Maass form invariants
| Level: | \( 101 \) |
| Weight: | \( 0 \) |
| Character: | 101.1 |
| Symmetry: | even |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(0.881980379496583899111386982194 \pm 3 \cdot 10^{-6}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.25379811 \pm 3.0 \cdot 10^{-4} \) | \(a_{3}= +0.02554520 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{4}= -0.93558652 \pm 3.2 \cdot 10^{-4} \) | \(a_{5}= -0.67747235 \pm 2.6 \cdot 10^{-4} \) | \(a_{6}= +0.00648332 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{7}= +0.72802564 \pm 2.6 \cdot 10^{-4} \) | \(a_{8}= -0.49124820 \pm 3.2 \cdot 10^{-4} \) | \(a_{9}= -0.99934744 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{10}= -0.17194120 \pm 3.2 \cdot 10^{-4} \) | \(a_{11}= +1.64482086 \pm 2.6 \cdot 10^{-4} \) | \(a_{12}= -0.02389975 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{13}= -0.14764973 \pm 2.5 \cdot 10^{-4} \) | \(a_{14}= +0.18477153 \pm 3.1 \cdot 10^{-4} \) | \(a_{15}= -0.01730617 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{16}= +0.81090865 \pm 3.2 \cdot 10^{-4} \) | \(a_{17}= +0.29992340 \pm 2.5 \cdot 10^{-4} \) | \(a_{18}= -0.25363249 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{19}= +0.03079351 \pm 2.2 \cdot 10^{-4} \) | \(a_{20}= +0.63383400 \pm 3.4 \cdot 10^{-4} \) | \(a_{21}= +0.01859756 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{22}= +0.41745243 \pm 2.9 \cdot 10^{-4} \) | \(a_{23}= -0.94784463 \pm 2.5 \cdot 10^{-4} \) | \(a_{24}= -0.01254904 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{25}= -0.54103121 \pm 2.6 \cdot 10^{-4} \) | \(a_{26}= -0.03747322 \pm 3.1 \cdot 10^{-4} \) | \(a_{27}= -0.05107374 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{28}= -0.68113097 \pm 3.4 \cdot 10^{-4} \) | \(a_{29}= +1.21070858 \pm 2.6 \cdot 10^{-4} \) | \(a_{30}= -0.00439227 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{31}= +0.99431624 \pm 2.4 \cdot 10^{-4} \) | \(a_{32}= +0.69705528 \pm 3.4 \cdot 10^{-4} \) | \(a_{33}= +0.04201728 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{34}= +0.07611999 \pm 3.0 \cdot 10^{-4} \) | \(a_{35}= -0.49321724 \pm 2.7 \cdot 10^{-4} \) | \(a_{36}= +0.93497599 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{37}= -0.02001555 \pm 2.6 \cdot 10^{-4} \) | \(a_{38}= +0.00781533 \pm 2.5 \cdot 10^{-4} \) | \(a_{39}= -0.00377174 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{40}= +0.33280708 \pm 3.2 \cdot 10^{-4} \) | \(a_{41}= +0.33525195 \pm 2.3 \cdot 10^{-4} \) | \(a_{42}= +0.00472003 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{43}= -1.49523624 \pm 2.3 \cdot 10^{-4} \) | \(a_{44}= -1.53887222 \pm 3.1 \cdot 10^{-4} \) | \(a_{45}= +0.67703026 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{46}= -0.24056118 \pm 2.9 \cdot 10^{-4} \) | \(a_{47}= -1.77569741 \pm 2.5 \cdot 10^{-4} \) | \(a_{48}= +0.02071483 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{49}= -0.46997867 \pm 2.4 \cdot 10^{-4} \) | \(a_{50}= -0.13731270 \pm 3.1 \cdot 10^{-4} \) | \(a_{51}= +0.00766160 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{52}= +0.13813910 \pm 3.2 \cdot 10^{-4} \) | \(a_{53}= +1.63645960 \pm 2.5 \cdot 10^{-4} \) | \(a_{54}= -0.01296242 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{55}= -1.11432066 \pm 2.8 \cdot 10^{-4} \) | \(a_{56}= -0.35764128 \pm 3.3 \cdot 10^{-4} \) | \(a_{57}= +0.00078663 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{58}= +0.30727555 \pm 3.0 \cdot 10^{-4} \) | \(a_{59}= +1.57000893 \pm 2.3 \cdot 10^{-4} \) | \(a_{60}= +0.01619142 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{61}= -0.52470367 \pm 2.4 \cdot 10^{-4} \) | \(a_{62}= +0.25235558 \pm 3.0 \cdot 10^{-4} \) | \(a_{63}= -0.72755056 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{64}= -0.63399734 \pm 3.4 \cdot 10^{-4} \) | \(a_{65}= +0.10002861 \pm 2.8 \cdot 10^{-4} \) | \(a_{66}= +0.01066391 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{67}= -1.21307242 \pm 2.4 \cdot 10^{-4} \) | \(a_{68}= -0.28060429 \pm 3.5 \cdot 10^{-4} \) | \(a_{69}= -0.02421288 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{70}= -0.12517760 \pm 3.2 \cdot 10^{-4} \) | \(a_{71}= +0.50891483 \pm 2.3 \cdot 10^{-4} \) | \(a_{72}= +0.49092763 \pm 4.1 \cdot 10^{-4} \) |
| \(a_{73}= -1.39991345 \pm 2.3 \cdot 10^{-4} \) | \(a_{74}= -0.00507991 \pm 3.2 \cdot 10^{-4} \) | \(a_{75}= -0.01382075 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{76}= -0.02880999 \pm 2.7 \cdot 10^{-4} \) | \(a_{77}= +1.19747175 \pm 2.9 \cdot 10^{-4} \) | \(a_{78}= -0.00095726 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{79}= +1.13724540 \pm 2.6 \cdot 10^{-4} \) | \(a_{80}= -0.54936820 \pm 3.2 \cdot 10^{-4} \) | \(a_{81}= +0.99804275 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{82}= +0.08508631 \pm 2.8 \cdot 10^{-4} \) | \(a_{83}= +1.21774613 \pm 2.7 \cdot 10^{-4} \) | \(a_{84}= -0.01739963 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{85}= -0.20318981 \pm 2.8 \cdot 10^{-4} \) | \(a_{86}= -0.37948813 \pm 2.7 \cdot 10^{-4} \) | \(a_{87}= +0.03092780 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{88}= -0.80801529 \pm 3.1 \cdot 10^{-4} \) | \(a_{89}= +0.33093428 \pm 2.6 \cdot 10^{-4} \) | \(a_{90}= +0.17182900 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{91}= -0.10749279 \pm 2.5 \cdot 10^{-4} \) | \(a_{92}= +0.88679066 \pm 3.1 \cdot 10^{-4} \) | \(a_{93}= +0.02540001 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{94}= -0.45066865 \pm 3.1 \cdot 10^{-4} \) | \(a_{95}= -0.02086175 \pm 2.5 \cdot 10^{-4} \) | \(a_{96}= +0.01780642 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{97}= +1.76988024 \pm 2.4 \cdot 10^{-4} \) | \(a_{98}= -0.11927970 \pm 2.9 \cdot 10^{-4} \) | \(a_{99}= -1.64374752 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{100}= +0.50618151 \pm 3.3 \cdot 10^{-4} \) | \(a_{101}= -0.09950372 \pm 1.0 \cdot 10^{-8} \) | \(a_{102}= +0.00194450 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{103}= +0.04998228 \pm 2.5 \cdot 10^{-4} \) | \(a_{104}= +0.07253266 \pm 3.1 \cdot 10^{-4} \) | \(a_{105}= -0.01259934 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{106}= +0.41533035 \pm 3.1 \cdot 10^{-4} \) | \(a_{107}= +0.89336094 \pm 2.4 \cdot 10^{-4} \) | \(a_{108}= +0.04778390 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{109}= -0.48594270 \pm 2.5 \cdot 10^{-4} \) | \(a_{110}= -0.28281248 \pm 3.2 \cdot 10^{-4} \) | \(a_{111}= -0.00051130 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{112}= +0.59036229 \pm 3.3 \cdot 10^{-4} \) | \(a_{113}= -0.00915029 \pm 2.6 \cdot 10^{-4} \) | \(a_{114}= +0.00019964 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{115}= +0.64213854 \pm 2.6 \cdot 10^{-4} \) | \(a_{116}= -1.13272262 \pm 3.0 \cdot 10^{-4} \) | \(a_{117}= +0.14755338 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{118}= +0.39846530 \pm 2.8 \cdot 10^{-4} \) | \(a_{119}= +0.21835192 \pm 2.7 \cdot 10^{-4} \) | \(a_{120}= +0.00850162 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{121}= +1.70543565 \pm 2.5 \cdot 10^{-4} \) | \(a_{122}= -0.13316880 \pm 2.9 \cdot 10^{-4} \) | \(a_{123}= +0.00856408 