Maass form invariants
| Level: | \( 10 = 2 \cdot 5 \) |
| Weight: | \( 0 \) |
| Character: | 10.1 |
| Symmetry: | even |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(12.1535251870315474893970296811 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.07979012 \pm 1 \cdot 10^{-8} \) |
| \(a_{4}= +0.5 \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +0.76352691 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{7}= +0.51359108 \pm 1 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.16594670 \pm 1 \cdot 10^{-8} \) |
| \(a_{10}= +0.31622777 \pm 1.0 \cdot 10^{-8} \) | \(a_{11}= -1.12474881 \pm 1 \cdot 10^{-8} \) | \(a_{12}= -0.53989506 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{13}= -0.11719747 \pm 1 \cdot 10^{-8} \) | \(a_{14}= -0.36316374 \pm 1.4 \cdot 10^{-8} \) | \(a_{15}= +0.48289682 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{16}= +0.25 \) | \(a_{17}= -1.61533963 \pm 1 \cdot 10^{-8} \) | \(a_{18}= -0.11734204 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{19}= -1.36584736 \pm 1 \cdot 10^{-8} \) | \(a_{20}= -0.22360680 \pm 8.4 \cdot 10^{-8} \) | \(a_{21}= -0.55457058 \pm 1 \cdot 10^{-8} \) |
| \(a_{22}= +0.79531751 \pm 1.6 \cdot 10^{-8} \) | \(a_{23}= -1.23097942 \pm 1 \cdot 10^{-8} \) | \(a_{24}= +0.38176346 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{25}= +0.2 \) | \(a_{26}= +0.08287113 \pm 1.4 \cdot 10^{-8} \) | \(a_{27}= +0.90060251 \pm 1 \cdot 10^{-8} \) |
| \(a_{28}= +0.25679554 \pm 1.4 \cdot 10^{-8} \) | \(a_{29}= +0.33202312 \pm 1 \cdot 10^{-8} \) | \(a_{30}= -0.34145962 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{31}= +0.67912520 \pm 1 \cdot 10^{-8} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +1.21449265 \pm 1 \cdot 10^{-8} \) |
| \(a_{34}= +1.14221760 \pm 1.6 \cdot 10^{-8} \) | \(a_{35}= -0.22968491 \pm 1.4 \cdot 10^{-8} \) | \(a_{36}= +0.08297335 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{37}= +0.93659270 \pm 1 \cdot 10^{-8} \) | \(a_{38}= +0.96579993 \pm 1.4 \cdot 10^{-8} \) | \(a_{39}= +0.12654867 \pm 1 \cdot 10^{-8} \) |
| \(a_{40}= +0.15811388 \pm 1.2 \cdot 10^{-7} \) | \(a_{41}= -0.74138695 \pm 1 \cdot 10^{-8} \) | \(a_{42}= +0.39214061 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{43}= -0.19745191 \pm 1 \cdot 10^{-8} \) | \(a_{44}= -0.56237440 \pm 1.6 \cdot 10^{-8} \) | \(a_{45}= -0.07421362 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{46}= +0.87043389 \pm 1.4 \cdot 10^{-8} \) | \(a_{47}= +1.06428372 \pm 1 \cdot 10^{-8} \) | \(a_{48}= -0.26994753 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{49}= -0.73622420 \pm 1 \cdot 10^{-8} \) | \(a_{50}= -0.14142136 \pm 1.5 \cdot 10^{-7} \) | \(a_{51}= +1.74422777 \pm 1 \cdot 10^{-8} \) |
| \(a_{52}= -0.05859874 \pm 1.4 \cdot 10^{-8} \) | \(a_{53}= -0.25522389 \pm 1 \cdot 10^{-8} \) | \(a_{54}= -0.63682214 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{55}= +0.50300296 \pm 1.6 \cdot 10^{-8} \) | \(a_{56}= -0.18158187 \pm 1.4 \cdot 10^{-8} \) | \(a_{57}= +1.47482848 \pm 1 \cdot 10^{-8} \) |
| \(a_{58}= -0.23477580 \pm 1.3 \cdot 10^{-8} \) | \(a_{59}= -1.32471403 \pm 1 \cdot 10^{-8} \) | \(a_{60}= +0.24144841 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{61}= -1.00645892 \pm 1 \cdot 10^{-8} \) | \(a_{62}= -0.48021403 \pm 1.4 \cdot 10^{-8} \) | \(a_{63}= +0.08522874 \pm 1 \cdot 10^{-8} \) |
| \(a_{64}= +0.125 \) | \(a_{65}= +0.05241230 \pm 1.4 \cdot 10^{-8} \) | \(a_{66}= -0.85877599 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{67}= +1.90501670 \pm 1 \cdot 10^{-8} \) | \(a_{68}= -0.80766981 \pm 1.6 \cdot 10^{-8} \) | \(a_{69}= +1.32919941 \pm 1 \cdot 10^{-8} \) |
| \(a_{70}= +0.16241176 \pm 1.4 \cdot 10^{-8} \) | \(a_{71}= +0.22362039 \pm 1 \cdot 10^{-8} \) | \(a_{72}= -0.05867102 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{73}= +1.71284231 \pm 1 \cdot 10^{-8} \) | \(a_{74}= -0.66227105 \pm 1.3 \cdot 10^{-8} \) | \(a_{75}= -0.21595802 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{76}= -0.68292368 \pm 1.4 \cdot 10^{-8} \) | \(a_{77}= -0.57766096 \pm 1 \cdot 10^{-8} \) | \(a_{78}= -0.08948342 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{79}= -1.55986694 \pm 1 \cdot 10^{-8} \) | \(a_{80}= -0.11180340 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= -1.13840839 \pm 1 \cdot 10^{-8} \) |
| \(a_{82}= +0.52423974 \pm 1.5 \cdot 10^{-8} \) | \(a_{83}= +1.29070611 \pm 1 \cdot 10^{-8} \) | \(a_{84}= -0.27728529 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{85}= +0.72240184 \pm 1.6 \cdot 10^{-8} \) | \(a_{86}= +0.13961958 \pm 1.3 \cdot 10^{-8} \) | \(a_{87}= -0.35851528 \pm 1 \cdot 10^{-8} \) |
| \(a_{88}= +0.39765875 \pm 1.6 \cdot 10^{-8} \) | \(a_{89}= +1.12662214 \pm 1 \cdot 10^{-8} \) | \(a_{90}= +0.05247695 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{91}= -0.06019158 \pm 1 \cdot 10^{-8} \) | \(a_{92}= -0.61548971 \pm 1.4 \cdot 10^{-8} \) | \(a_{93}= -0.73331268 \pm 1 \cdot 10^{-8} \) |
| \(a_{94}= -0.75256224 \pm 1.4 \cdot 10^{-8} \) | \(a_{95}= +0.61082551 \pm 1.4 \cdot 10^{-8} \) | \(a_{96}= +0.19088173 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{97}= +0.49229054 \pm 1 \cdot 10^{-8} \) | \(a_{98}= +0.52058912 \pm 1.4 \cdot 10^{-8} \) | \(a_{99}= -0.18664835 \pm 1 \cdot 10^{-8} \) |
| \(a_{100}= +0.1 \) | \(a_{101}= +1.36430680 \pm 1 \cdot 10^{-8} \) | \(a_{102}= -1.23335528 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{103}= -0.89936854 \pm 1 \cdot 10^{-8} \) | \(a_{104}= +0.04143556 \pm 1.4 \cdot 10^{-8} \) | \(a_{105}= +0.24801150 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{106}= +0.18047054 \pm 1.7 \cdot 10^{-8} \) | \(a_{107}= -1.34917655 \pm 1 \cdot 10^{-8} \) | \(a_{108}= +0.45030126 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{109}= +0.86737696 \pm 1 \cdot 10^{-8} \) | \(a_{110}= -0.35567680 \pm 1.6 \cdot 10^{-8} \) | \(a_{111}= -1.01132354 \pm 1 \cdot 10^{-8} \) |
| \(a_{112}= +0.12839777 \pm 1.4 \cdot 10^{-8} \) | \(a_{113}= +0.35021720 \pm 1 \cdot 10^{-8} \) | \(a_{114}= -1.04286122 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{115}= +0.55051073 \pm 1.4 \cdot 10^{-8} \) | \(a_{116}= +0.16601156 \pm 1.3 \cdot 10^{-8} \) | \(a_{117}= -0.01944853 \pm 1 \cdot 10^{-8} \) |
| \(a_{118}= +0.93671428 \pm 1.7 \cdot 10^{-8} \) | \(a_{119}= -0.82962403 \pm 1 \cdot 10^{-8} \) | \(a_{120}= -0.17072981 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{121}= +0.26505988 \pm 1 \cdot 10^{-8} \) | \(a_{122}= +0.71167393 \pm 1.5 \cdot 10^{-8} \) | \(a_{123}= +0.80054231 \pm 1 \cdot 10^{-8} \) |
| \(a_{124}= +0.33956260 \pm 1.4 \cdot 10^{-8} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.06026582 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{127}= +0.61352677 \pm 1 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.21320662 \pm 1 \cdot 10^{-8} \) |
