Maass form invariants
| Level: | \( 10 = 2 \cdot 5 \) |
| Weight: | \( 0 \) |
| Character: | 10.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(9.02977428596339036525552573285 \pm 3 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.93908612 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{4}= +0.5 \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +1.37114095 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{7}= +0.57013214 \pm 4.9 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +2.76005500 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{10}= +0.31622777 \pm 1.0 \cdot 10^{-8} \) | \(a_{11}= +0.58878924 \pm 3.8 \cdot 10^{-8} \) | \(a_{12}= -0.96954306 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{13}= -0.36720627 \pm 4.3 \cdot 10^{-8} \) | \(a_{14}= -0.40314430 \pm 5.9 \cdot 10^{-8} \) | \(a_{15}= +0.86718568 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{16}= +0.25 \) | \(a_{17}= -0.69678430 \pm 2.6 \cdot 10^{-8} \) | \(a_{18}= -1.95165361 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{19}= -0.49018532 \pm 3.4 \cdot 10^{-8} \) | \(a_{20}= -0.22360680 \pm 8.4 \cdot 10^{-8} \) | \(a_{21}= -1.10553531 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{22}= -0.41633687 \pm 4.8 \cdot 10^{-8} \) | \(a_{23}= +1.24628156 \pm 6.0 \cdot 10^{-8} \) | \(a_{24}= +0.68557047 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{25}= +0.2 \) | \(a_{26}= +0.25965405 \pm 5.4 \cdot 10^{-8} \) | \(a_{27}= -3.41289823 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{28}= +0.28506607 \pm 5.9 \cdot 10^{-8} \) | \(a_{29}= +1.68672868 \pm 6.2 \cdot 10^{-8} \) | \(a_{30}= -0.61319287 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{31}= +0.22355247 \pm 3.6 \cdot 10^{-8} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -1.14171305 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{34}= +0.49270090 \pm 3.6 \cdot 10^{-8} \) | \(a_{35}= -0.25497084 \pm 5.9 \cdot 10^{-8} \) | \(a_{36}= +1.38002750 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{37}= -1.46695694 \pm 4.7 \cdot 10^{-8} \) | \(a_{38}= +0.34661336 \pm 4.4 \cdot 10^{-8} \) | \(a_{39}= +0.71204459 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{40}= +0.15811388 \pm 1.2 \cdot 10^{-7} \) | \(a_{41}= -0.53855574 \pm 3.0 \cdot 10^{-8} \) | \(a_{42}= +0.78173152 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{43}= +0.54812701 \pm 4.2 \cdot 10^{-8} \) | \(a_{44}= +0.29439462 \pm 4.8 \cdot 10^{-8} \) | \(a_{45}= -1.23433412 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{46}= -0.88125414 \pm 7.0 \cdot 10^{-8} \) | \(a_{47}= +0.24082429 \pm 3.1 \cdot 10^{-8} \) | \(a_{48}= -0.48477153 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{49}= -0.67494935 \pm 4.9 \cdot 10^{-8} \) | \(a_{50}= -0.14142136 \pm 1.5 \cdot 10^{-7} \) | \(a_{51}= +1.35112477 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{52}= -0.18360314 \pm 5.4 \cdot 10^{-8} \) | \(a_{53}= -1.07094713 \pm 4.4 \cdot 10^{-8} \) | \(a_{54}= +2.41328348 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{55}= -0.26331455 \pm 4.8 \cdot 10^{-8} \) | \(a_{56}= -0.20157215 \pm 5.9 \cdot 10^{-8} \) | \(a_{57}= +0.95051155 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{58}= -1.19269729 \pm 7.2 \cdot 