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{124}= -0.93026887 \pm 3.2 \cdot 10^{-4} \) | \(a_{125}= +1.04400604 \pm 2.7 \cdot 10^{-4} \) | \(a_{126}= -0.18465096 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{127}= -0.47046110 \pm 2.4 \cdot 10^{-4} \) | \(a_{128}= -0.85796261 \pm 3.3 \cdot 10^{-4} \) | \(a_{129}= -0.03819611 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{130}= +0.02538707 \pm 3.6 \cdot 10^{-4} \) | \(a_{131}= -1.32043588 \pm 2.4 \cdot 10^{-4} \) | \(a_{132}= -0.03931080 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{133}= +0.02241846 \pm 2.3 \cdot 10^{-4} \) | \(a_{134}= -0.30787549 \pm 2.9 \cdot 10^{-4} \) | \(a_{135}= +0.03460105 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{136}= -0.14733683 \pm 3.5 \cdot 10^{-4} \) | \(a_{137}= -0.13429880 \pm 2.5 \cdot 10^{-4} \) | \(a_{138}= -0.00614518 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{139}= +0.78146175 \pm 2.3 \cdot 10^{-4} \) | \(a_{140}= +0.46144740 \pm 3.4 \cdot 10^{-4} \) | \(a_{141}= -0.04536055 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{142}= +0.12916162 \pm 3.0 \cdot 10^{-4} \) | \(a_{143}= -0.24285736 \pm 2.5 \cdot 10^{-4} \) | \(a_{144}= -0.81037949 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{145}= -0.82022159 \pm 2.8 \cdot 10^{-4} \) | \(a_{146}= -0.35529539 \pm 2.7 \cdot 10^{-4} \) | \(a_{147}= -0.01200570 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{148}= +0.01872628 \pm 3.4 \cdot 10^{-4} \) | \(a_{149}= -0.76769219 \pm 2.7 \cdot 10^{-4} \) | \(a_{150}= -0.00350768 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{151}= +0.13412836 \pm 2.2 \cdot 10^{-4} \) | \(a_{152}= -0.01512726 \pm 2.7 \cdot 10^{-4} \) | \(a_{153}= -0.29972768 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{154}= +0.30391607 \pm 3.3 \cdot 10^{-4} \) | \(a_{155}= -0.67362177 \pm 2.5 \cdot 10^{-4} \) | \(a_{156}= +0.00352879 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{157}= +0.50419882 \pm 2.3 \cdot 10^{-4} \) | \(a_{158}= +0.28863073 \pm 3.1 \cdot 10^{-4} \) | \(a_{159}= +0.04180369 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{160}= -0.47223569 \pm 3.3 \cdot 10^{-4} \) | \(a_{161}= -0.69005519 \pm 2.3 \cdot 10^{-4} \) | \(a_{162}= +0.25330136 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{163}= -1.65209592 \pm 2.5 \cdot 10^{-4} \) | \(a_{164}= -0.31365721 \pm 3.1 \cdot 10^{-4} \) | \(a_{165}= -0.02846555 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{166}= +0.30906167 \pm 3.2 \cdot 10^{-4} \) | \(a_{167}= -1.30303001 \pm 2.7 \cdot 10^{-4} \) | \(a_{168}= -0.00913602 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{169}= -0.97819956 \pm 2.5 \cdot 10^{-4} \) | \(a_{170}= -0.05156919 \pm 3.2 \cdot 10^{-4} \) | \(a_{171}= -0.03077341 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{172}= +1.39892287 \pm 2.9 \cdot 10^{-4} \) | \(a_{173}= +1.20335960 \pm 2.7 \cdot 10^{-4} \) | \(a_{174}= +0.00784942 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{175}= -0.39388459 \pm 2.5 \cdot 10^{-4} \) | \(a_{176}= +1.33379947 \pm 3.0 \cdot 10^{-4} \) | \(a_{177}= +0.04010620 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{178}= +0.08399050 \pm 3.3 \cdot 10^{-4} \) | \(a_{179}= -1.20049145 \pm 2.5 \cdot 10^{-4} \) | \(a_{180}= -0.63342039 \pm 4.1 \cdot 10^{-4} \) |
| \(a_{181}= +1.09760693 \pm 2.5 \cdot 10^{-4} \) | \(a_{182}= -0.02728147 \pm 3.1 \cdot 10^{-4} \) | \(a_{183}= -0.01340366 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{184}= +0.46562697 \pm 3.1 \cdot 10^{-4} \) | \(a_{185}= +0.01355998 \pm 2.5 \cdot 10^{-4} \) | \(a_{186}= +0.00644647 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{187}= +0.49332026 \pm 2.4 \cdot 10^{-4} \) | \(a_{188}= +1.66131856 \pm 3.2 \cdot 10^{-4} \) | \(a_{189}= -0.03718299 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{190}= -0.00529467 \pm 3.0 \cdot 10^{-4} \) | \(a_{191}= +0.73323784 \pm 2.3 \cdot 10^{-4} \) | \(a_{192}= -0.01619559 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{193}= -1.81148429 \pm 2.6 \cdot 10^{-4} \) | \(a_{194}= +0.44919226 \pm 2.6 \cdot 10^{-4} \) | \(a_{195}= +0.00255525 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{196}= +0.43970571 \pm 3.1 \cdot 10^{-4} \) | \(a_{197}= +0.04138968 \pm 2.5 \cdot 10^{-4} \) | \(a_{198}= -0.41718001 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{199}= +0.20127198 \pm 2.3 \cdot 10^{-4} \) | \(a_{200}= +0.26578061 \pm 3.2 \cdot 10^{-4} \) | \(a_{201}= -0.03098818 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{202}= -0.02525386 \pm 3.0 \cdot 10^{-4} \) | \(a_{203}= +0.88142688 \pm 2.5 \cdot 10^{-4} \) | \(a_{204}= -0.00716809 \pm 4.2 \cdot 10^{-4} \) |
| \(a_{205}= -0.22712393 \pm 2.4 \cdot 10^{-4} \) | \(a_{206}= +0.01268541 \pm 3.0 \cdot 10^{-4} \) | \(a_{207}= +0.94722611 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{208}= -0.11973044 \pm 3.2 \cdot 10^{-4} \) | \(a_{209}= +0.05064980 \pm 2.4 \cdot 10^{-4} \) | \(a_{210}= -0.00319769 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{211}= -0.82424993 \pm 2.5 \cdot 10^{-4} \) | \(a_{212}= -1.53104954 \pm 3.2 \cdot 10^{-4} \) | \(a_{213}= +0.01300033 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{214}= +0.22673332 \pm 2.8 \cdot 10^{-4} \) | \(a_{215}= +1.01298122 \pm 2.5 \cdot 10^{-4} \) | \(a_{216}= +0.02508988 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{217}= +0.72388772 \pm 2.5 \cdot 10^{-4} \) | \(a_{218}= -0.12333134 \pm 3.3 \cdot 10^{-4} \) | \(a_{219}= -0.03576107 \pm 2.2 \cdot 10^{-4} \) |
| \(a_{220}= +1.04254339 \pm 3.4 \cdot 10^{-4} \) | \(a_{221}= -0.04428361 \pm 2.3 \cdot 10^{-4} \) | \(a_{222}= -0.00012977 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{223}= +1.48880437 \pm 2.5 \cdot 10^{-4} \) | \(a_{224}= +0.50747412 \pm 3.4 \cdot 10^{-4} \) | \(a_{225}= +0.54067815 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{226}= -0.00232233 \pm 3.5 \cdot 10^{-4} \) | \(a_{227}= -0.89024576 \pm 2.3 \cdot 10^{-4} \) | \(a_{228}= -0.00073596 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{229}= +0.70487343 \pm 2.4 \cdot 10^{-4} \) | \(a_{230}= +0.16297355 \pm 2.9 \cdot 10^{-4} \) | \(a_{231}= +0.03058966 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{232}= -0.59475841 \pm 3.0 \cdot 10^{-4} \) | \(a_{233}= -1.03491379 \pm 2.5 \cdot 10^{-4} \) | \(a_{234}= +0.03744877 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{235}= +1.20298591 \pm 2.6 \cdot 10^{-4} \) | \(a_{236}= -1.46887919 \pm 3.1 \cdot 10^{-4} \) | \(a_{237}= +0.02905117 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{238}= +0.05541731 \pm 3.1 \cdot 10^{-4} \) | \(a_{239}= -1.43803798 \pm 2.4 \cdot 10^{-4} \) | \(a_{240}= -0.01403372 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{241}= +0.19427753 \pm 2.6 \cdot 10^{-4} \) | \(a_{242}= +0.43283634 \pm 2.8 \cdot 10^{-4} \) | \(a_{243}= +0.07656894 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{244}= +0.49090568 \pm 3.0 \cdot 10^{-4} \) | \(a_{245}= +0.31839756 \pm 2.8 \cdot 10^{-4} \) | \(a_{246}= +0.00217355 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{247}= -0.00454665 \pm 2.2 \cdot 