| \(a_{130}= -0.03706109 \pm 1.4 \cdot 10^{-8} \) | \(a_{131}= -0.85690733 \pm 1 \cdot 10^{-8} \) | \(a_{132}= +0.60724632 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{133}= -0.70148703 \pm 1 \cdot 10^{-8} \) | \(a_{134}= -1.34705022 \pm 1.2 \cdot 10^{-8} \) | \(a_{135}= -0.40276169 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{136}= +0.57110880 \pm 1.6 \cdot 10^{-8} \) | \(a_{137}= -0.20634009 \pm 1 \cdot 10^{-8} \) | \(a_{138}= -0.93988591 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{139}= +1.75619062 \pm 1 \cdot 10^{-8} \) | \(a_{140}= -0.11484246 \pm 1.4 \cdot 10^{-8} \) | \(a_{141}= -1.14920305 \pm 1 \cdot 10^{-8} \) |
| \(a_{142}= -0.15812349 \pm 1.5 \cdot 10^{-8} \) | \(a_{143}= +0.13181772 \pm 1 \cdot 10^{-8} \) | \(a_{144}= +0.04148667 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{145}= -0.14848525 \pm 1.3 \cdot 10^{-8} \) | \(a_{146}= -1.21116241 \pm 1.5 \cdot 10^{-8} \) | \(a_{147}= +0.79496762 \pm 1 \cdot 10^{-8} \) |
| \(a_{148}= +0.46829635 \pm 1.3 \cdot 10^{-8} \) | \(a_{149}= +1.88560063 \pm 1 \cdot 10^{-8} \) | \(a_{150}= +0.15270538 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{151}= -1.57621999 \pm 1 \cdot 10^{-8} \) | \(a_{152}= +0.48289997 \pm 1.4 \cdot 10^{-8} \) | \(a_{153}= -0.26806028 \pm 1 \cdot 10^{-8} \) |
| \(a_{154}= +0.40846798 \pm 2.0 \cdot 10^{-8} \) | \(a_{155}= -0.30371402 \pm 1.4 \cdot 10^{-8} \) | \(a_{156}= +0.06327434 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{157}= +0.72152755 \pm 1 \cdot 10^{-8} \) | \(a_{158}= +1.10299249 \pm 1.6 \cdot 10^{-8} \) | \(a_{159}= +0.27558823 \pm 1 \cdot 10^{-8} \) |
| \(a_{160}= +0.07905694 \pm 3.8 \cdot 10^{-7} \) | \(a_{161}= -0.63222005 \pm 1 \cdot 10^{-8} \) | \(a_{162}= +0.80497629 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{163}= +0.44396049 \pm 1 \cdot 10^{-8} \) | \(a_{164}= -0.37069348 \pm 1.5 \cdot 10^{-8} \) | \(a_{165}= -0.54313762 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{166}= -0.91266704 \pm 1.7 \cdot 10^{-8} \) | \(a_{167}= +0.12988240 \pm 1 \cdot 10^{-8} \) | \(a_{168}= +0.19607031 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{169}= -0.98626475 \pm 1 \cdot 10^{-8} \) | \(a_{170}= -0.51081524 \pm 1.6 \cdot 10^{-8} \) | \(a_{171}= -0.22665786 \pm 1 \cdot 10^{-8} \) |
| \(a_{172}= -0.09872595 \pm 1.3 \cdot 10^{-8} \) | \(a_{173}= -1.03253733 \pm 1 \cdot 10^{-8} \) | \(a_{174}= +0.25350859 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{175}= +0.10271822 \pm 1.4 \cdot 10^{-8} \) | \(a_{176}= -0.28118720 \pm 1.6 \cdot 10^{-8} \) | \(a_{177}= +1.43041312 \pm 1 \cdot 10^{-8} \) |
| \(a_{178}= -0.79664216 \pm 1.4 \cdot 10^{-8} \) | \(a_{179}= -0.45456701 \pm 1 \cdot 10^{-8} \) | \(a_{180}= -0.03710681 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{181}= -0.77935947 \pm 1 \cdot 10^{-8} \) | \(a_{182}= +0.04256187 \pm 1.8 \cdot 10^{-8} \) | \(a_{183}= +1.08676440 \pm 1 \cdot 10^{-8} \) |
| \(a_{184}= +0.43521695 \pm 1.4 \cdot 10^{-8} \) | \(a_{185}= -0.41885699 \pm 1.3 \cdot 10^{-8} \) | \(a_{186}= +0.51853037 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{187}= +1.81685132 \pm 1 \cdot 10^{-8} \) | \(a_{188}= +0.53214186 \pm 1.4 \cdot 10^{-8} \) | \(a_{189}= +0.46254142 \pm 1 \cdot 10^{-8} \) |
| \(a_{190}= -0.43191886 \pm 1.4 \cdot 10^{-8} \) | \(a_{191}= -0.35017330 \pm 1 \cdot 10^{-8} \) | \(a_{192}= -0.13497376 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{193}= +0.36902724 \pm 1 \cdot 10^{-8} \) | \(a_{194}= -0.34810198 \pm 1.4 \cdot 10^{-8} \) | \(a_{195}= -0.05659429 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{196}= -0.36811210 \pm 1.4 \cdot 10^{-8} \) | \(a_{197}= +0.29608554 \pm 1 \cdot 10^{-8} \) | \(a_{198}= +0.13198031 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{199}= +0.13772034 \pm 1 \cdot 10^{-8} \) | \(a_{200}= -0.07071068 \pm 4.7 \cdot 10^{-7} \) | \(a_{201}= -2.05701820 \pm 1 \cdot 10^{-8} \) |
| \(a_{202}= -0.96471059 \pm 1.4 \cdot 10^{-8} \) | \(a_{203}= +0.17052411 \pm 1 \cdot 10^{-8} \) | \(a_{204}= +0.87211388 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{205}= +0.33155833 \pm 1.5 \cdot 10^{-8} \) | \(a_{206}= +0.63594960 \pm 1.5 \cdot 10^{-8} \) | \(a_{207}= -0.20427697 \pm 1 \cdot 10^{-8} \) |
| \(a_{208}= -0.02929937 \pm 1.4 \cdot 10^{-8} \) | \(a_{209}= +1.53623519 \pm 1 \cdot 10^{-8} \) | \(a_{210}= -0.17537061 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{211}= -1.05005253 \pm 1 \cdot 10^{-8} \) | \(a_{212}= -0.12761194 \pm 1.7 \cdot 10^{-8} \) | \(a_{213}= -0.24146309 \pm 1 \cdot 10^{-8} \) |
| \(a_{214}= +0.95401188 \pm 1.2 \cdot 10^{-8} \) | \(a_{215}= +0.08830318 \pm 1.3 \cdot 10^{-8} \) | \(a_{216}= -0.31841107 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{217}= +0.34879264 \pm 1 \cdot 10^{-8} \) | \(a_{218}= -0.61332813 \pm 1.3 \cdot 10^{-8} \) | \(a_{219}= -1.84951020 \pm 1 \cdot 10^{-8} \) |
| \(a_{220}= +0.25150148 \pm 1.6 \cdot 10^{-8} \) | \(a_{221}= +0.18931372 \pm 1 \cdot 10^{-8} \) | \(a_{222}= +0.71511373 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{223}= -1.88003760 \pm 1 \cdot 10^{-8} \) | \(a_{224}= -0.09079093 \pm 1.4 \cdot 10^{-8} \) | \(a_{225}= +0.03318934 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{226}= -0.24764096 \pm 1.5 \cdot 10^{-8} \) | \(a_{227}= +0.31275768 \pm 1 \cdot 10^{-8} \) | \(a_{228}= +0.73741424 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{229}= +0.82367338 \pm 1 \cdot 10^{-8} \) | \(a_{230}= -0.38926987 \pm 1.4 \cdot 10^{-8} \) | \(a_{231}= +0.62375259 \pm 1 \cdot 10^{-8} \) |
| \(a_{232}= -0.11738790 \pm 1.3 \cdot 10^{-8} \) | \(a_{233}= +0.21872635 \pm 1 \cdot 10^{-8} \) | \(a_{234}= +0.01375219 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{235}= -0.47596215 \pm 1.4 \cdot 10^{-8} \) | \(a_{236}= -0.66235702 \pm 1.7 \cdot 10^{-8} \) | \(a_{237}= +1.68432890 \pm 1 \cdot 10^{-8} \) |
| \(a_{238}= +0.58663278 \pm 2.0 \cdot 10^{-8} \) | \(a_{239}= +0.45476862 \pm 1 \cdot 10^{-8} \) | \(a_{240}= +0.12072421 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{241}= +1.57287178 \pm 1 \cdot 10^{-8} \) | \(a_{242}= -0.18742564 \pm 1.3 \cdot 10^{-8} \) | \(a_{243}= +0.32863962 \pm 1 \cdot 10^{-8} \) |
| \(a_{244}= -0.50322946 \pm 1.5 \cdot 10^{-8} \) | \(a_{245}= +0.32924947 \pm 1.4 \cdot 10^{-8} \) | \(a_{246}= -0.56606889 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{247}= +0.16007386 \pm 1 \cdot 10^{-8} \) | \(a_{248}= -0.24010702 \pm 1.4 \cdot 10^{-8} \) | \(a_{249}= -1.39369170 \pm 1 \cdot 10^{-8} \) |