10^{-8} \) | \(a_{59}= -0.40346256 \pm 3.2 \cdot 10^{-8} \) | \(a_{60}= +0.43359284 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{61}= -0.84244709 \pm 4.4 \cdot 10^{-8} \) | \(a_{62}= -0.15807547 \pm 4.6 \cdot 10^{-8} \) | \(a_{63}= +1.57359605 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{64}= +0.125 \) | \(a_{65}= +0.16421964 \pm 5.4 \cdot 10^{-8} \) | \(a_{66}= +0.80731304 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{67}= -0.84303255 \pm 3.6 \cdot 10^{-8} \) | \(a_{68}= -0.34839215 \pm 3.6 \cdot 10^{-8} \) | \(a_{69}= -2.41664728 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{70}= +0.18029161 \pm 5.9 \cdot 10^{-8} \) | \(a_{71}= +0.96577015 \pm 3.7 \cdot 10^{-8} \) | \(a_{72}= -0.97582680 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{73}= -0.20716932 \pm 5.6 \cdot 10^{-8} \) | \(a_{74}= +1.03729520 \pm 5.8 \cdot 10^{-8} \) | \(a_{75}= -0.38781722 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{76}= -0.24509266 \pm 4.4 \cdot 10^{-8} \) | \(a_{77}= +0.33568767 \pm 4.4 \cdot 10^{-8} \) | \(a_{78}= -0.50349156 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{79}= +0.48780024 \pm 4.9 \cdot 10^{-8} \) | \(a_{80}= -0.11180340 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= +3.85784860 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{82}= +0.38081642 \pm 4.1 \cdot 10^{-8} \) | \(a_{83}= +0.37513895 \pm 6.0 \cdot 10^{-8} \) | \(a_{84}= -0.55276766 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{85}= +0.31161141 \pm 3.6 \cdot 10^{-8} \) | \(a_{86}= -0.38758433 \pm 5.2 \cdot 10^{-8} \) | \(a_{87}= -3.27071218 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{88}= -0.20816843 \pm 4.8 \cdot 10^{-8} \) | \(a_{89}= -1.69363113 \pm 5.7 \cdot 10^{-8} \) | \(a_{90}= +0.87280603 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{91}= -0.20935610 \pm 2.8 \cdot 10^{-8} \) | \(a_{92}= +0.62314078 \pm 7.0 \cdot 10^{-8} \) | \(a_{93}= -0.43348749 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{94}= -0.17028849 \pm 4.2 \cdot 10^{-8} \) | \(a_{95}= +0.21921754 \pm 4.4 \cdot 10^{-8} \) | \(a_{96}= +0.34278524 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{97}= +0.28212348 \pm 6.4 \cdot 10^{-8} \) | \(a_{98}= +0.47726126 \pm 6.0 \cdot 10^{-8} \) | \(a_{99}= +1.62509069 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{100}= +0.1 \) | \(a_{101}= -0.87521876 \pm 4.5 \cdot 10^{-8} \) | \(a_{102}= -0.95538949 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{103}= -0.11026844 \pm 6.5 \cdot 10^{-8} \) | \(a_{104}= +0.12982702 \pm 5.4 \cdot 10^{-8} \) | \(a_{105}= +0.49441042 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{106}= +0.75727398 \pm 5.5 \cdot 10^{-8} \) | \(a_{107}= -0.26874689 \pm 2.6 \cdot 10^{-8} \) | \(a_{108}= -1.70644911 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{109}= -0.55960712 \pm 4.7 \cdot 10^{-8} \) | \(a_{110}= +0.18619151 \pm 4.8 \cdot 10^{-8} \) | \(a_{111}= +2.84455585 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{112}= +0.14253303 \pm 5.9 \cdot 10^{-8} \) | \(a_{113}= +0.32728489 \pm 3.8 \cdot 10^{-8} \) | \(a_{114}= -0.67211316 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{115}= -0.55735406 \pm 7.0 \cdot 10^{-8} \) | \(a_{116}= +0.84336434 \pm 7.2 \cdot 