818525 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{928}= -0.03413831 \pm 9.9 \cdot 10^{-1} \) | \(a_{929}= -0.81426122 \pm 8.7 \cdot 10^{-1} \) | \(a_{930}= +0.08928856 \pm 1.0 \) |
| \(a_{931}= -0.57938339 \pm 8.5 \cdot 10^{-1} \) | \(a_{932}= +0.00062290 \pm 1.0 \) | \(a_{933}= +2.00302794 \pm 9.8 \cdot 10^{-1} \) |
| \(a_{934}= -1.20633970 \pm 1.0 \) | \(a_{935}= +0.71659276 \pm 9.5 \cdot 10^{-1} \) | \(a_{936}= +0.17867786 \pm 1.0 \) |
| \(a_{937}= -1.68547863 \pm 8.0 \cdot 10^{-1} \) | \(a_{938}= -2.45543083 \pm 1.0 \) | \(a_{939}= -0.99581938 \pm 9.7 \cdot 10^{-1} \) |
| \(a_{940}= +0.00286358 \pm 1.1 \) | \(a_{941}= -1.19572753 \pm 8.1 \cdot 10^{-1} \) | \(a_{942}= +2.26411308 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{943}= -0.21861856 \pm 7.4 \cdot 10^{-1} \) | \(a_{944}= -0.30431329 \pm 8.8 \cdot 10^{-1} \) | \(a_{945}= +1.59341784 \pm 1.1 \) |
| \(a_{946}= +0.36957326 \pm 1.0 \) | \(a_{947}= -0.70317148 \pm 8.9 \cdot 10^{-1} \) | \(a_{948}= -0.01881704 \pm 1.1 \) |
| \(a_{949}= +0.10066584 \pm 8.2 \cdot 10^{-1} \) | \(a_{950}= -2.09232155 \pm 1.0 \) | \(a_{951}= -0.94484607 \pm 7.9 \cdot 10^{-1} \) |
| \(a_{952}= +1.49342957 \pm 1.0 \) | \(a_{953}= +1.49416370 \pm 8.5 \cdot 10^{-1} \) | \(a_{954}= -1.24532851 \pm 1.0 \) |
| \(a_{955}= +2.07144926 \pm 9.1 \cdot 10^{-1} \) | \(a_{956}= -0.00982850 \pm 1.0 \) | \(a_{957}= +0.74120738 \pm 9.4 \cdot 10^{-1} \) |
| \(a_{958}= -0.89734467 \pm 9.7 \cdot 10^{-1} \) | \(a_{959}= +0.42774972 \pm 8.1 \cdot 10^{-1} \) | \(a_{960}= +2.79178002 \pm 1.0 \) |
| \(a_{961}= -0.99894095 \pm 7.6 \cdot 10^{-1} \) | \(a_{962}= -0.07469119 \pm 8.8 \cdot 10^{-1} \) | \(a_{963}= +0.80978694 \pm 8.4 \cdot 10^{-1} \) |
| \(a_{964}= -0.01664879 \pm 8.3 \cdot 10^{-1} \) | \(a_{965}= +2.23908914 \pm 9.1 \cdot 10^{-1} \) | \(a_{966}= +0.82332569 \pm 1.3 \) |
| \(a_{967}= -0.98602356 \pm 8.5 \cdot 10^{-1} \) | \(a_{968}= +0.88664005 \pm 1.4 \) | \(a_{969}= -1.86611128 \pm 8.9 \cdot 10^{-1} \) |
| \(a_{970}= -2.64833346 \pm 1.1 \) | \(a_{971}= +1.07142374 \pm 7.9 \cdot 10^{-1} \) | \(a_{972}= -0.01539064 \pm 1.2 \) |
| \(a_{973}= +0.91722935 \pm 8.8 \cdot 10^{-1} \) | \(a_{974}= -1.41220339 \pm 1.0 \) | \(a_{975}= +0.39917730 \pm 8.6 \cdot 10^{-1} \) |
| \(a_{976}= +0.30745438 \pm 1.0 \) | \(a_{977}= +0.26484704 \pm 7.8 \cdot 10^{-1} \) | \(a_{978}= -1.16018696 \pm 1.1 \) |
| \(a_{979}= -0.12822530 \pm 8.4 \cdot 10^{-1} \) | \(a_{980}= +0.01260572 \pm 9.3 \cdot 10^{-1} \) | \(a_{981}= -1.41326798 \pm 9.6 \cdot 10^{-1} \) |
| \(a_{982}= -1.19183574 \pm 9.7 \cdot 10^{-1} \) | \(a_{983}= -0.82497297 \pm 8.0 \cdot 10^{-1} \) | \(a_{984}= +0.81991861 \pm 1.2 \) |
| \(a_{985}= -1.47022957 \pm 9.3 \cdot 10^{-1} \) | \(a_{986}= +1.61129688 \pm 1.0 \) | \(a_{987}= -0.25755603 \pm 1.0 \) |
| \(a_{988}= -0.00152334 \pm 1.0 \) | \(a_{989}= -0.45408438 \pm 9.1 \cdot 10^{-1} \) | \(a_{990}= -0.87939378 \pm 1.0 \) |
| \(a_{991}= +0.48255493 \pm 7.5 \cdot 10^{-1} \) | \(a_{992}= +0.00081098 \pm 9.8 \cdot 10^{-1} \) | \(a_{993}= -1.94929274 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{994}= -0.67998811 \pm 9.5 \cdot 10^{-1} \) | \(a_{995}= +1.21524744 \pm 8.7 \cdot 10^{-1} \) | \(a_{996}= -0.00226633 \pm 1.1 \) |
| \(a_{997}= -1.54197517 \pm 9.2 \cdot 10^{-1} \) | \(a_{998}= -0.91719747 \pm 9.7 \cdot 10^{-1} \) | \(a_{999}= -0.44606556 \pm 8.8 \cdot 10^{-1} \) |
| \(a_{1000}= +1.93305960 \pm 1.2 \) |
Displaying $a_n$ with $n$ up to: 60 180 1000