| \(a_{250}= +0.06324555 \pm 5.5 \cdot 10^{-7} \) | \(a_{251}= -1.71123049 \pm 1 \cdot 10^{-8} \) | \(a_{252}= +0.04261437 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{253}= +1.38454263 \pm 1 \cdot 10^{-8} \) | \(a_{254}= -0.43382894 \pm 1.3 \cdot 10^{-8} \) | \(a_{255}= -0.78004237 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{256}= +0.0625 \) | \(a_{257}= -1.33825759 \pm 1 \cdot 10^{-8} \) | \(a_{258}= -0.15075985 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{259}= +0.48102566 \pm 1 \cdot 10^{-8} \) | \(a_{260}= +0.02620615 \pm 1.4 \cdot 10^{-8} \) | \(a_{261}= +0.05509814 \pm 1 \cdot 10^{-8} \) |
| \(a_{262}= +0.60592498 \pm 1.4 \cdot 10^{-8} \) | \(a_{263}= -0.38137081 \pm 1 \cdot 10^{-8} \) | \(a_{264}= -0.42938799 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{265}= +0.11413959 \pm 1.7 \cdot 10^{-8} \) | \(a_{266}= +0.49602623 \pm 1.9 \cdot 10^{-8} \) | \(a_{267}= -1.21651546 \pm 1 \cdot 10^{-8} \) |
| \(a_{268}= +0.95250835 \pm 1.2 \cdot 10^{-8} \) | \(a_{269}= +0.47750554 \pm 1 \cdot 10^{-8} \) | \(a_{270}= +0.28479552 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{271}= -0.48114508 \pm 1 \cdot 10^{-8} \) | \(a_{272}= -0.40383491 \pm 1.6 \cdot 10^{-8} \) | \(a_{273}= +0.06499427 \pm 1 \cdot 10^{-8} \) |
| \(a_{274}= +0.14590448 \pm 1.3 \cdot 10^{-8} \) | \(a_{275}= -0.22494976 \pm 1.6 \cdot 10^{-8} \) | \(a_{276}= +0.66459970 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{277}= +0.97368636 \pm 1 \cdot 10^{-8} \) | \(a_{278}= -1.24181429 \pm 1.5 \cdot 10^{-8} \) | \(a_{279}= +0.11269858 \pm 1 \cdot 10^{-8} \) |
| \(a_{280}= +0.08120588 \pm 1.4 \cdot 10^{-8} \) | \(a_{281}= +0.70536733 \pm 1 \cdot 10^{-8} \) | \(a_{282}= +0.81260927 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{283}= +1.10170161 \pm 1 \cdot 10^{-8} \) | \(a_{284}= +0.11181019 \pm 1.5 \cdot 10^{-8} \) | \(a_{285}= -0.65956335 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{286}= -0.09320920 \pm 1.9 \cdot 10^{-8} \) | \(a_{287}= -0.38076973 \pm 1 \cdot 10^{-8} \) | \(a_{288}= -0.02933551 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{289}= +1.60932211 \pm 1 \cdot 10^{-8} \) | \(a_{290}= +0.10499493 \pm 1.3 \cdot 10^{-8} \) | \(a_{291}= -0.53157046 \pm 1 \cdot 10^{-8} \) |
| \(a_{292}= +0.85642116 \pm 1.5 \cdot 10^{-8} \) | \(a_{293}= -0.58942788 \pm 1 \cdot 10^{-8} \) | \(a_{294}= -0.56212699 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{295}= +0.59243013 \pm 1.7 \cdot 10^{-8} \) | \(a_{296}= -0.33113552 \pm 1.3 \cdot 10^{-8} \) | \(a_{297}= -1.01295160 \pm 1 \cdot 10^{-8} \) |
| \(a_{298}= -1.33332099 \pm 1.6 \cdot 10^{-8} \) | \(a_{299}= +0.14426768 \pm 1 \cdot 10^{-8} \) | \(a_{300}= -0.10797901 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{301}= -0.10140954 \pm 1 \cdot 10^{-8} \) | \(a_{302}= +1.11455584 \pm 1.4 \cdot 10^{-8} \) | \(a_{303}= -1.47316499 \pm 1 \cdot 10^{-8} \) |
| \(a_{304}= -0.34146184 \pm 1.4 \cdot 10^{-8} \) | \(a_{305}= +0.45010211 \pm 1.5 \cdot 10^{-8} \) | \(a_{306}= +0.18954724 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{307}= +0.03418275 \pm 1 \cdot 10^{-8} \) | \(a_{308}= -0.28883048 \pm 2.0 \cdot 10^{-8} \) | \(a_{309}= +0.97112927 \pm 1 \cdot 10^{-8} \) |
| \(a_{310}= +0.21475824 \pm 1.4 \cdot 10^{-8} \) | \(a_{311}= -1.47778951 \pm 1 \cdot 10^{-8} \) | \(a_{312}= -0.04474171 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{313}= +0.68967064 \pm 1 \cdot 10^{-8} \) | \(a_{314}= -0.51019702 \pm 1.7 \cdot 10^{-8} \) | \(a_{315}= -0.03811545 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{316}= -0.77993347 \pm 1.6 \cdot 10^{-8} \) | \(a_{317}= -1.01468442 \pm 1 \cdot 10^{-8} \) | \(a_{318}= -0.19487031 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{319}= -0.37344261 \pm 1 \cdot 10^{-8} \) | \(a_{320}= -0.05590170 \pm 6.9 \cdot 10^{-7} \) | \(a_{321}= +1.45682750 \pm 1 \cdot 10^{-8} \) |
| \(a_{322}= +0.44704709 \pm 1.8 \cdot 10^{-8} \) | \(a_{323}= +2.20630737 \pm 1 \cdot 10^{-8} \) | \(a_{324}= -0.56920420 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{325}= -0.02343949 \pm 1.4 \cdot 10^{-8} \) | \(a_{326}= -0.31392747 \pm 1.4 \cdot 10^{-8} \) | \(a_{327}= -0.93658507 \pm 1 \cdot 10^{-8} \) |
| \(a_{328}= +0.26211987 \pm 1.5 \cdot 10^{-8} \) | \(a_{329}= +0.54660663 \pm 1 \cdot 10^{-8} \) | \(a_{330}= +0.38405630 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{331}= +1.13538688 \pm 1 \cdot 10^{-8} \) | \(a_{332}= +0.64535305 \pm 1.7 \cdot 10^{-8} \) | \(a_{333}= +0.15542447 \pm 1 \cdot 10^{-8} \) |
| \(a_{334}= -0.09184072 \pm 1.3 \cdot 10^{-8} \) | \(a_{335}= -0.85194937 \pm 1.2 \cdot 10^{-8} \) | \(a_{336}= -0.13864264 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{337}= +0.15771978 \pm 1 \cdot 10^{-8} \) | \(a_{338}= +0.69739449 \pm 1.3 \cdot 10^{-8} \) | \(a_{339}= -0.37816107 \pm 1 \cdot 10^{-8} \) |
| \(a_{340}= +0.36120092 \pm 1.6 \cdot 10^{-8} \) | \(a_{341}= -0.76384525 \pm 1 \cdot 10^{-8} \) | \(a_{342}= +0.16027131 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{343}= -0.89170927 \pm 1 \cdot 10^{-8} \) | \(a_{344}= +0.06980979 \pm 1.3 \cdot 10^{-8} \) | \(a_{345}= -0.59443605 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{346}= +0.73011414 \pm 1.4 \cdot 10^{-8} \) | \(a_{347}= -0.83642649 \pm 1 \cdot 10^{-8} \) | \(a_{348}= -0.17925764 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{349}= +1.01124174 \pm 1 \cdot 10^{-8} \) | \(a_{350}= -0.07263275 \pm 1.4 \cdot 10^{-8} \) | \(a_{351}= -0.10554834 \pm 1 \cdot 10^{-8} \) |
| \(a_{352}= +0.19882938 \pm 1.6 \cdot 10^{-8} \) | \(a_{353}= -0.01026651 \pm 1 \cdot 10^{-8} \) | \(a_{354}= -1.01145482 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{355}= -0.10000608 \pm 1.5 \cdot 10^{-8} \) | \(a_{356}= +0.56331107 \pm 1.4 \cdot 10^{-8} \) | \(a_{357}= +0.89581983 \pm 1 \cdot 10^{-8} \) |
| \(a_{358}= +0.32142742 \pm 1.4 \cdot 10^{-8} \) | \(a_{359}= -0.54811611 \pm 1 \cdot 10^{-8} \) | \(a_{360}= +0.02623848 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{361}= +0.86553901 \pm 1 \cdot 10^{-8} \) | \(a_{362}= +0.55109036 \pm 1.4 \cdot 10^{-8} \) | \(a_{363}= -0.28620904 \pm 1 \cdot 10^{-8} \) |
| \(a_{364}= -0.03009579 \pm 1.8 \cdot 10^{-8} \) | \(a_{365}= -0.76600637 \pm 1.5 \cdot 10^{-8} \) | \(a_{366}= -0.76845848 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{367}= -1.03967012 \pm 1 \cdot 10^{-8} \) | \(a_{368}= -0.30774485 \pm 1.4 \cdot 10^{-8} \) | \(a_{369}= -0.12303072 \pm 1 \cdot 10^{-8} \) |
| \(a_{370}= +0.29617662 \pm 1.3 \cdot 10^{-8} \) | \(a_{371}= -0.13108071 \pm 1 \cdot 10^{-8} \) | \(a_{372}= -0.36665634 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{373}= +0.98947790 \pm 1 \cdot 10^{-8} \) | \(a_{374}= -1.28470789 \pm 2.2 \cdot 10^{-8} \) | \(a_{375}= +0.09657936 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{376}= -0.37628112 \pm 1.4 \cdot 10^{-8} \) | \(a_{377}= -0.03891227 \pm 1 \cdot 10^{-8} \) | \(a_{378}= -0.32706617 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{379}= +0.88949994 \pm 1 \cdot 10^{-8} \) | \(a_{380}= +0.30541275 \pm 1.4 \cdot 10^{-8} \) | \(a_{381}= -0.66248015 \pm 1 \cdot 10^{-8} \) |