10^{-8} \) | \(a_{117}= -1.01350951 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{118}= +0.28529111 \pm 4.3 \cdot 10^{-8} \) | \(a_{119}= -0.39725912 \pm 2.9 \cdot 10^{-8} \) | \(a_{120}= -0.30659644 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{121}= -0.65332723 \pm 4.1 \cdot 10^{-8} \) | \(a_{122}= +0.59570005 \pm 5.5 \cdot 10^{-8} \) | \(a_{123}= +1.04430597 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{124}= +0.11177623 \pm 4.6 \cdot 10^{-8} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -1.11270044 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{127}= -1.30984458 \pm 5.6 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -1.06286548 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{130}= -0.11612082 \pm 5.4 \cdot 10^{-8} \) | \(a_{131}= +0.83939744 \pm 4.3 \cdot 10^{-8} \) | \(a_{132}= -0.57085652 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{133}= -0.27947040 \pm 3.9 \cdot 10^{-8} \) | \(a_{134}= +0.59611403 \pm 4.6 \cdot 10^{-8} \) | \(a_{135}= +1.52629449 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{136}= +0.24635045 \pm 3.6 \cdot 10^{-8} \) | \(a_{137}= +1.22488631 \pm 5.1 \cdot 10^{-8} \) | \(a_{138}= +1.70882768 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{139}= -0.76924010 \pm 4.6 \cdot 10^{-8} \) | \(a_{140}= -0.12748542 \pm 5.9 \cdot 10^{-8} \) | \(a_{141}= -0.46697903 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{142}= -0.68290262 \pm 4.8 \cdot 10^{-8} \) | \(a_{143}= -0.21620710 \pm 3.4 \cdot 10^{-8} \) | \(a_{144}= +0.69001375 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{145}= -0.75432800 \pm 7.2 \cdot 10^{-8} \) | \(a_{146}= +0.14649083 \pm 6.6 \cdot 10^{-8} \) | \(a_{147}= +1.30878491 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{148}= -0.73347847 \pm 5.8 \cdot 10^{-8} \) | \(a_{149}= -0.45545711 \pm 6.0 \cdot 10^{-8} \) | \(a_{150}= +0.27422819 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{151}= +0.47610313 \pm 6.7 \cdot 10^{-8} \) | \(a_{152}= +0.17330668 \pm 4.4 \cdot 10^{-8} \) | \(a_{153}= -1.92316299 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{154}= -0.23736703 \pm 9.8 \cdot 10^{-8} \) | \(a_{155}= -0.09997570 \pm 4.6 \cdot 10^{-8} \) | \(a_{156}= +0.35602230 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{157}= -0.18860630 \pm 2.3 \cdot 10^{-8} \) | \(a_{158}= -0.34492686 \pm 6.0 \cdot 10^{-8} \) | \(a_{159}= +2.07665872 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{160}= +0.07905694 \pm 3.8 \cdot 10^{-7} \) | \(a_{161}= +0.71054517 \pm 3.3 \cdot 10^{-8} \) | \(a_{162}= -2.72791091 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{163}= -1.10899045 \pm 5.4 \cdot 10^{-8} \) | \(a_{164}= -0.26927787 \pm 4.1 \cdot 10^{-8} \) | \(a_{165}= +0.51058960 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{166}= -0.26526330 \pm 7.0 \cdot 10^{-8} \) | \(a_{167}= +0.71710728 \pm 3.4 \cdot 10^{-8} \) | \(a_{168}= +0.39086576 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{169}= -0.86515955 \pm 2.7 \cdot 10^{-8} \) | \(a_{170}= -0.22034254 \pm 3.6 \cdot 10^{-8} \) | \(a_{171}= -1.35293844 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{172}= +0.27406351 \pm 5.2 \cdot 10^{-8} \) | \(a_{173}= +1.19772749 \pm 4.5 \cdot 10^{-8} \) | \(a_{174}= +2.31274276 