10^{-4} \) | \(a_{248}= -0.48845607 \pm 3.2 \cdot 10^{-4} \) | \(a_{249}= +0.03110757 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{250}= +0.26496676 \pm 3.2 \cdot 10^{-4} \) | \(a_{251}= -0.16740818 \pm 2.3 \cdot 10^{-4} \) | \(a_{252}= +0.68068650 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{253}= -1.55903462 \pm 2.1 \cdot 10^{-4} \) | \(a_{254}= -0.11940214 \pm 2.9 \cdot 10^{-4} \) | \(a_{255}= -0.00519053 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{256}= +0.41624805 \pm 3.2 \cdot 10^{-4} \) | \(a_{257}= +0.54077171 \pm 2.3 \cdot 10^{-4} \) | \(a_{258}= -0.00969410 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{259}= -0.01457183 \pm 2.7 \cdot 10^{-4} \) | \(a_{260}= -0.09358542 \pm 3.7 \cdot 10^{-4} \) | \(a_{261}= -1.20991852 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{262}= -0.33512413 \pm 2.8 \cdot 10^{-4} \) | \(a_{263}= +0.54628934 \pm 2.3 \cdot 10^{-4} \) | \(a_{264}= -0.02064092 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{265}= -1.10865614 \pm 2.4 \cdot 10^{-4} \) | \(a_{266}= +0.00568976 \pm 2.6 \cdot 10^{-4} \) | \(a_{267}= +0.00845378 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{268}= +1.13493420 \pm 3.0 \cdot 10^{-4} \) | \(a_{269}= +0.83975956 \pm 2.6 \cdot 10^{-4} \) | \(a_{270}= +0.00878168 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{271}= +1.08559856 \pm 2.5 \cdot 10^{-4} \) | \(a_{272}= +0.24321048 \pm 3.6 \cdot 10^{-4} \) | \(a_{273}= -0.00274593 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{274}= -0.03408478 \pm 3.3 \cdot 10^{-4} \) | \(a_{275}= -0.88989942 \pm 2.8 \cdot 10^{-4} \) | \(a_{276}= +0.02265325 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{277}= +0.27460194 \pm 2.1 \cdot 10^{-4} \) | \(a_{278}= +0.19833352 \pm 3.2 \cdot 10^{-4} \) | \(a_{279}= -0.99366739 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{280}= +0.24229208 \pm 3.1 \cdot 10^{-4} \) | \(a_{281}= +0.01018852 \pm 2.5 \cdot 10^{-4} \) | \(a_{282}= -0.01151242 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{283}= +0.02126223 \pm 2.3 \cdot 10^{-4} \) | \(a_{284}= -0.47613386 \pm 3.2 \cdot 10^{-4} \) | \(a_{285}= -0.00053292 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{286}= -0.06163674 \pm 2.9 \cdot 10^{-4} \) | \(a_{287}= +0.24407202 \pm 2.3 \cdot 10^{-4} \) | \(a_{288}= -0.69660042 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{289}= -0.91004595 \pm 2.7 \cdot 10^{-4} \) | \(a_{290}= -0.20817069 \pm 3.4 \cdot 10^{-4} \) | \(a_{291}= +0.04521195 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{292}= +1.30974015 \pm 2.7 \cdot 10^{-4} \) | \(a_{293}= +0.48888844 \pm 2.6 \cdot 10^{-4} \) | \(a_{294}= -0.00304702 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{295}= -1.06363765 \pm 2.5 \cdot 10^{-4} \) | \(a_{296}= +0.00983260 \pm 3.4 \cdot 10^{-4} \) | \(a_{297}= -0.08400715 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{298}= -0.19483883 \pm 3.4 \cdot 10^{-4} \) | \(a_{299}= +0.13994900 \pm 2.5 \cdot 10^{-4} \) | \(a_{300}= +0.01293051 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{301}= -1.08857032 \pm 2.5 \cdot 10^{-4} \) | \(a_{302}= +0.03404152 \pm 2.9 \cdot 10^{-4} \) | \(a_{303}= -0.00254184 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{304}= +0.02497072 \pm 2.6 \cdot 10^{-4} \) | \(a_{305}= +0.35547223 \pm 2.4 \cdot 10^{-4} \) | \(a_{306}= -0.07607032 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{307}= -1.31982838 \pm 2.6 \cdot 10^{-4} \) | \(a_{308}= -1.12033843 \pm 3.5 \cdot 10^{-4} \) | \(a_{309}= +0.00127681 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{310}= -0.17096393 \pm 2.8 \cdot 10^{-4} \) | \(a_{311}= -0.93165715 \pm 2.4 \cdot 10^{-4} \) | \(a_{312}= +0.00185286 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{313}= -0.32157376 \pm 2.6 \cdot 10^{-4} \) | \(a_{314}= +0.12796471 \pm 2.9 \cdot 10^{-4} \) | \(a_{315}= +0.49289539 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{316}= -1.06399147 \pm 3.1 \cdot 10^{-4} \) | \(a_{317}= +0.02371883 \pm 2.8 \cdot 10^{-4} \) | \(a_{318}= +0.01060970 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{319}= +1.99139872 \pm 2.7 \cdot 10^{-4} \) | \(a_{320}= +0.42951567 \pm 3.3 \cdot 10^{-4} \) | \(a_{321}= +0.02282109 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{322}= -0.17513470 \pm 2.6 \cdot 10^{-4} \) | \(a_{323}= +0.00923569 \pm 2.0 \cdot 10^{-4} \) | \(a_{324}= -0.93375535 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{325}= +0.07988311 \pm 2.6 \cdot 10^{-4} \) | \(a_{326}= -0.41929882 \pm 2.9 \cdot 10^{-4} \) | \(a_{327}= -0.01241351 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{328}= -0.16469192 \pm 3.4 \cdot 10^{-4} \) | \(a_{329}= -1.29275324 \pm 2.3 \cdot 10^{-4} \) | \(a_{330}= -0.00722450 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{331}= +0.99707030 \pm 2.3 \cdot 10^{-4} \) | \(a_{332}= -1.13930686 \pm 3.5 \cdot 10^{-4} \) | \(a_{333}= +0.02000249 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{334}= -0.33070655 \pm 3.0 \cdot 10^{-4} \) | \(a_{335}= +0.82182303 \pm 2.5 \cdot 10^{-4} \) | \(a_{336}= +0.01508093 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{337}= +0.82922141 \pm 2.2 \cdot 10^{-4} \) | \(a_{338}= -0.24826520 \pm 3.0 \cdot 10^{-4} \) | \(a_{339}= -0.00023375 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{340}= +0.19010165 \pm 3.6 \cdot 10^{-4} \) | \(a_{341}= +1.63547209 \pm 2.5 \cdot 10^{-4} \) | \(a_{342}= -0.00781023 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{343}= -1.07018216 \pm 2.4 \cdot 10^{-4} \) | \(a_{344}= +0.73453211 \pm 2.8 \cdot 10^{-4} \) | \(a_{345}= +0.01640356 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{346}= +0.30541039 \pm 3.2 \cdot 10^{-4} \) | \(a_{347}= +0.27337381 \pm 2.6 \cdot 10^{-4} \) | \(a_{348}= -0.02893563 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{349}= +0.47478859 \pm 2.6 \cdot 10^{-4} \) | \(a_{350}= -0.09996716 \pm 3.1 \cdot 10^{-4} \) | \(a_{351}= +0.00754102 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{352}= +1.14653107 \pm 3.1 \cdot 10^{-4} \) | \(a_{353}= +0.26293666 \pm 2.1 \cdot 10^{-4} \) | \(a_{354}= +0.01017888 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{355}= -0.34477573 \pm 2.4 \cdot 10^{-4} \) | \(a_{356}= -0.30961765 \pm 3.5 \cdot 10^{-4} \) | \(a_{357}= +0.00557784 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{358}= -0.30468246 \pm 2.9 \cdot 10^{-4} \) | \(a_{359}= +0.77266581 \pm 2.4 \cdot 10^{-4} \) | \(a_{360}= -0.33258990 \pm 4.1 \cdot 10^{-4} \) |