| \(a_{382}= +0.24760992 \pm 1.4 \cdot 10^{-8} \) | \(a_{383}= -0.78706776 \pm 1 \cdot 10^{-8} \) | \(a_{384}= +0.09544086 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{385}= +0.25833783 \pm 2.0 \cdot 10^{-8} \) | \(a_{386}= -0.26094166 \pm 1.2 \cdot 10^{-8} \) | \(a_{387}= -0.03276649 \pm 1 \cdot 10^{-8} \) |
| \(a_{388}= +0.24614527 \pm 1.4 \cdot 10^{-8} \) | \(a_{389}= +0.24038889 \pm 1 \cdot 10^{-8} \) | \(a_{390}= +0.04001820 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{391}= +1.98844983 \pm 1 \cdot 10^{-8} \) | \(a_{392}= +0.26029456 \pm 1.4 \cdot 10^{-8} \) | \(a_{393}= +0.92528006 \pm 1 \cdot 10^{-8} \) |
| \(a_{394}= -0.20936409 \pm 1.6 \cdot 10^{-8} \) | \(a_{395}= +0.69759370 \pm 1.6 \cdot 10^{-8} \) | \(a_{396}= -0.09332418 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{397}= +0.70003643 \pm 1 \cdot 10^{-8} \) | \(a_{398}= -0.09738298 \pm 1.3 \cdot 10^{-8} \) | \(a_{399}= +0.75745876 \pm 1 \cdot 10^{-8} \) |
| \(a_{400}= +0.05 \) | \(a_{401}= -1.75428820 \pm 1 \cdot 10^{-8} \) | \(a_{402}= +1.45453152 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{403}= -0.07959176 \pm 1 \cdot 10^{-8} \) | \(a_{404}= +0.68215340 \pm 1.4 \cdot 10^{-8} \) | \(a_{405}= +0.50911171 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{406}= -0.12057876 \pm 1.7 \cdot 10^{-8} \) | \(a_{407}= -1.05343152 \pm 1 \cdot 10^{-8} \) | \(a_{408}= -0.61667764 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{409}= +0.04178022 \pm 1 \cdot 10^{-8} \) | \(a_{410}= -0.23444714 \pm 1.5 \cdot 10^{-8} \) | \(a_{411}= +0.22280399 \pm 1 \cdot 10^{-8} \) |
| \(a_{412}= -0.44968427 \pm 1.5 \cdot 10^{-8} \) | \(a_{413}= -0.68036131 \pm 1 \cdot 10^{-8} \) | \(a_{414}= +0.14444563 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{415}= -0.57722132 \pm 1.7 \cdot 10^{-8} \) | \(a_{416}= +0.02071778 \pm 1.4 \cdot 10^{-8} \) | \(a_{417}= -1.89631727 \pm 1 \cdot 10^{-8} \) |
| \(a_{418}= -1.08628232 \pm 2.0 \cdot 10^{-8} \) | \(a_{419}= +0.90463536 \pm 1 \cdot 10^{-8} \) | \(a_{420}= +0.12400575 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{421}= -1.27358754 \pm 1 \cdot 10^{-8} \) | \(a_{422}= +0.74249926 \pm 1.4 \cdot 10^{-8} \) | \(a_{423}= +0.17661437 \pm 1 \cdot 10^{-8} \) |
| \(a_{424}= +0.09023527 \pm 1.7 \cdot 10^{-8} \) | \(a_{425}= -0.32306793 \pm 1.6 \cdot 10^{-8} \) | \(a_{426}= +0.17074019 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{427}= -0.51690833 \pm 1 \cdot 10^{-8} \) | \(a_{428}= -0.67458827 \pm 1.2 \cdot 10^{-8} \) | \(a_{429}= -0.14233547 \pm 1 \cdot 10^{-8} \) |
| \(a_{430}= -0.06243978 \pm 1.3 \cdot 10^{-8} \) | \(a_{431}= +0.68407956 \pm 1 \cdot 10^{-8} \) | \(a_{432}= +0.22515063 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{433}= +0.08973560 \pm 1 \cdot 10^{-8} \) | \(a_{434}= -0.24663364 \pm 1.9 \cdot 10^{-8} \) | \(a_{435}= +0.16033291 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{436}= +0.43368848 \pm 1.3 \cdot 10^{-8} \) | \(a_{437}= +1.68132999 \pm 1 \cdot 10^{-8} \) | \(a_{438}= +1.30780121 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{439}= -0.01703764 \pm 1 \cdot 10^{-8} \) | \(a_{440}= -0.17783840 \pm 1.6 \cdot 10^{-8} \) | \(a_{441}= -0.12217398 \pm 1 \cdot 10^{-8} \) |
| \(a_{442}= -0.13386502 \pm 1.9 \cdot 10^{-8} \) | \(a_{443}= -0.66993999 \pm 1 \cdot 10^{-8} \) | \(a_{444}= -0.50566177 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{445}= -0.50384074 \pm 1.4 \cdot 10^{-8} \) | \(a_{446}= +1.32938734 \pm 1.6 \cdot 10^{-8} \) | \(a_{447}= -2.03605293 \pm 1 \cdot 10^{-8} \) |
| \(a_{448}= +0.06419889 \pm 1.4 \cdot 10^{-8} \) | \(a_{449}= +0.61166477 \pm 1 \cdot 10^{-8} \) | \(a_{450}= -0.02346841 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{451}= +0.83387409 \pm 1 \cdot 10^{-8} \) | \(a_{452}= +0.17510860 \pm 1.5 \cdot 10^{-8} \) | \(a_{453}= +1.70198677 \pm 1 \cdot 10^{-8} \) |
| \(a_{454}= -0.22115308 \pm 1.6 \cdot 10^{-8} \) | \(a_{455}= +0.02691849 \pm 1.8 \cdot 10^{-8} \) | \(a_{456}= -0.52143061 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{457}= +0.87074264 \pm 1 \cdot 10^{-8} \) | \(a_{458}= -0.58242503 \pm 1.4 \cdot 10^{-8} \) | \(a_{459}= -1.45477893 \pm 1 \cdot 10^{-8} \) |
| \(a_{460}= +0.27525537 \pm 1.4 \cdot 10^{-8} \) | \(a_{461}= -0.22960027 \pm 1 \cdot 10^{-8} \) | \(a_{462}= -0.44105969 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{463}= +1.03523031 \pm 1 \cdot 10^{-8} \) | \(a_{464}= +0.08300578 \pm 1.3 \cdot 10^{-8} \) | \(a_{465}= +0.32794740 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{466}= -0.15466288 \pm 1.5 \cdot 10^{-8} \) | \(a_{467}= +1.17276800 \pm 1 \cdot 10^{-8} \) | \(a_{468}= -0.00972427 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{469}= +0.97839959 \pm 1 \cdot 10^{-8} \) | \(a_{470}= +0.33655606 \pm 1.4 \cdot 10^{-8} \) | \(a_{471}= -0.77909832 \pm 1 \cdot 10^{-8} \) |
| \(a_{472}= +0.46835714 \pm 1.7 \cdot 10^{-8} \) | \(a_{473}= +0.22208380 \pm 1 \cdot 10^{-8} \) | \(a_{474}= -1.19100039 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{475}= -0.27316947 \pm 1.4 \cdot 10^{-8} \) | \(a_{476}= -0.41481201 \pm 2.0 \cdot 10^{-8} \) | \(a_{477}= -0.04235356 \pm 1 \cdot 10^{-8} \) |
| \(a_{478}= -0.32156998 \pm 1.4 \cdot 10^{-8} \) | \(a_{479}= -1.01196192 \pm 1 \cdot 10^{-8} \) | \(a_{480}= -0.08536490 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{481}= -0.10976630 \pm 1 \cdot 10^{-8} \) | \(a_{482}= -1.11218830 \pm 1.6 \cdot 10^{-8} \) | \(a_{483}= +0.68266496 \pm 1 \cdot 10^{-8} \) |
| \(a_{484}= +0.13252994 \pm 1.3 \cdot 10^{-8} \) | \(a_{485}= -0.22015902 \pm 1.4 \cdot 10^{-8} \) | \(a_{486}= -0.23238330 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{487}= -0.61274366 \pm 1 \cdot 10^{-8} \) | \(a_{488}= +0.35583696 \pm 1.5 \cdot 10^{-8} \) | \(a_{489}= -0.47938415 \pm 1 \cdot 10^{-8} \) |
| \(a_{490}= -0.23281453 \pm 1.4 \cdot 10^{-8} \) | \(a_{491}= +0.96146539 \pm 1 \cdot 10^{-8} \) | \(a_{492}= +0.40027115 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{493}= -0.53633010 \pm 1 \cdot 10^{-8} \) | \(a_{494}= -0.11318931 \pm 1.8 \cdot 10^{-8} \) | \(a_{495}= +0.08347168 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{496}= +0.16978130 \pm 1.4 \cdot 10^{-8} \) | \(a_{497}= +0.11484944 \pm 1 \cdot 10^{-8} \) | \(a_{498}= +0.98548885 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{499}= -1.22516927 \pm 1 \cdot 10^{-8} \) | \(a_{500}= -0.04472136 \pm 9.8 \cdot 10^{-7} \) | \(a_{501}= -0.14024573 \pm 1 \cdot 10^{-8} \) |