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{175}= +0.11402643 \pm 5.9 \cdot 10^{-8} \) | \(a_{176}= +0.14719731 \pm 4.8 \cdot 10^{-8} \) | \(a_{177}= +0.78234865 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{178}= +1.19757806 \pm 6.8 \cdot 10^{-8} \) | \(a_{179}= -1.02179987 \pm 4.3 \cdot 10^{-8} \) | \(a_{180}= -0.61716706 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{181}= -0.48475801 \pm 3.7 \cdot 10^{-8} \) | \(a_{182}= +0.14803712 \pm 1.0 \cdot 10^{-7} \) | \(a_{183}= +1.63357747 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{184}= -0.44062707 \pm 7.0 \cdot 10^{-8} \) | \(a_{185}= +0.65604309 \pm 5.8 \cdot 10^{-8} \) | \(a_{186}= +0.30652194 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{187}= -0.41025910 \pm 2.4 \cdot 10^{-8} \) | \(a_{188}= +0.12041214 \pm 4.2 \cdot 10^{-8} \) | \(a_{189}= -1.94580296 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{190}= -0.15501021 \pm 4.4 \cdot 10^{-8} \) | \(a_{191}= +0.82113642 \pm 3.5 \cdot 10^{-8} \) | \(a_{192}= -0.24238577 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{193}= -1.46458149 \pm 5.3 \cdot 10^{-8} \) | \(a_{194}= -0.19949142 \pm 7.5 \cdot 10^{-8} \) | \(a_{195}= -0.31843602 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{196}= -0.33747467 \pm 6.0 \cdot 10^{-8} \) | \(a_{197}= -1.62037263 \pm 5.6 \cdot 10^{-8} \) | \(a_{198}= -1.14911265 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{199}= -0.42417109 \pm 5.2 \cdot 10^{-8} \) | \(a_{200}= -0.07071068 \pm 4.7 \cdot 10^{-7} \) | \(a_{201}= +1.63471271 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{202}= +0.61887312 \pm 5.6 \cdot 10^{-8} \) | \(a_{203}= +0.96165823 \pm 6.6 \cdot 10^{-8} \) | \(a_{204}= +0.67556239 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{205}= +0.24084945 \pm 4.1 \cdot 10^{-8} \) | \(a_{206}= +0.07797156 \pm 7.5 \cdot 10^{-8} \) | \(a_{207}= +3.43980565 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{208}= -0.09180157 \pm 5.4 \cdot 10^{-8} \) | \(a_{209}= -0.28861584 \pm 3.6 \cdot 10^{-8} \) | \(a_{210}= -0.34960096 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{211}= -1.77642652 \pm 5.6 \cdot 10^{-8} \) | \(a_{212}= -0.53547356 \pm 5.5 \cdot 10^{-8} \) | \(a_{213}= -1.87271150 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{214}= +0.19003275 \pm 3.6 \cdot 10^{-8} \) | \(a_{215}= -0.24512985 \pm 5.2 \cdot 10^{-8} \) | \(a_{216}= +1.20664174 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{217}= +0.12745445 \pm 4.2 \cdot 10^{-8} \) | \(a_{218}= +0.39570199 \pm 5.8 \cdot 10^{-8} \) | \(a_{219}= +0.40171915 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{220}= -0.13165728 \pm 4.8 \cdot 10^{-8} \) | \(a_{221}= +0.25586357 \pm 2.3 \cdot 10^{-8} \) | \(a_{222}= -2.01140473 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{223}= +1.12158952 \pm 5.2 \cdot 10^{-8} \) | \(a_{224}= -0.10078607 \pm 5.9 \cdot 10^{-8} \) | \(a_{225}= +0.55201100 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{226}= -0.23142536 \pm 4.8 \cdot 10^{-8} \) | \(a_{227}= +0.27595296 \pm 4.4 \cdot 10^{-8} \) | \(a_{228}= +0.47525577 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{229}= +0.41023133 \pm 3.0 \cdot 10^{-8} \) | \(a_{230}= +0.39410883 \pm 7.0 \cdot 