| \(a_{361}= -0.99905176 \pm 2.3 \cdot 10^{-4} \) | \(a_{362}= +0.27857056 \pm 3.1 \cdot 10^{-4} \) | \(a_{363}= +0.04356570 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{364}= +0.10056880 \pm 3.0 \cdot 10^{-4} \) | \(a_{365}= +0.94840266 \pm 2.3 \cdot 10^{-4} \) | \(a_{366}= -0.00340182 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{367}= +0.44716401 \pm 2.3 \cdot 10^{-4} \) | \(a_{368}= -0.76861542 \pm 2.8 \cdot 10^{-4} \) | \(a_{369}= -0.33503318 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{370}= +0.00344150 \pm 3.0 \cdot 10^{-4} \) | \(a_{371}= +1.19138454 \pm 2.3 \cdot 10^{-4} \) | \(a_{372}= -0.02376391 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{373}= +1.27383167 \pm 2.5 \cdot 10^{-4} \) | \(a_{374}= +0.12520375 \pm 2.9 \cdot 10^{-4} \) | \(a_{375}= +0.02666935 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{376}= +0.87230816 \pm 3.2 \cdot 10^{-4} \) | \(a_{377}= -0.17876079 \pm 2.5 \cdot 10^{-4} \) | \(a_{378}= -0.00943697 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{379}= +1.03633993 \pm 2.5 \cdot 10^{-4} \) | \(a_{380}= +0.01951797 \pm 3.2 \cdot 10^{-4} \) | \(a_{381}= -0.01201802 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{382}= +0.18609438 \pm 2.7 \cdot 10^{-4} \) | \(a_{383}= -0.85194004 \pm 2.6 \cdot 10^{-4} \) | \(a_{384}= -0.02191683 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{385}= -0.81125401 \pm 2.9 \cdot 10^{-4} \) | \(a_{386}= -0.45975129 \pm 3.1 \cdot 10^{-4} \) | \(a_{387}= +1.49426051 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{388}= -1.65587610 \pm 3.0 \cdot 10^{-4} \) | \(a_{389}= -0.62538991 \pm 2.7 \cdot 10^{-4} \) | \(a_{390}= +0.00064852 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{391}= -0.28428078 \pm 2.5 \cdot 10^{-4} \) | \(a_{392}= +0.23087618 \pm 3.0 \cdot 10^{-4} \) | \(a_{393}= -0.03373080 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{394}= +0.01050462 \pm 2.9 \cdot 10^{-4} \) | \(a_{395}= -0.77045232 \pm 2.7 \cdot 10^{-4} \) | \(a_{396}= +1.53786802 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{397}= -0.23963934 \pm 2.3 \cdot 10^{-4} \) | \(a_{398}= +0.05108245 \pm 2.9 \cdot 10^{-4} \) | \(a_{399}= +0.00057268 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{400}= -0.43872689 \pm 2.9 \cdot 10^{-4} \) | \(a_{401}= -0.52098962 \pm 2.3 \cdot 10^{-4} \) | \(a_{402}= -0.00786474 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{403}= -0.14681052 \pm 2.2 \cdot 10^{-4} \) | \(a_{404}= +0.09309434 \pm 3.2 \cdot 10^{-4} \) | \(a_{405}= -0.67614637 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{406}= +0.22370448 \pm 3.2 \cdot 10^{-4} \) | \(a_{407}= -0.03292199 \pm 2.5 \cdot 10^{-4} \) | \(a_{408}= -0.00376375 \pm 4.5 \cdot 10^{-4} \) |
| \(a_{409}= +0.30487846 \pm 2.6 \cdot 10^{-4} \) | \(a_{410}= -0.05764362 \pm 2.9 \cdot 10^{-4} \) | \(a_{411}= -0.00343069 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{412}= -0.04676275 \pm 3.3 \cdot 10^{-4} \) | \(a_{413}= +1.14300675 \pm 2.3 \cdot 10^{-4} \) | \(a_{414}= +0.24040420 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{415}= -0.82498934 \pm 2.6 \cdot 10^{-4} \) | \(a_{416}= -0.10292002 \pm 3.3 \cdot 10^{-4} \) | \(a_{417}= +0.01996260 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{418}= +0.01285482 \pm 2.4 \cdot 10^{-4} \) | \(a_{419}= +1.72892607 \pm 2.8 \cdot 10^{-4} \) | \(a_{420}= +0.01178777 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{421}= -1.43750337 \pm 2.4 \cdot 10^{-4} \) | \(a_{422}= -0.20919307 \pm 3.0 \cdot 10^{-4} \) | \(a_{423}= +1.77453867 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{424}= -0.80390783 \pm 3.1 \cdot 10^{-4} \) | \(a_{425}= -0.16226792 \pm 2.8 \cdot 10^{-4} \) | \(a_{426}= +0.00329946 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{427}= -0.38199772 \pm 2.3 \cdot 10^{-4} \) | \(a_{428}= -0.83581645 \pm 2.9 \cdot 10^{-4} \) | \(a_{429}= -0.00620384 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{430}= +0.25709272 \pm 3.1 \cdot 10^{-4} \) | \(a_{431}= +1.02667278 \pm 2.3 \cdot 10^{-4} \) | \(a_{432}= -0.04141614 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{433}= +1.66883158 \pm 2.5 \cdot 10^{-4} \) | \(a_{434}= +0.18372133 \pm 3.2 \cdot 10^{-4} \) | \(a_{435}= -0.02095273 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{436}= +0.45464144 \pm 3.4 \cdot 10^{-4} \) | \(a_{437}= -0.02918746 \pm 2.1 \cdot 10^{-4} \) | \(a_{438}= -0.00907609 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{439}= -0.16961511 \pm 2.3 \cdot 10^{-4} \) | \(a_{440}= +0.54740802 \pm 3.1 \cdot 10^{-4} \) | \(a_{441}= +0.46967198 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{442}= -0.01123910 \pm 2.8 \cdot 10^{-4} \) | \(a_{443}= -0.06489878 \pm 2.4 \cdot 10^{-4} \) | \(a_{444}= +0.00047837 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{445}= -0.22419883 \pm 2.6 \cdot 10^{-4} \) | \(a_{446}= +0.37785574 \pm 3.0 \cdot 10^{-4} \) | \(a_{447}= -0.01961085 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{448}= -0.46156632 \pm 3.5 \cdot 10^{-4} \) | \(a_{449}= +0.15049959 \pm 2.5 \cdot 10^{-4} \) | \(a_{450}= +0.13722309 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{451}= +0.55142941 \pm 2.5 \cdot 10^{-4} \) | \(a_{452}= +0.00856089 \pm 3.8 \cdot 10^{-4} \) | \(a_{453}= +0.00342634 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{454}= -0.22594269 \pm 2.4 \cdot 10^{-4} \) | \(a_{455}= +0.07282339 \pm 2.5 \cdot 10^{-4} \) | \(a_{456}= -0.00038643 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{457}= +0.34152307 \pm 2.5 \cdot 10^{-4} \) | \(a_{458}= +0.17889554 \pm 2.9 \cdot 10^{-4} \) | \(a_{459}= -0.01531821 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{460}= -0.60077616 \pm 3.1 \cdot 10^{-4} \) | \(a_{461}= +0.84411989 \pm 2.4 \cdot 10^{-4} \) | \(a_{462}= +0.00776360 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{463}= +1.39996642 \pm 2.4 \cdot 10^{-4} \) | \(a_{464}= +0.98177406 \pm 2.9 \cdot 10^{-4} \) | \(a_{465}= -0.01720781 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{466}= -0.26265916 \pm 3.1 \cdot 10^{-4} \) | \(a_{467}= -1.21702879 \pm 2.5 \cdot 10^{-4} \) | \(a_{468}= -0.13804895 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{469}= -0.88314782 \pm 2.4 \cdot 10^{-4} \) | \(a_{470}= +0.30531555 \pm 3.4 \cdot 10^{-4} \) | \(a_{471}= +0.01287986 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{472}= -0.77126406 \pm 3.0 \cdot 10^{-4} \) | \(a_{473}= -2.45939575 \pm 2.5 \cdot 10^{-4} \) | \(a_{474}= +0.00737313 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{475}= -0.01666025 \pm 2.4 \cdot 10^{-4} \) | \(a_{476}= -0.20428712 \pm 3.6 \cdot 10^{-4} \) | \(a_{477}= -1.63539172 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{478}= -0.36497132 \pm 2.6 \cdot 10^{-4} \) | \(a_{479}= +0.96030565 \pm 2.4 \cdot 10^{-4} \) | \(a_{480}= -0.01206336 \pm 4.2 \cdot 10^{-4} \) |
| \(a_{481}= +0.00295529 \pm 2.5 \cdot 10^{-4} \) | \(a_{482}= +0.04930727 \pm 3.1 \cdot 10^{-4} \) | \(a_{483}= -0.01762760 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{484}= -1.59558260 \pm 2.8 \cdot 10^{-4} \) | \(a_{485}= -1.19904494 \pm 2.5 \cdot 10^{-4} \) | \(a_{486}= +0.01943305 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{487}= -1.94881887 \pm 2.4 \cdot 10^{-4} \) | \(a_{488}= +0.25775973 \pm 3.0 \cdot 10^{-4} \) | \(a_{489}= -0.04220313 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{490}= +0.08080870 \pm 3.1 \cdot 10^{-4} \) | \(a_{491}= -1.48027581 \pm 2.8 \cdot 10^{-4} \) | \(a_{492}= -0.00801244 \pm 4.3 \cdot 10^{-4} \) |