| \(a_{502}= +1.21002269 \pm 1.5 \cdot 10^{-8} \) | \(a_{503}= -1.77917105 \pm 1 \cdot 10^{-8} \) | \(a_{504}= -0.03013291 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{505}= -0.61013655 \pm 1.4 \cdot 10^{-8} \) | \(a_{506}= -0.97901948 \pm 1.9 \cdot 10^{-8} \) | \(a_{507}= +1.06495893 \pm 1 \cdot 10^{-8} \) |
| \(a_{508}= +0.30676339 \pm 1.3 \cdot 10^{-8} \) | \(a_{509}= +1.59209306 \pm 1 \cdot 10^{-8} \) | \(a_{510}= +0.55157325 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{511}= +0.87970054 \pm 1 \cdot 10^{-8} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -1.23008557 \pm 1 \cdot 10^{-8} \) |
| \(a_{514}= +0.94629102 \pm 1.8 \cdot 10^{-8} \) | \(a_{515}= +0.40220984 \pm 1.5 \cdot 10^{-8} \) | \(a_{516}= +0.10660331 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{517}= -1.19705185 \pm 1 \cdot 10^{-8} \) | \(a_{518}= -0.34013650 \pm 1.7 \cdot 10^{-8} \) | \(a_{519}= +1.11492360 \pm 1 \cdot 10^{-8} \) |
| \(a_{520}= -0.01853055 \pm 1.4 \cdot 10^{-8} \) | \(a_{521}= +0.74901413 \pm 1 \cdot 10^{-8} \) | \(a_{522}= -0.03896027 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{523}= -0.30845875 \pm 1 \cdot 10^{-8} \) | \(a_{524}= -0.42845366 \pm 1.4 \cdot 10^{-8} \) | \(a_{525}= -0.11091412 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{526}= +0.26966989 \pm 1.5 \cdot 10^{-8} \) | \(a_{527}= -1.09701784 \pm 1 \cdot 10^{-8} \) | \(a_{528}= +0.30362316 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{529}= +0.51531032 \pm 1 \cdot 10^{-8} \) | \(a_{530}= -0.08070888 \pm 1.7 \cdot 10^{-8} \) | \(a_{531}= -0.21983192 \pm 1 \cdot 10^{-8} \) |
| \(a_{532}= -0.35074351 \pm 1.9 \cdot 10^{-8} \) | \(a_{533}= +0.08688868 \pm 1 \cdot 10^{-8} \) | \(a_{534}= +0.86020633 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{535}= +0.60337009 \pm 1.2 \cdot 10^{-8} \) | \(a_{536}= -0.67352511 \pm 1.2 \cdot 10^{-8} \) | \(a_{537}= +0.49083697 \pm 1 \cdot 10^{-8} \) |
| \(a_{538}= -0.33764741 \pm 1.4 \cdot 10^{-8} \) | \(a_{539}= +0.82806729 \pm 1 \cdot 10^{-8} \) | \(a_{540}= -0.20138084 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{541}= +0.03508346 \pm 1 \cdot 10^{-8} \) | \(a_{542}= +0.34022095 \pm 1.3 \cdot 10^{-8} \) | \(a_{543}= +0.84154465 \pm 1 \cdot 10^{-8} \) |
| \(a_{544}= +0.28555440 \pm 1.6 \cdot 10^{-8} \) | \(a_{545}= -0.38790277 \pm 1.3 \cdot 10^{-8} \) | \(a_{546}= -0.04595789 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{547}= -0.80597045 \pm 1 \cdot 10^{-8} \) | \(a_{548}= -0.10317004 \pm 1.3 \cdot 10^{-8} \) | \(a_{549}= -0.16701854 \pm 1 \cdot 10^{-8} \) |
| \(a_{550}= +0.15906350 \pm 1.6 \cdot 10^{-8} \) | \(a_{551}= -0.45349290 \pm 1 \cdot 10^{-8} \) | \(a_{552}= -0.46994296 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{553}= -0.80113375 \pm 1 \cdot 10^{-8} \) | \(a_{554}= -0.68850023 \pm 1.7 \cdot 10^{-8} \) | \(a_{555}= +0.45227764 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{556}= +0.87809531 \pm 1.5 \cdot 10^{-8} \) | \(a_{557}= +0.52103195 \pm 1 \cdot 10^{-8} \) | \(a_{558}= -0.07968993 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{559}= +0.02314086 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.05742123 \pm 1.4 \cdot 10^{-8} \) | \(a_{561}= -1.96181810 \pm 1 \cdot 10^{-8} \) |
| \(a_{562}= -0.49877003 \pm 1.5 \cdot 10^{-8} \) | \(a_{563}= +0.77316919 \pm 1 \cdot 10^{-8} \) | \(a_{564}= -0.57460152 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{565}= -0.15662189 \pm 1.5 \cdot 10^{-8} \) | \(a_{566}= -0.77902068 \pm 1.5 \cdot 10^{-8} \) | \(a_{567}= -0.58467640 \pm 1 \cdot 10^{-8} \) |
| \(a_{568}= -0.07906175 \pm 1.5 \cdot 10^{-8} \) | \(a_{569}= -0.28480123 \pm 1 \cdot 10^{-8} \) | \(a_{570}= +0.46638172 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{571}= -0.08102137 \pm 1 \cdot 10^{-8} \) | \(a_{572}= +0.06590886 \pm 1.9 \cdot 10^{-8} \) | \(a_{573}= +0.37811367 \pm 1 \cdot 10^{-8} \) |
| \(a_{574}= +0.26924486 \pm 1.9 \cdot 10^{-8} \) | \(a_{575}= -0.24619588 \pm 1.4 \cdot 10^{-8} \) | \(a_{576}= +0.02074334 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{577}= +1.45534306 \pm 1 \cdot 10^{-8} \) | \(a_{578}= -1.13796258 \pm 1.6 \cdot 10^{-8} \) | \(a_{579}= -0.39847196 \pm 1 \cdot 10^{-8} \) |
| \(a_{580}= -0.07424263 \pm 1.3 \cdot 10^{-8} \) | \(a_{581}= +0.66289515 \pm 1 \cdot 10^{-8} \) | \(a_{582}= +0.37587708 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{583}= +0.28706276 \pm 1 \cdot 10^{-8} \) | \(a_{584}= -0.60558121 \pm 1.5 \cdot 10^{-8} \) | \(a_{585}= +0.00869765 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{586}= +0.41678845 \pm 1.6 \cdot 10^{-8} \) | \(a_{587}= +0.78343843 \pm 1 \cdot 10^{-8} \) | \(a_{588}= +0.39748381 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{589}= -0.92758136 \pm 1 \cdot 10^{-8} \) | \(a_{590}= -0.41891136 \pm 1.7 \cdot 10^{-8} \) | \(a_{591}= -0.31971024 \pm 1 \cdot 10^{-8} \) |
| \(a_{592}= +0.23414817 \pm 1.3 \cdot 10^{-8} \) | \(a_{593}= +1.27464022 \pm 1 \cdot 10^{-8} \) | \(a_{594}= +0.71626495 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{595}= +0.37101914 \pm 2.0 \cdot 10^{-8} \) | \(a_{596}= +0.94280032 \pm 1.6 \cdot 10^{-8} \) | \(a_{597}= -0.14870906 \pm 1 \cdot 10^{-8} \) |
| \(a_{598}= -0.10201265 \pm 1.7 \cdot 10^{-8} \) | \(a_{599}= +1.06865261 \pm 1 \cdot 10^{-8} \) | \(a_{600}= +0.07635269 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{601}= +1.30204109 \pm 1 \cdot 10^{-8} \) | \(a_{602}= +0.07170737 \pm 1.7 \cdot 10^{-8} \) | \(a_{603}= +0.31613123 \pm 1 \cdot 10^{-8} \) |
| \(a_{604}= -0.78810999 \pm 1.4 \cdot 10^{-8} \) | \(a_{605}= -0.11853838 \pm 1.3 \cdot 10^{-8} \) | \(a_{606}= +1.04168496 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{607}= +0.02746589 \pm 1 \cdot 10^{-8} \) | \(a_{608}= +0.24144998 \pm 1.4 \cdot 10^{-8} \) | \(a_{609}= -0.18413025 \pm 1 \cdot 10^{-8} \) |
| \(a_{610}= -0.31827026 \pm 1.5 \cdot 10^{-8} \) | \(a_{611}= -0.12473136 \pm 1 \cdot 10^{-8} \) | \(a_{612}= -0.13403014 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{613}= -1.86793805 \pm 1 \cdot 10^{-8} \) | \(a_{614}= -0.02417086 \pm 1.5 \cdot 10^{-8} \) | \(a_{615}= -0.35801340 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{616}= +0.20423399 \pm 2.0 \cdot 10^{-8} \) | \(a_{617}= -0.50310737 \pm 1 \cdot 10^{-8} \) | \(a_{618}= -0.68669209 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{619}= -1.61139220 \pm 1 \cdot 10^{-8} \) | \(a_{620}= -0.15185701 \pm 1.4 \cdot 10^{-8} \) | \(a_{621}= -1.10862315 \pm 1 \cdot 10^{-8} \) |
| \(a_{622}= +1.04495499 \pm 1.5 \cdot 10^{-8} \) | \(a_{623}= +0.57862309 \pm 1 \cdot 10^{-8} \) | \(a_{624}= +0.03163717 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{625}= +0.04 \) | \(a_{626}= -0.48767079 \pm 1.4 \cdot 10^{-8} \) | \(a_{627}= -1.65881158 \pm 1 \cdot 10^{-8} \) |