10^{-8} \) | \(a_{231}= -0.65092730 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{232}= -0.59634864 \pm 7.2 \cdot 10^{-8} \) | \(a_{233}= +1.71774715 \pm 5.5 \cdot 10^{-8} \) | \(a_{234}= +0.71665945 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{235}= -0.10769989 \pm 4.2 \cdot 10^{-8} \) | \(a_{236}= -0.20173128 \pm 4.3 \cdot 10^{-8} \) | \(a_{237}= -0.94588668 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{238}= +0.28090462 \pm 8.6 \cdot 10^{-8} \) | \(a_{239}= +1.52494311 \pm 5.1 \cdot 10^{-8} \) | \(a_{240}= +0.21679642 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{241}= -1.25302126 \pm 3.8 \cdot 10^{-8} \) | \(a_{242}= +0.46197211 \pm 5.1 \cdot 10^{-8} \) | \(a_{243}= -4.06780246 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{244}= -0.42122355 \pm 5.5 \cdot 10^{-8} \) | \(a_{245}= +0.30184652 \pm 6.0 \cdot 10^{-8} \) | \(a_{246}= -0.73843583 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{247}= +0.17999912 \pm 2.9 \cdot 10^{-8} \) | \(a_{248}= -0.07903773 \pm 4.6 \cdot 10^{-8} \) | \(a_{249}= -0.72742674 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{250}= +0.06324555 \pm 5.5 \cdot 10^{-7} \) | \(a_{251}= -0.54283655 \pm 4.6 \cdot 10^{-8} \) | \(a_{252}= +0.78679803 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{253}= +0.73379717 \pm 3.6 \cdot 10^{-8} \) | \(a_{254}= +0.92619999 \pm 6.6 \cdot 10^{-8} \) | \(a_{255}= -0.60424137 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{256}= +0.0625 \) | \(a_{257}= -1.22900427 \pm 4.0 \cdot 10^{-8} \) | \(a_{258}= +0.75155939 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{259}= -0.83635929 \pm 3.1 \cdot 10^{-8} \) | \(a_{260}= +0.08210982 \pm 5.4 \cdot 10^{-8} \) | \(a_{261}= +4.65546393 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{262}= -0.59354362 \pm 5.3 \cdot 10^{-8} \) | \(a_{263}= -1.09315472 \pm 5.9 \cdot 10^{-8} \) | \(a_{264}= +0.40365652 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{265}= +0.47894212 \pm 5.5 \cdot 10^{-8} \) | \(a_{266}= +0.19761542 \pm 9.4 \cdot 10^{-8} \) | \(a_{267}= +3.28409663 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{268}= -0.42151627 \pm 4.6 \cdot 10^{-8} \) | \(a_{269}= -1.42519488 \pm 6.6 \cdot 10^{-8} \) | \(a_{270}= -1.07925318 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{271}= -0.15110035 \pm 6.7 \cdot 10^{-8} \) | \(a_{272}= -0.17419608 \pm 3.6 \cdot 10^{-8} \) | \(a_{273}= +0.40595950 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{274}= -0.86612541 \pm 6.1 \cdot 10^{-8} \) | \(a_{275}= +0.11775785 \pm 4.8 \cdot 10^{-8} \) | \(a_{276}= -1.20832364 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{277}= -0.05736749 \pm 4.1 \cdot 10^{-8} \) | \(a_{278}= +0.54393489 \pm 5.7 \cdot 10^{-8} \) | \(a_{279}= +0.61701710 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{280}= +0.09014581 \pm 5.9 \cdot 10^{-8} \) | \(a_{281}= -1.58143846 \pm 3.0 \cdot 10^{-8} \) | \(a_{282}= +0.33020404 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{283}= +1.78298581 \pm 3.7 \cdot 10^{-8} \) | \(a_{284}= +0.48288508 \pm 4.8 \cdot 10^{-8} \) | \(a_{285}= -0.42508169 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{286}= +0.15288151 \pm 9.2 \cdot 10^{-8} \) | \(a_{287}= -0.30704794 \pm 2.9 \cdot 