| \(a_{493}= +0.36311983 \pm 2.3 \cdot 10^{-4} \) | \(a_{494}= -0.00115393 \pm 2.7 \cdot 10^{-4} \) | \(a_{495}= +1.11359350 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{496}= +0.80629965 \pm 3.3 \cdot 10^{-4} \) | \(a_{497}= +0.37050304 \pm 2.4 \cdot 10^{-4} \) | \(a_{498}= +0.00789504 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{499}= +0.29622439 \pm 2.4 \cdot 10^{-4} \) | \(a_{500}= -0.97675798 \pm 3.3 \cdot 10^{-4} \) | \(a_{501}= -0.03328617 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{502}= -0.04248788 \pm 3.0 \cdot 10^{-4} \) | \(a_{503}= +1.72924601 \pm 2.5 \cdot 10^{-4} \) | \(a_{504}= +0.35740790 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{505}= +0.06741102 \pm 2.6 \cdot 10^{-4} \) | \(a_{506}= -0.39568004 \pm 2.1 \cdot 10^{-4} \) | \(a_{507}= -0.02498831 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{508}= +0.44015707 \pm 3.1 \cdot 10^{-4} \) | \(a_{509}= +0.35483663 \pm 2.5 \cdot 10^{-4} \) | \(a_{510}= -0.00131735 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{511}= -1.01917288 \pm 2.5 \cdot 10^{-4} \) | \(a_{512}= +0.96360558 \pm 2.9 \cdot 10^{-4} \) | \(a_{513}= -0.00157274 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{514}= +0.13724684 \pm 2.9 \cdot 10^{-4} \) | \(a_{515}= -0.03386161 \pm 2.9 \cdot 10^{-4} \) | \(a_{516}= +0.03573577 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{517}= -2.92070414 \pm 2.5 \cdot 10^{-4} \) | \(a_{518}= -0.00369830 \pm 3.5 \cdot 10^{-4} \) | \(a_{519}= +0.03074007 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{520}= -0.04913887 \pm 3.5 \cdot 10^{-4} \) | \(a_{521}= +0.62573857 \pm 2.5 \cdot 10^{-4} \) | \(a_{522}= -0.30707503 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{523}= -1.59930617 \pm 2.7 \cdot 10^{-4} \) | \(a_{524}= +1.23538201 \pm 3.0 \cdot 10^{-4} \) | \(a_{525}= -0.01006186 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{526}= +0.13864720 \pm 2.8 \cdot 10^{-4} \) | \(a_{527}= +0.29821871 \pm 2.3 \cdot 10^{-4} \) | \(a_{528}= +0.03407218 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{529}= -0.10159055 \pm 2.6 \cdot 10^{-4} \) | \(a_{530}= -0.28137483 \pm 3.2 \cdot 10^{-4} \) | \(a_{531}= -1.56898441 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{532}= -0.02097441 \pm 2.8 \cdot 10^{-4} \) | \(a_{533}= -0.04949986 \pm 2.2 \cdot 10^{-4} \) | \(a_{534}= +0.00214555 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{535}= -0.60522734 \pm 2.4 \cdot 10^{-4} \) | \(a_{536}= +0.59591964 \pm 3.0 \cdot 10^{-4} \) | \(a_{537}= -0.03066680 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{538}= +0.21312939 \pm 3.3 \cdot 10^{-4} \) | \(a_{539}= -0.77303072 \pm 2.7 \cdot 10^{-4} \) | \(a_{540}= -0.03237227 \pm 3.7 \cdot 10^{-4} \) |
| \(a_{541}= +0.66266875 \pm 2.5 \cdot 10^{-4} \) | \(a_{542}= +0.27552286 \pm 3.2 \cdot 10^{-4} \) | \(a_{543}= +0.02803859 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{544}= +0.20906319 \pm 3.7 \cdot 10^{-4} \) | \(a_{545}= +0.32921275 \pm 2.6 \cdot 10^{-4} \) | \(a_{546}= -0.00069691 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{547}= -0.75598203 \pm 2.5 \cdot 10^{-4} \) | \(a_{548}= +0.12564815 \pm 3.4 \cdot 10^{-4} \) | \(a_{549}= +0.52436127 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{550}= -0.22585479 \pm 3.1 \cdot 10^{-4} \) | \(a_{551}= +0.03728196 \pm 2.2 \cdot 10^{-4} \) | \(a_{552}= +0.01189454 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{553}= +0.82794381 \pm 2.7 \cdot 10^{-4} \) | \(a_{554}= +0.06969345 \pm 2.6 \cdot 10^{-4} \) | \(a_{555}= +0.00034639 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{556}= -0.73112508 \pm 3.3 \cdot 10^{-4} \) | \(a_{557}= -0.00303106 \pm 2.3 \cdot 10^{-4} \) | \(a_{558}= -0.25219091 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{559}= +0.22077123 \pm 2.2 \cdot 10^{-4} \) | \(a_{560}= -0.39995413 \pm 3.1 \cdot 10^{-4} \) | \(a_{561}= +0.01260197 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{562}= +0.00258583 \pm 3.0 \cdot 10^{-4} \) | \(a_{563}= +0.22617585 \pm 2.4 \cdot 10^{-4} \) | \(a_{564}= +0.04243872 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{565}= +0.00619907 \pm 2.6 \cdot 10^{-4} \) | \(a_{566}= +0.00539631 \pm 2.9 \cdot 10^{-4} \) | \(a_{567}= +0.72660071 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{568}= -0.25000350 \pm 3.3 \cdot 10^{-4} \) | \(a_{569}= +0.57909412 \pm 2.5 \cdot 10^{-4} \) | \(a_{570}= -0.00013525 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{571}= +0.39816458 \pm 2.5 \cdot 10^{-4} \) | \(a_{572}= +0.22721407 \pm 2.9 \cdot 10^{-4} \) | \(a_{573}= +0.01873071 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{574}= +0.06194502 \pm 2.6 \cdot 10^{-4} \) | \(a_{575}= +0.51281353 \pm 2.7 \cdot 10^{-4} \) | \(a_{576}= +0.63358362 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{577}= -0.98041135 \pm 2.3 \cdot 10^{-4} \) | \(a_{578}= -0.23096794 \pm 3.1 \cdot 10^{-4} \) | \(a_{579}= -0.04627474 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{580}= +0.76738826 \pm 3.6 \cdot 10^{-4} \) | \(a_{581}= +0.88655040 \pm 2.8 \cdot 10^{-4} \) | \(a_{582}= +0.01147471 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{583}= +2.69168288 \pm 2.4 \cdot 10^{-4} \) | \(a_{584}= +0.68770496 \pm 2.5 \cdot 10^{-4} \) | \(a_{585}= -0.09996334 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{586}= +0.12407896 \pm 3.1 \cdot 10^{-4} \) | \(a_{587}= -0.51546459 \pm 2.3 \cdot 10^{-4} \) | \(a_{588}= +0.01123237 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{589}= +0.03061849 \pm 2.1 \cdot 10^{-4} \) | \(a_{590}= -0.26994922 \pm 3.2 \cdot 10^{-4} \) | \(a_{591}= +0.00105731 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{592}= -0.01623078 \pm 3.2 \cdot 10^{-4} \) | \(a_{593}= +0.83918681 \pm 2.5 \cdot 10^{-4} \) | \(a_{594}= -0.02132086 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{595}= -0.14792739 \pm 2.8 \cdot 10^{-4} \) | \(a_{596}= +0.71824246 \pm 3.5 \cdot 10^{-4} \) | \(a_{597}= +0.00514153 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{598}= +0.03551879 \pm 3.2 \cdot 10^{-4} \) | \(a_{599}= -0.59168217 \pm 2.3 \cdot 10^{-4} \) | \(a_{600}= +0.00678942 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{601}= +0.29367468 \pm 2.6 \cdot 10^{-4} \) | \(a_{602}= -0.27627709 \pm 3.0 \cdot 10^{-4} \) | \(a_{603}= +1.21228082 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{604}= -0.12548868 \pm 3.3 \cdot 10^{-4} \) | \(a_{605}= -1.15538550 \pm 2.5 \cdot 10^{-4} \) | \(a_{606}= -0.00064511 \pm 5.9 \cdot 10^{-4} \) |
| \(a_{607}= -1.30197363 \pm 2.3 \cdot 10^{-4} \) | \(a_{608}= +0.02146478 \pm 2.6 \cdot 10^{-4} \) | \(a_{609}= +0.02251623 \pm 2.3 \cdot 10^{-4} \) |
| \(a_{610}= +0.09021818 \pm 2.9 \cdot 10^{-4} \) | \(a_{611}= +0.26218124 \pm 2.6 \cdot 10^{-4} \) | \(a_{612}= +0.28042118 \pm 4.5 \cdot 10^{-4} \) |