| \(a_{628}= +0.36076378 \pm 1.7 \cdot 10^{-8} \) | \(a_{629}= -1.51291530 \pm 1 \cdot 10^{-8} \) | \(a_{630}= +0.02695170 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{631}= -0.11505458 \pm 1 \cdot 10^{-8} \) | \(a_{632}= +0.55149624 \pm 1.6 \cdot 10^{-8} \) | \(a_{633}= +1.13383634 \pm 1 \cdot 10^{-8} \) |
| \(a_{634}= +0.71749023 \pm 1.4 \cdot 10^{-8} \) | \(a_{635}= -0.27437751 \pm 1.3 \cdot 10^{-8} \) | \(a_{636}= +0.13779412 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{637}= +0.08628362 \pm 1 \cdot 10^{-8} \) | \(a_{638}= +0.26406380 \pm 1.9 \cdot 10^{-8} \) | \(a_{639}= +0.03710907 \pm 1 \cdot 10^{-8} \) |
| \(a_{640}= +0.03952847 \pm 1.2 \cdot 10^{-6} \) | \(a_{641}= +1.61785446 \pm 1 \cdot 10^{-8} \) | \(a_{642}= -1.03013260 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{643}= +0.59392012 \pm 1 \cdot 10^{-8} \) | \(a_{644}= -0.31611003 \pm 1.8 \cdot 10^{-8} \) | \(a_{645}= -0.09534890 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{646}= -1.56009490 \pm 2.0 \cdot 10^{-8} \) | \(a_{647}= -0.07445698 \pm 1 \cdot 10^{-8} \) | \(a_{648}= +0.40248815 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{649}= +1.48997053 \pm 1 \cdot 10^{-8} \) | \(a_{650}= +0.01657423 \pm 1.4 \cdot 10^{-8} \) | \(a_{651}= -0.37662285 \pm 1 \cdot 10^{-8} \) |
| \(a_{652}= +0.22198024 \pm 1.4 \cdot 10^{-8} \) | \(a_{653}= +0.10481005 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.66226566 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{655}= +0.38322061 \pm 1.4 \cdot 10^{-8} \) | \(a_{656}= -0.18534674 \pm 1.5 \cdot 10^{-8} \) | \(a_{657}= +0.28424053 \pm 1 \cdot 10^{-8} \) |
| \(a_{658}= -0.38650926 \pm 1.8 \cdot 10^{-8} \) | \(a_{659}= +0.29007593 \pm 1 \cdot 10^{-8} \) | \(a_{660}= -0.27156881 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{661}= -1.23276760 \pm 1 \cdot 10^{-8} \) | \(a_{662}= -0.80283976 \pm 1.6 \cdot 10^{-8} \) | \(a_{663}= -0.20441908 \pm 1 \cdot 10^{-8} \) |
| \(a_{664}= -0.45633352 \pm 1.7 \cdot 10^{-8} \) | \(a_{665}= +0.31371453 \pm 1.9 \cdot 10^{-8} \) | \(a_{666}= -0.10990169 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{667}= -0.40871362 \pm 1 \cdot 10^{-8} \) | \(a_{668}= +0.06494120 \pm 1.3 \cdot 10^{-8} \) | \(a_{669}= +2.03004603 \pm 1 \cdot 10^{-8} \) |
| \(a_{670}= +0.60241917 \pm 1.2 \cdot 10^{-8} \) | \(a_{671}= +1.13201347 \pm 1 \cdot 10^{-8} \) | \(a_{672}= +0.09803515 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{673}= -1.11539140 \pm 1 \cdot 10^{-8} \) | \(a_{674}= -0.11152473 \pm 1.4 \cdot 10^{-8} \) | \(a_{675}= +0.18012050 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{676}= -0.49313238 \pm 1.3 \cdot 10^{-8} \) | \(a_{677}= +1.09135984 \pm 1 \cdot 10^{-8} \) | \(a_{678}= +0.26740026 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{679}= +0.25283603 \pm 1 \cdot 10^{-8} \) | \(a_{680}= -0.25540762 \pm 1.6 \cdot 10^{-8} \) | \(a_{681}= -0.33771265 \pm 1 \cdot 10^{-8} \) |
| \(a_{682}= +0.54012016 \pm 2.0 \cdot 10^{-8} \) | \(a_{683}= -0.44635226 \pm 1 \cdot 10^{-8} \) | \(a_{684}= -0.11332893 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{685}= +0.09227809 \pm 1.3 \cdot 10^{-8} \) | \(a_{686}= +0.63053367 \pm 1.5 \cdot 10^{-8} \) | \(a_{687}= -0.88939438 \pm 1 \cdot 10^{-8} \) |
| \(a_{688}= -0.04936298 \pm 1.3 \cdot 10^{-8} \) | \(a_{689}= +0.02991159 \pm 1 \cdot 10^{-8} \) | \(a_{690}= +0.42032976 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{691}= +0.81841189 \pm 1 \cdot 10^{-8} \) | \(a_{692}= -0.51626866 \pm 1.4 \cdot 10^{-8} \) | \(a_{693}= -0.09586093 \pm 1 \cdot 10^{-8} \) |
| \(a_{694}= +0.59144284 \pm 1.3 \cdot 10^{-8} \) | \(a_{695}= -0.78539232 \pm 1.5 \cdot 10^{-8} \) | \(a_{696}= +0.12675429 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{697}= +1.19759172 \pm 1 \cdot 10^{-8} \) | \(a_{698}= -0.71505589 \pm 1.3 \cdot 10^{-8} \) | \(a_{699}= -0.23617855 \pm 1 \cdot 10^{-8} \) |
| \(a_{700}= +0.05135911 \pm 1.4 \cdot 10^{-8} \) | \(a_{701}= -0.24345682 \pm 1 \cdot 10^{-8} \) | \(a_{702}= +0.07463395 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{703}= -1.27924266 \pm 1 \cdot 10^{-8} \) | \(a_{704}= -0.14059360 \pm 1.6 \cdot 10^{-8} \) | \(a_{705}= +0.51393923 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{706}= +0.00725952 \pm 1.6 \cdot 10^{-8} \) | \(a_{707}= +0.70069580 \pm 1 \cdot 10^{-8} \) | \(a_{708}= +0.71520656 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{709}= -1.31710164 \pm 1 \cdot 10^{-8} \) | \(a_{710}= +0.07071498 \pm 1.5 \cdot 10^{-8} \) | \(a_{711}= -0.25885477 \pm 1 \cdot 10^{-8} \) |
| \(a_{712}= -0.39832108 \pm 1.4 \cdot 10^{-8} \) | \(a_{713}= -0.83598914 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.63344027 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{715}= -0.05895068 \pm 1.9 \cdot 10^{-8} \) | \(a_{716}= -0.22728351 \pm 1.4 \cdot 10^{-8} \) | \(a_{717}= -0.49105467 \pm 1 \cdot 10^{-8} \) |
| \(a_{718}= +0.38757662 \pm 1.6 \cdot 10^{-8} \) | \(a_{719}= +0.17304403 \pm 1 \cdot 10^{-8} \) | \(a_{720}= -0.01855340 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{721}= -0.46190766 \pm 1 \cdot 10^{-8} \) | \(a_{722}= -0.61202851 \pm 1.5 \cdot 10^{-8} \) | \(a_{723}= -1.69837140 \pm 1 \cdot 10^{-8} \) |
| \(a_{724}= -0.38967973 \pm 1.4 \cdot 10^{-8} \) | \(a_{725}= +0.06640462 \pm 1.3 \cdot 10^{-8} \) | \(a_{726}= +0.20238035 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{727}= +1.75055215 \pm 1 \cdot 10^{-8} \) | \(a_{728}= +0.02128094 \pm 1.8 \cdot 10^{-8} \) | \(a_{729}= +0.78354658 \pm 1 \cdot 10^{-8} \) |
| \(a_{730}= +0.54164830 \pm 1.5 \cdot 10^{-8} \) | \(a_{731}= +0.31895189 \pm 1 \cdot 10^{-8} \) | \(a_{732}= +0.54338220 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{733}= +0.01163771 \pm 1 \cdot 10^{-8} \) | \(a_{734}= +0.73515779 \pm 1.2 \cdot 10^{-8} \) | \(a_{735}= -0.35552033 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{736}= +0.21760847 \pm 1.4 \cdot 10^{-8} \) | \(a_{737}= -2.14266526 \pm 1 \cdot 10^{-8} \) | \(a_{738}= +0.08699585 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{739}= +0.96241238 \pm 1 \cdot 10^{-8} \) | \(a_{740}= -0.20942849 \pm 1.3 \cdot 10^{-8} \) | \(a_{741}= -0.17284617 \pm 1 \cdot 10^{-8} \) |
| \(a_{742}= +0.09268806 \pm 2.1 \cdot 10^{-8} \) | \(a_{743}= +1.60194246 \pm 1 \cdot 10^{-8} \) | \(a_{744}= +0.25926518 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{745}= -0.84326624 \pm 1.6 \cdot 10^{-8} \) | \(a_{746}= -0.69966653 \pm 1.4 \cdot 10^{-8} \) | \(a_{747}= +0.21418842 \pm 1 \cdot 10^{-8} \) |
| \(a_{748}= +0.90842566 \pm 2.2 \cdot 10^{-8} \) | \(a_{749}= -0.69292504 \pm 1 \cdot 10^{-8} \) | \(a_{750}= -0.06829192 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{751}= -0.24589611 \pm 1 \cdot 10^{-8} \) | \(a_{752}= +0.26607093 \pm 1.4 \cdot 10^{-8} \) | \(a_{753}= +1.84776978 \pm 1 \cdot 10^{-8} \) |