10^{-8} \) | \(a_{288}= -0.48791340 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{289}= -0.51449164 \pm 4.1 \cdot 10^{-8} \) | \(a_{290}= +0.53339044 \pm 7.2 \cdot 10^{-8} \) | \(a_{291}= -0.54706172 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{292}= -0.10358466 \pm 6.6 \cdot 10^{-8} \) | \(a_{293}= -0.66794773 \pm 1.8 \cdot 10^{-8} \) | \(a_{294}= -0.92545069 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{295}= +0.18043394 \pm 4.3 \cdot 10^{-8} \) | \(a_{296}= +0.51864760 \pm 5.8 \cdot 10^{-8} \) | \(a_{297}= -2.00947776 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{298}= +0.32205681 \pm 7.1 \cdot 10^{-8} \) | \(a_{299}= -0.45764241 \pm 6.2 \cdot 10^{-8} \) | \(a_{300}= -0.19390861 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{301}= +0.31250482 \pm 4.8 \cdot 10^{-8} \) | \(a_{302}= -0.33665575 \pm 7.8 \cdot 10^{-8} \) | \(a_{303}= +1.69712455 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{304}= -0.12254633 \pm 4.4 \cdot 10^{-8} \) | \(a_{305}= +0.37675379 \pm 5.5 \cdot 10^{-8} \) | \(a_{306}= +1.35988159 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{307}= -0.40287248 \pm 4.9 \cdot 10^{-8} \) | \(a_{308}= +0.16784383 \pm 9.8 \cdot 10^{-8} \) | \(a_{309}= +0.21382000 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{310}= +0.07069350 \pm 4.6 \cdot 10^{-8} \) | \(a_{311}= -1.67511844 \pm 2.4 \cdot 10^{-8} \) | \(a_{312}= -0.25174578 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{313}= +0.74312707 \pm 4.9 \cdot 10^{-8} \) | \(a_{314}= +0.13336479 \pm 3.3 \cdot 10^{-8} \) | \(a_{315}= -0.70373355 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{316}= +0.24390012 \pm 6.0 \cdot 10^{-8} \) | \(a_{317}= +1.89852315 \pm 4.9 \cdot 10^{-8} \) | \(a_{318}= -1.46841946 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{319}= +0.99312770 \pm 4.7 \cdot 10^{-8} \) | \(a_{320}= -0.05590170 \pm 6.9 \cdot 10^{-7} \) | \(a_{321}= +0.52112337 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{322}= -0.50243131 \pm 1.2 \cdot 10^{-7} \) | \(a_{323}= +0.34155343 \pm 2.2 \cdot 10^{-8} \) | \(a_{324}= +1.92892430 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{325}= -0.07344125 \pm 5.4 \cdot 10^{-8} \) | \(a_{326}= +0.78417467 \pm 6.5 \cdot 10^{-8} \) | \(a_{327}= +1.08512641 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{328}= +0.19040821 \pm 4.1 \cdot 10^{-8} \) | \(a_{329}= +0.13730166 \pm 2.4 \cdot 10^{-8} \) | \(a_{330}= -0.36104137 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{331}= -0.41513875 \pm 3.8 \cdot 10^{-8} \) | \(a_{332}= +0.18756948 \pm 7.0 \cdot 10^{-8} \) | \(a_{333}= -4.04888184 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{334}= -0.50707142 \pm 4.5 \cdot 10^{-8} \) | \(a_{335}= +0.37701562 \pm 4.6 \cdot 10^{-8} \) | \(a_{336}= -0.27638383 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{337}= -0.81965419 \pm 5.5 \cdot 10^{-8} \) | \(a_{338}= +0.61176019 \pm 3.8 \cdot 10^{-8} \) | \(a_{339}= -0.63463359 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{340}= +0.15580571 \pm 3.6 \cdot 10^{-8} \) | \(a_{341}= +0.13162529 \pm 2.5 \cdot 10^{-8} \) | \(a_{342}= +0.95667194 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{343}= -0.95494245 \pm 3.0 \cdot 10^{-8} \) | \(a_{344}= -0.19379216 \pm 