| \(a_{613}= +1.49818216 \pm 2.6 \cdot 10^{-4} \) | \(a_{614}= -0.33496995 \pm 3.2 \cdot 10^{-4} \) | \(a_{615}= -0.00580193 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{616}= -0.58825584 \pm 3.4 \cdot 10^{-4} \) | \(a_{617}= -1.68017794 \pm 2.5 \cdot 10^{-4} \) | \(a_{618}= +0.00032405 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{619}= -0.08004502 \pm 2.4 \cdot 10^{-4} \) | \(a_{620}= +0.63023144 \pm 2.8 \cdot 10^{-4} \) | \(a_{621}= +0.04840997 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{622}= -0.23645282 \pm 2.9 \cdot 10^{-4} \) | \(a_{623}= +0.24092864 \pm 2.7 \cdot 10^{-4} \) | \(a_{624}= -0.00305854 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{625}= -0.16625402 \pm 2.5 \cdot 10^{-4} \) | \(a_{626}= -0.08161481 \pm 3.3 \cdot 10^{-4} \) | \(a_{627}= +0.00129386 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{628}= -0.47172162 \pm 3.0 \cdot 10^{-4} \) | \(a_{629}= -0.00600313 \pm 2.6 \cdot 10^{-4} \) | \(a_{630}= +0.12509592 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{631}= -1.33433803 \pm 2.5 \cdot 10^{-4} \) | \(a_{632}= -0.55866976 \pm 2.8 \cdot 10^{-4} \) | \(a_{633}= -0.02105563 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{634}= +0.00601979 \pm 3.4 \cdot 10^{-4} \) | \(a_{635}= +0.31872439 \pm 2.7 \cdot 10^{-4} \) | \(a_{636}= -0.03911097 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{637}= +0.06939222 \pm 2.4 \cdot 10^{-4} \) | \(a_{638}= +0.50541323 \pm 2.9 \cdot 10^{-4} \) | \(a_{639}= -0.50858274 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{640}= +0.58124595 \pm 3.4 \cdot 10^{-4} \) | \(a_{641}= +0.06107092 \pm 2.4 \cdot 10^{-4} \) | \(a_{642}= +0.00579195 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{643}= +0.57445787 \pm 2.3 \cdot 10^{-4} \) | \(a_{644}= +0.64560634 \pm 2.9 \cdot 10^{-4} \) | \(a_{645}= +0.02587681 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{646}= +0.00234400 \pm 2.3 \cdot 10^{-4} \) | \(a_{647}= -0.37329915 \pm 2.6 \cdot 10^{-4} \) | \(a_{648}= -0.49028671 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{649}= +2.58238343 \pm 2.6 \cdot 10^{-4} \) | \(a_{650}= +0.02027418 \pm 3.4 \cdot 10^{-4} \) | \(a_{651}= +0.01849186 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{652}= +1.54567867 \pm 3.0 \cdot 10^{-4} \) | \(a_{653}= -1.56464625 \pm 2.5 \cdot 10^{-4} \) | \(a_{654}= -0.00315052 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{655}= +0.89455881 \pm 2.3 \cdot 10^{-4} \) | \(a_{656}= +0.27185871 \pm 3.3 \cdot 10^{-4} \) | \(a_{657}= +1.39899992 \pm 2.1 \cdot 10^{-4} \) |
| \(a_{658}= -0.32809833 \pm 2.8 \cdot 10^{-4} \) | \(a_{659}= -1.03325930 \pm 2.6 \cdot 10^{-4} \) | \(a_{660}= +0.02663198 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{661}= -0.36097274 \pm 2.3 \cdot 10^{-4} \) | \(a_{662}= +0.25305456 \pm 2.8 \cdot 10^{-4} \) | \(a_{663}= -0.00113123 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{664}= -0.59821559 \pm 3.6 \cdot 10^{-4} \) | \(a_{665}= -0.01518789 \pm 2.6 \cdot 10^{-4} \) | \(a_{666}= +0.00507659 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{667}= -1.14756363 \pm 2.7 \cdot 10^{-4} \) | \(a_{668}= +1.21909731 \pm 2.9 \cdot 10^{-4} \) | \(a_{669}= +0.03803181 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{670}= +0.20857713 \pm 3.0 \cdot 10^{-4} \) | \(a_{671}= -0.86304353 \pm 2.2 \cdot 10^{-4} \) | \(a_{672}= +0.01296353 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{673}= +0.92158388 \pm 2.4 \cdot 10^{-4} \) | \(a_{674}= +0.21045483 \pm 2.7 \cdot 10^{-4} \) | \(a_{675}= +0.02763249 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{676}= +0.91519032 \pm 3.0 \cdot 10^{-4} \) | \(a_{677}= +1.26273565 \pm 2.3 \cdot 10^{-4} \) | \(a_{678}= -0.00005932 \pm 4.1 \cdot 10^{-4} \) |
| \(a_{679}= +1.28851819 \pm 2.5 \cdot 10^{-4} \) | \(a_{680}= +0.09981663 \pm 3.4 \cdot 10^{-4} \) | \(a_{681}= -0.02274151 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{682}= +0.41507973 \pm 2.8 \cdot 10^{-4} \) | \(a_{683}= +0.27956565 \pm 2.3 \cdot 10^{-4} \) | \(a_{684}= +0.02879119 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{685}= +0.09098373 \pm 2.6 \cdot 10^{-4} \) | \(a_{686}= -0.27161021 \pm 2.6 \cdot 10^{-4} \) | \(a_{687}= +0.01800614 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{688}= -1.21250001 \pm 2.8 \cdot 10^{-4} \) | \(a_{689}= -0.24162282 \pm 2.5 \cdot 10^{-4} \) | \(a_{690}= +0.00416319 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{691}= -1.08982977 \pm 2.4 \cdot 10^{-4} \) | \(a_{692}= -1.12584702 \pm 3.4 \cdot 10^{-4} \) | \(a_{693}= -1.19669033 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{694}= +0.06938176 \pm 3.1 \cdot 10^{-4} \) | \(a_{695}= -0.52941873 \pm 2.4 \cdot 10^{-4} \) | \(a_{696}= -0.01519322 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{697}= +0.10054991 \pm 2.6 \cdot 10^{-4} \) | \(a_{698}= +0.12050045 \pm 3.0 \cdot 10^{-4} \) | \(a_{699}= -0.02643708 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{700}= +0.36851311 \pm 3.4 \cdot 10^{-4} \) | \(a_{701}= -1.11684316 \pm 2.2 \cdot 10^{-4} \) | \(a_{702}= +0.00191390 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{703}= -0.00061635 \pm 2.3 \cdot 10^{-4} \) | \(a_{704}= -1.04281205 \pm 3.0 \cdot 10^{-4} \) | \(a_{705}= +0.03073052 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{706}= +0.06673283 \pm 2.7 \cdot 10^{-4} \) | \(a_{707}= -0.07244126 \pm 2.6 \cdot 10^{-4} \) | \(a_{708}= -0.03752282 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{709}= +0.84198983 \pm 2.5 \cdot 10^{-4} \) | \(a_{710}= -0.08750343 \pm 3.0 \cdot 10^{-4} \) | \(a_{711}= -1.13650329 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{712}= -0.16257087 \pm 3.6 \cdot 10^{-4} \) | \(a_{713}= -0.94245731 \pm 2.3 \cdot 10^{-4} \) | \(a_{714}= +0.00141565 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{715}= +0.16452914 \pm 2.8 \cdot 10^{-4} \) | \(a_{716}= +1.12316362 \pm 3.3 \cdot 10^{-4} \) | \(a_{717}= -0.03673497 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{718}= +0.19610112 \pm 2.9 \cdot 10^{-4} \) | \(a_{719}= +1.40492937 \pm 2.6 \cdot 10^{-4} \) | \(a_{720}= +0.54900970 \pm 4.1 \cdot 10^{-4} \) |
| \(a_{721}= +0.03638838 \pm 2.6 \cdot 10^{-4} \) | \(a_{722}= -0.25355745 \pm 2.7 \cdot 10^{-4} \) | \(a_{723}= +0.00496286 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{724}= -1.02690625 \pm 3.0 \cdot 10^{-4} \) | \(a_{725}= -0.65503113 \pm 2.9 \cdot 10^{-4} \) | \(a_{726}= +0.01105689 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{727}= +0.26584812 \pm 2.6 \cdot 10^{-4} \) | \(a_{728}= +0.05280564 \pm 2.9 \cdot 10^{-4} \) | \(a_{729}= -0.99608678 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{730}= +0.24070280 \pm 2.7 \cdot 10^{-4} \) | \(a_{731}= -0.44845634 \pm 2.4 \cdot 10^{-4} \) | \(a_{732}= +0.01254029 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{733}= -0.79378758 \pm 2.5 \cdot 10^{-4} \) | \(a_{734}= +0.11348938 \pm 2.8 \cdot 10^{-4} \) | \(a_{735}= +0.00813353 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{736}= -0.66070011 \pm 3.2 \cdot 10^{-4} \) | \(a_{737}= -1.99528681 \pm 2.5 \cdot 10^{-4} \) | \(a_{738}= -0.08503079 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{739}= -0.41737790 \pm 2.6 \cdot 10^{-4} \) | \(a_{740}= -0.01268653 \pm 3.2 \cdot 10^{-4} \) | \(a_{741}= -0.00011615 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{742}= +0.30237115 \pm 3.1 \cdot 10^{-4} \) | \(a_{743}= +0.41215971 \pm 2.4 \cdot 10^{-4} \) | \(a_{744}= -0.01247771 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{745}= +0.52009023 \pm 3.0 \cdot 10^{-4} \) | \(a_{746}= +0.32329607 \pm 3.0 \cdot 10^{-4} \) | \(a_{747}= -1.21695148 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{748}= -0.46154379 \pm 3.3 \cdot 10^{-4} \) | \(a_{749}= +0.65038967 \pm 2.4 \cdot 10^{-4} \) | \(a_{750}= +0.00676863 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{751}= +0.10419143 \pm 2.4 \cdot 10^{-4} \) | \(a_{752}= -1.43992840 \pm 3.2 \cdot 10^{-4} \) | \(a_{753}= -0.00427648 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{754}= -0.04536915 \pm 3.0 \cdot 10^{-4} \) | \(a_{755}= -0.09086825 \pm 2.6 \cdot 10^{-4} \) | \(a_{756}= +0.03478791 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{757}= +1.54876276 \pm 2.5 \cdot 10^{-4} \) | \(a_{758}= +0.26302112 \pm 2.9 \cdot 10^{-4} \) | \(a_{759}= -0.03982586 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{760}= +0.01024830 \pm 3.1 \cdot 10^{-4} \) | \(a_{761}= +1.15888297 \pm 2.5 \cdot 10^{-4} \) | \(a_{762}= -0.00305015 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{763}= -0.35377874 \pm 2.6 \cdot 10^{-4} \) | \(a_{764}= -0.68600743 \pm 2.9 \cdot 10^{-4} \) | \(a_{765}= +0.20305722 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{766}= -0.21622077 \pm 3.0 \cdot 10^{-4} \) | \(a_{767}= -0.23181139 \pm 2.2 \cdot 10^{-4} \) | \(a_{768}= +0.01063314 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{769}= -1.71021872 \pm 2.6 \cdot 10^{-4} \) | \(a_{770}= -0.20589473 \pm 3.5 \cdot 10^{-4} \) | \(a_{771}= +0.01381412 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{772}= +1.69480028 \pm 3.4 \cdot 10^{-4} \) | \(a_{773}= +0.28628144 \pm 2.4 \cdot 10^{-4} \) | \(a_{774}= +0.37924049 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{775}= -0.53795612 \pm 2.4 \cdot 10^{-4} \) | \(a_{776}= -0.86945048 \pm 2.7 \cdot 10^{-4} \) | \(a_{777}= -0.00037224 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{778}= -0.15872278 \pm 3.2 \cdot 10^{-4} \) | \(a_{779}= +0.01032358 \pm 2.2 \cdot 10^{-4} \) | \(a_{780}= -0.00239066 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{781}= +0.83707373 \pm 2.2 \cdot 10^{-4} \) | \(a_{782}= -0.07214993 \pm 2.7 \cdot 10^{-4} \) | \(a_{783}= -0.06183541 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{784}= -0.38110977 \pm 2.9 \cdot 10^{-4} \) | \(a_{785}= -0.34158076 \pm 2.3 \cdot 10^{-4} \) | \(a_{786}= -0.00856081 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{787}= -0.31543112 \pm 2.4 \cdot 10^{-4} \) | \(a_{788}= -0.03872363 \pm 3.1 \cdot 10^{-4} \) | \(a_{789}= +0.01395507 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{790}= -0.19553934 \pm 3.3 \cdot 10^{-4} \) | \(a_{791}= -0.00666165 \pm 2.4 \cdot 10^{-4} \) | \(a_{792}= +0.80748801 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{793}= +0.07747235 \pm 2.3 \cdot 10^{-4} \) | \(a_{794}= -0.06082001 \pm 3.0 \cdot 10^{-4} \) | \(a_{795}= -0.02832085 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{796}= -0.18830735 \pm 3.0 \cdot 10^{-4} \) | \(a_{797}= +1.03264281 \pm 2.6 \cdot 10^{-4} \) | \(a_{798}= +0.00014535 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{799}= -0.53257320 \pm 2.3 \cdot 10^{-4} \) | \(a_{800}= -0.37712866 \pm 2.9 \cdot 10^{-4} \) | \(a_{801}= -0.33071833 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{802}= -0.13222618 \pm 2.8 \cdot 10^{-4} \) | \(a_{803}= -2.30260683 \pm 2.6 \cdot 10^{-4} \) | \(a_{804}= +0.02899213 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{805}= +0.46749332 \pm 2.1 \cdot 10^{-4} \) | \(a_{806}= -0.03726023 \pm 2.8 \cdot 10^{-4} \) | \(a_{807}= +0.02145183 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{808}= +0.04888102 \pm 3.2 \cdot 10^{-4} \) | \(a_{809}= +1.72122690 \pm 2.4 \cdot 10^{-4} \) | \(a_{810}= -0.17160467 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{811}= +0.17127617 \pm 2.3 \cdot 10^{-4} \) | \(a_{812}= -0.82465111 \pm 3.2 \cdot 10^{-4} \) | \(a_{813}= +0.02773184 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{814}= -0.00835554 \pm 3.2 \cdot 10^{-4} \) | \(a_{815}= +1.11924931 \pm 2.5 \cdot 10^{-4} \) | \(a_{816}= +0.00621286 \pm 4.6 \cdot 10^{-4} \) |
| \(a_{817}= -0.04604357 \pm 2.1 \cdot 10^{-4} \) | \(a_{818}= +0.07737758 \pm 3.1 \cdot 10^{-4} \) | \(a_{819}= +0.10742264 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{820}= +0.21249409 \pm 3.2 \cdot 10^{-4} \) | \(a_{821}= +1.45429014 \pm 2.5 \cdot 10^{-4} \) | \(a_{822}= -0.00087070 \pm 3.4 \cdot 10^{-4} \) |
| \(a_{823}= +0.75531936 \pm 2.7 \cdot 10^{-4} \) | \(a_{824}= -0.02455371 \pm 3.4 \cdot 10^{-4} \) | \(a_{825}= -0.02273266 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{826}= +0.29009295 \pm 3.1 \cdot 10^{-4} \) | \(a_{827}= -0.17117265 \pm 2.5 \cdot 10^{-4} \) | \(a_{828}= -0.88621198 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{829}= +1.87811027 \pm 2.4 \cdot 10^{-4} \) | \(a_{830}= -0.20938073 \pm 3.3 \cdot 10^{-4} \) | \(a_{831}= +0.00701476 \pm 2.3 \cdot 10^{-4} \) |
| \(a_{832}= +0.09360954 \pm 3.3 \cdot 10^{-4} \) | \(a_{833}= -0.14095760 \pm 2.7 \cdot 10^{-4} \) | \(a_{834}= +0.00506647 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{835}= +0.88276681 \pm 2.6 \cdot 10^{-4} \) | \(a_{836}= -0.04738727 \pm 2.6 \cdot 10^{-4} \) | \(a_{837}= -0.05078345 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{838}= +0.43879817 \pm 3.3 \cdot 10^{-4} \) | \(a_{839}= -1.32086046 \pm 2.4 \cdot 10^{-4} \) | \(a_{840}= +0.00618940 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{841}= +0.46581526 \pm 2.8 \cdot 10^{-4} \) | \(a_{842}= -0.36483564 \pm 2.9 \cdot 10^{-4} \) | \(a_{843}= +0.00026027 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{844}= +0.77115712 \pm 3.2 \cdot 10^{-4} \) | \(a_{845}= +0.66270316 \pm 2.7 \cdot 10^{-4} \) | \(a_{846}= +0.45037456 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{847}= +1.24160088 \pm 2.7 \cdot 10^{-4} \) | \(a_{848}= +1.32701925 \pm 3.0 \cdot 10^{-4} \) | \(a_{849}= +0.00054315 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{850}= -0.04118329 \pm 3.0 \cdot 10^{-4} \) | \(a_{851}= +0.01897163 \pm 2.8 \cdot 10^{-4} \) | \(a_{852}= -0.01216294 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{853}= -0.72028381 \pm 2.3 \cdot 10^{-4} \) | \(a_{854}= -0.09695030 \pm 2.9 \cdot 10^{-4} \) | \(a_{855}= +0.02084814 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{856}= -0.43886195 \pm 3.0 \cdot 10^{-4} \) | \(a_{857}= -0.96104635 \pm 2.3 \cdot 10^{-4} \) | \(a_{858}= -0.00157452 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{859}= -1.27176235 \pm 2.5 \cdot 10^{-4} \) | \(a_{860}= -0.94773157 \pm 3.4 \cdot 10^{-4} \) | \(a_{861}= +0.00623487 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{862}= +0.26056761 \pm 3.0 \cdot 10^{-4} \) | \(a_{863}= -0.53966131 \pm 2.5 \cdot 10^{-4} \) | \(a_{864}= -0.03560122 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{865}= -0.81524286 \pm 2.8 \cdot 10^{-4} \) | \(a_{866}= +0.42354630 \pm 3.0 \cdot 10^{-4} \) | \(a_{867}= -0.02324731 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{868}= -0.67725959 \pm 3.6 \cdot 10^{-4} \) | \(a_{869}= +1.87056496 \pm 2.8 \cdot 10^{-4} \) | \(a_{870}= -0.00531776 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{871}= +0.17910981 \pm 2.2 \cdot 10^{-4} \) | \(a_{872}= +0.23871848 \pm 3.5 \cdot 10^{-4} \) | \(a_{873}= -1.76872529 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{874}= -0.00740772 \pm 2.4 \cdot 10^{-4} \) | \(a_{875}= +0.76006316 \pm 2.5 \cdot 10^{-4} \) | \(a_{876}= +0.03345758 \pm 2.3 \cdot 10^{-4} \) |