| \(a_{754}= +0.02751513 \pm 1.7 \cdot 10^{-8} \) | \(a_{755}= +0.70490701 \pm 1.4 \cdot 10^{-8} \) | \(a_{756}= +0.23127071 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{757}= -0.08796308 \pm 1 \cdot 10^{-8} \) | \(a_{758}= -0.62897144 \pm 1.5 \cdot 10^{-8} \) | \(a_{759}= -1.49501545 \pm 1 \cdot 10^{-8} \) |
| \(a_{760}= -0.21595943 \pm 1.4 \cdot 10^{-8} \) | \(a_{761}= -0.25081788 \pm 1 \cdot 10^{-8} \) | \(a_{762}= +0.46844420 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{763}= +0.44547707 \pm 1 \cdot 10^{-8} \) | \(a_{764}= -0.17508665 \pm 1.4 \cdot 10^{-8} \) | \(a_{765}= +0.11988020 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{766}= +0.55654095 \pm 1.2 \cdot 10^{-8} \) | \(a_{767}= +0.15525314 \pm 1 \cdot 10^{-8} \) | \(a_{768}= -0.06748688 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{769}= -0.95334301 \pm 1 \cdot 10^{-8} \) | \(a_{770}= -0.18267243 \pm 2.0 \cdot 10^{-8} \) | \(a_{771}= +1.44503732 \pm 1 \cdot 10^{-8} \) |
| \(a_{772}= +0.18451362 \pm 1.2 \cdot 10^{-8} \) | \(a_{773}= +1.60109205 \pm 1 \cdot 10^{-8} \) | \(a_{774}= +0.02316941 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{775}= +0.13582504 \pm 1.4 \cdot 10^{-8} \) | \(a_{776}= -0.17405099 \pm 1.4 \cdot 10^{-8} \) | \(a_{777}= -0.51940675 \pm 1 \cdot 10^{-8} \) |
| \(a_{778}= -0.16998062 \pm 1.5 \cdot 10^{-8} \) | \(a_{779}= +1.01262141 \pm 1 \cdot 10^{-8} \) | \(a_{780}= -0.02829714 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{781}= -0.25151677 \pm 1 \cdot 10^{-8} \) | \(a_{782}= -1.40604636 \pm 1.9 \cdot 10^{-8} \) | \(a_{783}= +0.29902085 \pm 1 \cdot 10^{-8} \) |
| \(a_{784}= -0.18405605 \pm 1.4 \cdot 10^{-8} \) | \(a_{785}= -0.32267693 \pm 1.7 \cdot 10^{-8} \) | \(a_{786}= -0.65427181 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{787}= +0.18260003 \pm 1 \cdot 10^{-8} \) | \(a_{788}= +0.14804277 \pm 1.6 \cdot 10^{-8} \) | \(a_{789}= +0.41180043 \pm 1 \cdot 10^{-8} \) |
| \(a_{790}= -0.49327324 \pm 1.6 \cdot 10^{-8} \) | \(a_{791}= +0.17986843 \pm 1 \cdot 10^{-8} \) | \(a_{792}= +0.06599016 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{793}= +0.11795444 \pm 1 \cdot 10^{-8} \) | \(a_{794}= -0.49500051 \pm 1.5 \cdot 10^{-8} \) | \(a_{795}= -0.12324680 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{796}= +0.06886017 \pm 1.3 \cdot 10^{-8} \) | \(a_{797}= -1.16999951 \pm 1 \cdot 10^{-8} \) | \(a_{798}= -0.53560422 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{799}= -1.71917967 \pm 1 \cdot 10^{-8} \) | \(a_{800}= -0.03535534 \pm 1.4 \cdot 10^{-6} \) | \(a_{801}= +0.18695922 \pm 1 \cdot 10^{-8} \) |
| \(a_{802}= +1.24046908 \pm 1.3 \cdot 10^{-8} \) | \(a_{803}= -1.92651735 \pm 1 \cdot 10^{-8} \) | \(a_{804}= -1.02850910 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{805}= +0.28273740 \pm 1.8 \cdot 10^{-8} \) | \(a_{806}= +0.05627987 \pm 1.8 \cdot 10^{-8} \) | \(a_{807}= -0.51560577 \pm 1 \cdot 10^{-8} \) |
| \(a_{808}= -0.48235529 \pm 1.4 \cdot 10^{-8} \) | \(a_{809}= +0.50433044 \pm 1 \cdot 10^{-8} \) | \(a_{810}= -0.35999634 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{811}= +0.63575247 \pm 1 \cdot 10^{-8} \) | \(a_{812}= +0.08526206 \pm 1.7 \cdot 10^{-8} \) | \(a_{813}= +0.51953570 \pm 1 \cdot 10^{-8} \) |
| \(a_{814}= +0.74488857 \pm 1.9 \cdot 10^{-8} \) | \(a_{815}= -0.19854517 \pm 1.4 \cdot 10^{-8} \) | \(a_{816}= +0.43605694 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{817}= +0.26968917 \pm 1 \cdot 10^{-8} \) | \(a_{818}= -0.02954308 \pm 1.6 \cdot 10^{-8} \) | \(a_{819}= -0.00998859 \pm 1 \cdot 10^{-8} \) |
| \(a_{820}= +0.16577916 \pm 1.5 \cdot 10^{-8} \) | \(a_{821}= -0.14376333 \pm 1 \cdot 10^{-8} \) | \(a_{822}= -0.15754621 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{823}= -0.83743057 \pm 1 \cdot 10^{-8} \) | \(a_{824}= +0.31797480 \pm 1.5 \cdot 10^{-8} \) | \(a_{825}= +0.24289853 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{826}= +0.48108810 \pm 2.1 \cdot 10^{-8} \) | \(a_{827}= +1.46792872 \pm 1 \cdot 10^{-8} \) | \(a_{828}= -0.10213848 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{829}= -0.05298885 \pm 1 \cdot 10^{-8} \) | \(a_{830}= +0.40815711 \pm 1.7 \cdot 10^{-8} \) | \(a_{831}= -1.05137691 \pm 1 \cdot 10^{-8} \) |
| \(a_{832}= -0.01464968 \pm 1.4 \cdot 10^{-8} \) | \(a_{833}= +1.18925212 \pm 1 \cdot 10^{-8} \) | \(a_{834}= +1.34089880 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{835}= -0.05808517 \pm 1.3 \cdot 10^{-8} \) | \(a_{836}= +0.76811760 \pm 2.0 \cdot 10^{-8} \) | \(a_{837}= +0.61162186 \pm 1 \cdot 10^{-8} \) |
| \(a_{838}= -0.63967380 \pm 1.4 \cdot 10^{-8} \) | \(a_{839}= +1.89834518 \pm 1 \cdot 10^{-8} \) | \(a_{840}= -0.08768531 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{841}= -0.88976065 \pm 1 \cdot 10^{-8} \) | \(a_{842}= +0.90056239 \pm 1.6 \cdot 10^{-8} \) | \(a_{843}= -0.76164868 \pm 1 \cdot 10^{-8} \) |
| \(a_{844}= -0.52502626 \pm 1.4 \cdot 10^{-8} \) | \(a_{845}= +0.44107101 \pm 1.3 \cdot 10^{-8} \) | \(a_{846}= -0.12488522 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{847}= +0.13613239 \pm 1 \cdot 10^{-8} \) | \(a_{848}= -0.06380597 \pm 1.7 \cdot 10^{-8} \) | \(a_{849}= -1.18960651 \pm 1 \cdot 10^{-8} \) |
| \(a_{850}= +0.22844352 \pm 1.6 \cdot 10^{-8} \) | \(a_{851}= -1.15292633 \pm 1 \cdot 10^{-8} \) | \(a_{852}= -0.12073154 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{853}= +0.69661039 \pm 1 \cdot 10^{-8} \) | \(a_{854}= +0.36550938 \pm 1.9 \cdot 10^{-8} \) | \(a_{855}= +0.10136448 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{856}= +0.47700594 \pm 1.2 \cdot 10^{-8} \) | \(a_{857}= +0.42347567 \pm 1 \cdot 10^{-8} \) | \(a_{858}= +0.10064637 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{859}= -1.05599474 \pm 1 \cdot 10^{-8} \) | \(a_{860}= +0.04415159 \pm 1.3 \cdot 10^{-8} \) | \(a_{861}= +0.41115139 \pm 1 \cdot 10^{-8} \) |
| \(a_{862}= -0.48371729 \pm 1.2 \cdot 10^{-8} \) | \(a_{863}= -0.77300420 \pm 1 \cdot 10^{-8} \) | \(a_{864}= -0.15920554 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{865}= +0.46176473 \pm 1.4 \cdot 10^{-8} \) | \(a_{866}= -0.06345265 \pm 1.7 \cdot 10^{-8} \) | \(a_{867}= -1.73773011 \pm 1 \cdot 10^{-8} \) |
| \(a_{868}= +0.17439632 \pm 1.9 \cdot 10^{-8} \) | \(a_{869}= +1.75445848 \pm 1 \cdot 10^{-8} \) | \(a_{870}= -0.11337249 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{871}= -0.22326314 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.30666407 \pm 1.3 \cdot 10^{-8} \) | \(a_{873}= +0.08169399 \pm 1 \cdot 10^{-8} \) |
| \(a_{874}= -1.18887983 \pm 1.8 \cdot 10^{-8} \) | \(a_{875}= -0.04593698 \pm 1.4 \cdot 10^{-8} \) | \(a_{876}= -0.92475510 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{877}= -0.30651117 \pm 1 \cdot 10^{-8} \) | \(a_{878}= +0.01204743 \pm 1.3 \cdot 10^{-8} \) | \(a_{879}= +0.63645840 \pm 1 \cdot 10^{-8} \) |