| \(a_{877}= +0.03504726 \pm 2.4 \cdot 10^{-4} \) | \(a_{878}= -0.04304800 \pm 2.7 \cdot 10^{-4} \) | \(a_{879}= +0.01248876 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{880}= -0.90361227 \pm 3.2 \cdot 10^{-4} \) | \(a_{881}= +0.44524701 \pm 2.5 \cdot 10^{-4} \) | \(a_{882}= +0.11920186 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{883}= +1.66945645 \pm 2.6 \cdot 10^{-4} \) | \(a_{884}= +0.04143115 \pm 3.0 \cdot 10^{-4} \) | \(a_{885}= -0.02717084 \pm 2.6 \cdot 10^{-4} \) |
| \(a_{886}= -0.01647119 \pm 3.0 \cdot 10^{-4} \) | \(a_{887}= -0.69444161 \pm 2.5 \cdot 10^{-4} \) | \(a_{888}= +0.00025118 \pm 4.3 \cdot 10^{-4} \) |
| \(a_{889}= -0.34250775 \pm 2.5 \cdot 10^{-4} \) | \(a_{890}= -0.05690124 \pm 3.2 \cdot 10^{-4} \) | \(a_{891}= +1.64160154 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{892}= -1.39290530 \pm 3.0 \cdot 10^{-4} \) | \(a_{893}= -0.05467995 \pm 2.1 \cdot 10^{-4} \) | \(a_{894}= -0.00497720 \pm 4.0 \cdot 10^{-4} \) |
| \(a_{895}= +0.81329977 \pm 2.9 \cdot 10^{-4} \) | \(a_{896}= -0.62461878 \pm 3.3 \cdot 10^{-4} \) | \(a_{897}= +0.00357503 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{898}= +0.03819651 \pm 3.0 \cdot 10^{-4} \) | \(a_{899}= +1.20382720 \pm 2.4 \cdot 10^{-4} \) | \(a_{900}= -0.50585119 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{901}= +0.49081253 \pm 2.4 \cdot 10^{-4} \) | \(a_{902}= +0.13995174 \pm 2.6 \cdot 10^{-4} \) | \(a_{903}= -0.02780775 \pm 2.2 \cdot 10^{-4} \) |
| \(a_{904}= +0.00449506 \pm 3.9 \cdot 10^{-4} \) | \(a_{905}= -0.74359835 \pm 2.5 \cdot 10^{-4} \) | \(a_{906}= +0.00086960 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{907}= +0.52099070 \pm 2.1 \cdot 10^{-4} \) | \(a_{908}= +0.83290193 \pm 2.4 \cdot 10^{-4} \) | \(a_{909}= +0.09943879 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{910}= +0.01848244 \pm 3.3 \cdot 10^{-4} \) | \(a_{911}= +0.19953715 \pm 2.3 \cdot 10^{-4} \) | \(a_{912}= +0.00063788 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{913}= +2.00297423 \pm 2.9 \cdot 10^{-4} \) | \(a_{914}= +0.08667791 \pm 3.1 \cdot 10^{-4} \) | \(a_{915}= +0.00908061 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{916}= -0.65947008 \pm 3.1 \cdot 10^{-4} \) | \(a_{917}= -0.96131117 \pm 2.6 \cdot 10^{-4} \) | \(a_{918}= -0.00388773 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{919}= -1.03431079 \pm 2.3 \cdot 10^{-4} \) | \(a_{920}= -0.31544940 \pm 2.8 \cdot 10^{-4} \) | \(a_{921}= -0.03371529 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{922}= +0.21423603 \pm 2.7 \cdot 10^{-4} \) | \(a_{923}= -0.07514114 \pm 2.4 \cdot 10^{-4} \) | \(a_{924}= -0.02861927 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{925}= +0.01082904 \pm 2.6 \cdot 10^{-4} \) | \(a_{926}= +0.35530883 \pm 2.5 \cdot 10^{-4} \) | \(a_{927}= -0.04994966 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{928}= +0.84393081 \pm 3.1 \cdot 10^{-4} \) | \(a_{929}= +0.30019355 \pm 2.4 \cdot 10^{-4} \) | \(a_{930}= -0.00436731 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{931}= -0.01447229 \pm 2.1 \cdot 10^{-4} \) | \(a_{932}= +0.96825139 \pm 3.4 \cdot 10^{-4} \) | \(a_{933}= -0.02379937 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{934}= -0.30887961 \pm 3.1 \cdot 10^{-4} \) | \(a_{935}= -0.33421084 \pm 2.6 \cdot 10^{-4} \) | \(a_{936}= -0.07248533 \pm 3.8 \cdot 10^{-4} \) |
| \(a_{937}= +1.62877195 \pm 2.4 \cdot 10^{-4} \) | \(a_{938}= -0.22414125 \pm 3.1 \cdot 10^{-4} \) | \(a_{939}= -0.00821467 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{940}= -1.12549740 \pm 3.5 \cdot 10^{-4} \) | \(a_{941}= -0.87020396 \pm 2.4 \cdot 10^{-4} \) | \(a_{942}= +0.00326888 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{943}= -0.31776677 \pm 2.3 \cdot 10^{-4} \) | \(a_{944}= +1.27313383 \pm 3.0 \cdot 10^{-4} \) | \(a_{945}= +0.02519045 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{946}= -0.62418999 \pm 2.8 \cdot 10^{-4} \) | \(a_{947}= +0.09138831 \pm 2.5 \cdot 10^{-4} \) | \(a_{948}= -0.02717988 \pm 3.0 \cdot 10^{-4} \) |
| \(a_{949}= +0.20669684 \pm 2.5 \cdot 10^{-4} \) | \(a_{950}= -0.00422834 \pm 3.0 \cdot 10^{-4} \) | \(a_{951}= +0.00060590 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{952}= -0.10726499 \pm 3.6 \cdot 10^{-4} \) | \(a_{953}= +1.61777874 \pm 2.5 \cdot 10^{-4} \) | \(a_{954}= -0.41505933 \pm 3.6 \cdot 10^{-4} \) |
| \(a_{955}= -0.49674836 \pm 2.4 \cdot 10^{-4} \) | \(a_{956}= +1.34540895 \pm 2.7 \cdot 10^{-4} \) | \(a_{957}= +0.05087069 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{958}= +0.24372376 \pm 2.7 \cdot 10^{-4} \) | \(a_{959}= -0.09777297 \pm 2.6 \cdot 10^{-4} \) | \(a_{960}= +0.01097207 \pm 3.9 \cdot 10^{-4} \) |
| \(a_{961}= -0.01133521 \pm 2.2 \cdot 10^{-4} \) | \(a_{962}= +0.00075005 \pm 3.0 \cdot 10^{-4} \) | \(a_{963}= -0.89277797 \pm 2.9 \cdot 10^{-4} \) |
| \(a_{964}= -0.18176344 \pm 3.3 \cdot 10^{-4} \) | \(a_{965}= +1.22723052 \pm 2.7 \cdot 10^{-4} \) | \(a_{966}= -0.00447385 \pm 2.5 \cdot 10^{-4} \) |
| \(a_{967}= +0.00173815 \pm 2.4 \cdot 10^{-4} \) | \(a_{968}= -0.83779219 \pm 2.9 \cdot 10^{-4} \) | \(a_{969}= +0.00023593 \pm 2.3 \cdot 10^{-4} \) |
| \(a_{970}= -0.30431534 \pm 2.8 \cdot 10^{-4} \) | \(a_{971}= -1.11622245 \pm 2.5 \cdot 10^{-4} \) | \(a_{972}= -0.07163687 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{973}= +0.56892419 \pm 2.3 \cdot 10^{-4} \) | \(a_{974}= -0.49460655 \pm 2.8 \cdot 10^{-4} \) | \(a_{975}= +0.00204063 \pm 2.7 \cdot 10^{-4} \) |
| \(a_{976}= -0.42548674 \pm 3.1 \cdot 10^{-4} \) | \(a_{977}= -0.75980253 \pm 2.4 \cdot 10^{-4} \) | \(a_{978}= -0.01071107 \pm 3.1 \cdot 10^{-4} \) |
| \(a_{979}= +0.54432761 \pm 2.7 \cdot 10^{-4} \) | \(a_{980}= -0.29788846 \pm 3.4 \cdot 10^{-4} \) | \(a_{981}= +0.48562559 \pm 3.2 \cdot 10^{-4} \) |
| \(a_{982}= -0.37569120 \pm 3.5 \cdot 10^{-4} \) | \(a_{983}= -0.93591213 \pm 2.4 \cdot 10^{-4} \) | \(a_{984}= -0.00420709 \pm 4.8 \cdot 10^{-4} \) |
| \(a_{985}= -0.02804037 \pm 2.6 \cdot 10^{-4} \) | \(a_{986}= +0.09215913 \pm 2.5 \cdot 10^{-4} \) | \(a_{987}= -0.03302365 \pm 2.4 \cdot 10^{-4} \) |
| \(a_{988}= +0.00425379 \pm 2.8 \cdot 10^{-4} \) | \(a_{989}= +1.41725165 \pm 2.2 \cdot 10^{-4} \) | \(a_{990}= +0.28262793 \pm 3.5 \cdot 10^{-4} \) |
| \(a_{991}= -0.60081666 \pm 2.4 \cdot 10^{-4} \) | \(a_{992}= +0.69309339 \pm 3.4 \cdot 10^{-4} \) | \(a_{993}= +0.02547036 \pm 2.8 \cdot 10^{-4} \) |
| \(a_{994}= +0.09403297 \pm 3.1 \cdot 10^{-4} \) | \(a_{995}= -0.13635620 \pm 2.5 \cdot 10^{-4} \) | \(a_{996}= -0.02910383 \pm 4.3 \cdot 10^{-4} \) |
| \(a_{997}= -0.73289655 \pm 2.4 \cdot 10^{-4} \) | \(a_{998}= +0.07518119 \pm 2.8 \cdot 10^{-4} \) | \(a_{999}= +0.00102227 \pm 3.3 \cdot 10^{-4} \) |
| \(a_{1000}= -0.51286609 \pm 3.1 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000