| \(a_{880}= +0.12575074 \pm 1.6 \cdot 10^{-8} \) | \(a_{881}= -1.69573248 \pm 1 \cdot 10^{-8} \) | \(a_{882}= +0.08639005 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{883}= +0.58603140 \pm 1 \cdot 10^{-8} \) | \(a_{884}= +0.09465686 \pm 1.9 \cdot 10^{-8} \) | \(a_{885}= -0.63970019 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{886}= +0.47371911 \pm 1.5 \cdot 10^{-8} \) | \(a_{887}= +0.62184308 \pm 1 \cdot 10^{-8} \) | \(a_{888}= +0.35755687 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{889}= +0.31510188 \pm 1 \cdot 10^{-8} \) | \(a_{890}= +0.35626920 \pm 1.4 \cdot 10^{-8} \) | \(a_{891}= +1.28042348 \pm 1 \cdot 10^{-8} \) |
| \(a_{892}= -0.94001880 \pm 1.6 \cdot 10^{-8} \) | \(a_{893}= -1.45364912 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +1.43970683 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{895}= +0.20328855 \pm 1.4 \cdot 10^{-8} \) | \(a_{896}= -0.04539547 \pm 1.4 \cdot 10^{-8} \) | \(a_{897}= -0.15577881 \pm 1 \cdot 10^{-8} \) |
| \(a_{898}= -0.43251230 \pm 1.5 \cdot 10^{-8} \) | \(a_{899}= +0.22548526 \pm 1 \cdot 10^{-8} \) | \(a_{900}= +0.01659467 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{901}= +0.41227326 \pm 1 \cdot 10^{-8} \) | \(a_{902}= -0.58963802 \pm 2.1 \cdot 10^{-8} \) | \(a_{903}= +0.10950102 \pm 1 \cdot 10^{-8} \) |
| \(a_{904}= -0.12382048 \pm 1.5 \cdot 10^{-8} \) | \(a_{905}= +0.34854015 \pm 1.4 \cdot 10^{-8} \) | \(a_{906}= -1.20348639 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{907}= -0.08342628 \pm 1 \cdot 10^{-8} \) | \(a_{908}= +0.15637884 \pm 1.6 \cdot 10^{-8} \) | \(a_{909}= +0.22640221 \pm 1 \cdot 10^{-8} \) |
| \(a_{910}= -0.01903425 \pm 1.8 \cdot 10^{-8} \) | \(a_{911}= +1.02258011 \pm 1 \cdot 10^{-8} \) | \(a_{912}= +0.36870712 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{913}= -1.45172016 \pm 1 \cdot 10^{-8} \) | \(a_{914}= -0.61570802 \pm 1.4 \cdot 10^{-8} \) | \(a_{915}= -0.48601581 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{916}= +0.41183669 \pm 1.4 \cdot 10^{-8} \) | \(a_{917}= -0.44009996 \pm 1 \cdot 10^{-8} \) | \(a_{918}= +1.02868404 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{919}= +0.01560257 \pm 1 \cdot 10^{-8} \) | \(a_{920}= -0.19463494 \pm 1.4 \cdot 10^{-8} \) | \(a_{921}= -0.03691020 \pm 1 \cdot 10^{-8} \) |
| \(a_{922}= +0.16235191 \pm 1.4 \cdot 10^{-8} \) | \(a_{923}= -0.02620774 \pm 1 \cdot 10^{-8} \) | \(a_{924}= +0.31187630 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{925}= +0.18731854 \pm 1.3 \cdot 10^{-8} \) | \(a_{926}= -0.73201837 \pm 1.6 \cdot 10^{-8} \) | \(a_{927}= -0.14924724 \pm 1 \cdot 10^{-8} \) |
| \(a_{928}= -0.05869395 \pm 1.3 \cdot 10^{-8} \) | \(a_{929}= +0.19157103 \pm 1 \cdot 10^{-8} \) | \(a_{930}= -0.23189383 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{931}= +1.00556988 \pm 1 \cdot 10^{-8} \) | \(a_{932}= +0.10936317 \pm 1.5 \cdot 10^{-8} \) | \(a_{933}= +1.59570251 \pm 1 \cdot 10^{-8} \) |
| \(a_{934}= -0.82927221 \pm 1.6 \cdot 10^{-8} \) | \(a_{935}= -0.81252061 \pm 2.2 \cdot 10^{-8} \) | \(a_{936}= +0.00687609 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{937}= +1.44967979 \pm 1 \cdot 10^{-8} \) | \(a_{938}= -0.69183298 \pm 1.6 \cdot 10^{-8} \) | \(a_{939}= -0.74469954 \pm 1 \cdot 10^{-8} \) |
| \(a_{940}= -0.23798108 \pm 1.4 \cdot 10^{-8} \) | \(a_{941}= +1.20145415 \pm 1 \cdot 10^{-8} \) | \(a_{942}= +0.55090570 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{943}= +0.91263208 \pm 1 \cdot 10^{-8} \) | \(a_{944}= -0.33117851 \pm 1.7 \cdot 10^{-8} \) | \(a_{945}= -0.20685481 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{946}= -0.15703696 \pm 1.9 \cdot 10^{-8} \) | \(a_{947}= -0.08523965 \pm 1 \cdot 10^{-8} \) | \(a_{948}= +0.84216445 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{949}= -0.20074079 \pm 1 \cdot 10^{-8} \) | \(a_{950}= +0.19315999 \pm 1.4 \cdot 10^{-8} \) | \(a_{951}= +1.09564620 \pm 1 \cdot 10^{-8} \) |
| \(a_{952}= +0.29331639 \pm 2.0 \cdot 10^{-8} \) | \(a_{953}= -1.04649535 \pm 1 \cdot 10^{-8} \) | \(a_{954}= +0.02994849 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{955}= +0.15660226 \pm 1.4 \cdot 10^{-8} \) | \(a_{956}= +0.22738431 \pm 1.4 \cdot 10^{-8} \) | \(a_{957}= +0.40323963 \pm 1 \cdot 10^{-8} \) |
| \(a_{958}= +0.71556514 \pm 1.4 \cdot 10^{-8} \) | \(a_{959}= -0.10597443 \pm 1 \cdot 10^{-8} \) | \(a_{960}= +0.06036210 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{961}= -0.53878897 \pm 1 \cdot 10^{-8} \) | \(a_{962}= +0.07761649 \pm 1.6 \cdot 10^{-8} \) | \(a_{963}= -0.22389139 \pm 1 \cdot 10^{-8} \) |
| \(a_{964}= +0.78643589 \pm 1.6 \cdot 10^{-8} \) | \(a_{965}= -0.16503400 \pm 1.2 \cdot 10^{-8} \) | \(a_{966}= -0.48271702 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{967}= +0.49246485 \pm 1 \cdot 10^{-8} \) | \(a_{968}= -0.09371282 \pm 1.3 \cdot 10^{-8} \) | \(a_{969}= -2.38234889 \pm 1 \cdot 10^{-8} \) |
| \(a_{970}= +0.15567594 \pm 1.4 \cdot 10^{-8} \) | \(a_{971}= -1.12624978 \pm 1 \cdot 10^{-8} \) | \(a_{972}= +0.16431981 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{973}= +0.90196384 \pm 1 \cdot 10^{-8} \) | \(a_{974}= +0.43327520 \pm 1.7 \cdot 10^{-8} \) | \(a_{975}= +0.02530973 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{976}= -0.25161473 \pm 1.5 \cdot 10^{-8} \) | \(a_{977}= -1.63402310 \pm 1 \cdot 10^{-8} \) | \(a_{978}= +0.33897578 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{979}= -1.26716691 \pm 1 \cdot 10^{-8} \) | \(a_{980}= +0.16462474 \pm 1.4 \cdot 10^{-8} \) | \(a_{981}= +0.14393834 \pm 1 \cdot 10^{-8} \) |
| \(a_{982}= -0.67985870 \pm 1.3 \cdot 10^{-8} \) | \(a_{983}= -0.95567544 \pm 1 \cdot 10^{-8} \) | \(a_{984}= -0.28303445 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{985}= -0.13241348 \pm 1.6 \cdot 10^{-8} \) | \(a_{986}= +0.37924265 \pm 1.9 \cdot 10^{-8} \) | \(a_{987}= -0.59022044 \pm 1 \cdot 10^{-8} \) |
| \(a_{988}= +0.08003693 \pm 1.8 \cdot 10^{-8} \) | \(a_{989}= +0.24305924 \pm 1 \cdot 10^{-8} \) | \(a_{990}= -0.05902339 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{991}= -0.65670138 \pm 1 \cdot 10^{-8} \) | \(a_{992}= -0.12005351 \pm 1.4 \cdot 10^{-8} \) | \(a_{993}= -1.22597953 \pm 1 \cdot 10^{-8} \) |
| \(a_{994}= -0.08121082 \pm 2.0 \cdot 10^{-8} \) | \(a_{995}= -0.06159041 \pm 1.3 \cdot 10^{-8} \) | \(a_{996}= -0.69684585 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{997}= +0.84775515 \pm 1 \cdot 10^{-8} \) | \(a_{998}= +0.86632550 \pm 1.2 \cdot 10^{-8} \) | \(a_{999}= +0.84349774 \pm 1 \cdot 10^{-8} \) |
| \(a_{1000}= +0.03162278 \pm 1.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000