5.2 \cdot 10^{-8} \) | \(a_{345}= +1.08075752 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{346}= -0.84692123 \pm 5.5 \cdot 10^{-8} \) | \(a_{347}= -1.22719711 \pm 6.3 \cdot 10^{-8} \) | \(a_{348}= -1.63535609 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{349}= +1.56116705 \pm 4.1 \cdot 10^{-8} \) | \(a_{350}= -0.08062886 \pm 5.9 \cdot 10^{-8} \) | \(a_{351}= +1.25323764 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{352}= -0.10408422 \pm 4.8 \cdot 10^{-8} \) | \(a_{353}= +1.85825298 \pm 5.4 \cdot 10^{-8} \) | \(a_{354}= -0.55320403 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{355}= -0.43190554 \pm 4.8 \cdot 10^{-8} \) | \(a_{356}= -0.84681557 \pm 6.8 \cdot 10^{-8} \) | \(a_{357}= +0.77031965 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{358}= +0.72252162 \pm 5.4 \cdot 10^{-8} \) | \(a_{359}= +0.01421924 \pm 5.8 \cdot 10^{-8} \) | \(a_{360}= +0.43640301 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{361}= -0.75971835 \pm 3.3 \cdot 10^{-8} \) | \(a_{362}= +0.34277567 \pm 4.8 \cdot 10^{-8} \) | \(a_{363}= +1.26685777 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{364}= -0.10467805 \pm 1.0 \cdot 10^{-7} \) | \(a_{365}= +0.09264894 \pm 6.6 \cdot 10^{-8} \) | \(a_{366}= -1.15511371 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{367}= -0.54566067 \pm 4.9 \cdot 10^{-8} \) | \(a_{368}= +0.31157039 \pm 7.0 \cdot 10^{-8} \) | \(a_{369}= -1.48644347 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{370}= -0.46389252 \pm 5.8 \cdot 10^{-8} \) | \(a_{371}= -0.61058137 \pm 3.3 \cdot 10^{-8} \) | \(a_{372}= -0.21674374 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{373}= +0.06935378 \pm 7.5 \cdot 10^{-8} \) | \(a_{374}= +0.29009699 \pm 7.5 \cdot 10^{-8} \) | \(a_{375}= +0.17343714 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{376}= -0.08514424 \pm 4.2 \cdot 10^{-8} \) | \(a_{377}= -0.61937735 \pm 5.1 \cdot 10^{-8} \) | \(a_{378}= +1.37589047 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{379}= +0.40584144 \pm 5.5 \cdot 10^{-8} \) | \(a_{380}= +0.10960877 \pm 4.4 \cdot 10^{-8} \) | \(a_{381}= +2.53990146 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{382}= -0.58063113 \pm 4.6 \cdot 10^{-8} \) | \(a_{383}= -0.04720815 \pm 5.4 \cdot 10^{-8} \) | \(a_{384}= +0.17139262 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{385}= -0.15012409 \pm 9.8 \cdot 10^{-8} \) | \(a_{386}= +1.03561551 \pm 6.3 \cdot 10^{-8} \) | \(a_{387}= +1.51286070 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{388}= +0.14106174 \pm 7.5 \cdot 10^{-8} \) | \(a_{389}= -1.46340883 \pm 4.3 \cdot 10^{-8} \) | \(a_{390}= +0.22516827 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{391}= -0.86838943 \pm 2.1 \cdot 10^{-8} \) | \(a_{392}= +0.23863063 \pm 6.0 \cdot 10^{-8} \) | \(a_{393}= -1.62766393 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{394}= +1.14577648 \pm 6.7 \cdot 10^{-8} \) | \(a_{395}= -0.21815090 \pm 6.0 \cdot 10^{-8} \) | \(a_{396}= +0.81254534 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{397}= +0.22843970 \pm 5.5 \cdot 10^{-8} \) | \(a_{398}= +0.29993425 \pm 6.2 \cdot 10^{-8} \) | \(a_{399}= +0.54191718 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{400}= +0.05 \) | \(a_{401}= +0.80082419 \pm 4.8 \cdot 10^{-8} \) | \(a_{402}= -1.15591644 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{403}= -0.08208987 \pm 2.7 \cdot 10^{-8} \) | \(a_{404}= -0.43760938 \pm 5.6 \cdot 10^{-8} \) | \(a_{405}= -1.72528234 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{406}= -0.67999505 \pm 1.2 \cdot 10^{-7} \) | \(a_{407}= -0.86372846 \pm 2.2 \cdot 10^{-8} \) | \(a_{408}= -0.47769474 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{409}= +1.00552491 \pm 6.2 \cdot 10^{-8} \) | \(a_{410}= -0.17030628 \pm 4.1 \cdot 10^{-8} \) | \(a_{411}= -2.37516004 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{412}= -0.05513422 \pm 7.5 \cdot 10^{-8} \) | \(a_{413}= -0.23002697 \pm 4.3 \cdot 10^{-8} \) | \(a_{414}= -2.43230990 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{415}= -0.16776724 \pm 7.0 \cdot 10^{-8} \) | \(a_{416}= +0.06491351 \pm 5.4 \cdot 10^{-8} \) | \(a_{417}= +1.49162280 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{418}= +0.20408222 \pm 8.3 \cdot 10^{-8} \) | \(a_{419}= -1.12593750 \pm 4.1 \cdot 10^{-8} \) | \(a_{420}= +0.24720521 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{421}= +1.82883729 \pm 4.8 \cdot 10^{-8} \) | \(a_{422}= +1.25612324 \pm 6.6 \cdot 10^{-8} \) | \(a_{423}= +0.66468827 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{424}= +0.37863699 \pm 5.5 \cdot 10^{-8} \) | \(a_{425}= -0.13935686 \pm 3.6 \cdot 10^{-8} \) | \(a_{426}= +1.32420700 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{427}= -0.48030616 \pm 6.2 \cdot 10^{-8} \) | \(a_{428}= -0.13437345 \pm 3.6 \cdot 10^{-8} \) | \(a_{429}= +0.41924419 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{430}= +0.17333298 \pm 5.2 \cdot 10^{-8} \) | \(a_{431}= +0.90296362 \pm 3.0 \cdot 10^{-8} \) | \(a_{432}= -0.85322456 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{433}= +1.67245229 \pm 3.5 \cdot 10^{-8} \) | \(a_{434}= -0.09012390 \pm 9.6 \cdot 10^{-8} \) | \(a_{435}= +1.46270695 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{436}= -0.27980356 \pm 5.8 \cdot 10^{-8} \) | \(a_{437}= -0.61090892 \pm 3.1 \cdot 10^{-8} \) | \(a_{438}= -0.28405834 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{439}= +0.19392748 \pm 5.1 \cdot 10^{-8} \) | \(a_{440}= +0.09309575 \pm 4.8 \cdot 10^{-8} \) | \(a_{441}= -1.86289732 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{442}= -0.18092286 \pm 8.0 \cdot 10^{-8} \) | \(a_{443}= -0.31479634 \pm 6.8 \cdot 10^{-8} \) | \(a_{444}= +1.42227792 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{445}= +0.75741487 \pm 6.8 \cdot 10^{-8} \) | \(a_{446}= -0.79308356 \pm 6.2 \cdot 10^{-8} \) | \(a_{447}= +0.88317057 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{448}= +0.07126652 \pm 5.9 \cdot 10^{-8} \) | \(a_{449}= -1.23016796 \pm 4.1 \cdot 10^{-8} \) | \(a_{450}= -0.39033072 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{451}= -0.31709583 \pm 2.0 \cdot 10^{-8} \) | \(a_{452}= +0.16364244 \pm 4.8 \cdot 10^{-8} \) | \(a_{453}= -0.92320496 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{454}= -0.19512821 \pm 5.5 \cdot 10^{-8} \) | \(a_{455}= +0.09362689 \pm 1.0 \cdot 10^{-7} \) | \(a_{456}= -0.33605658 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{457}= -0.42129630 \pm 4.6 \cdot 10^{-8} \) | \(a_{458}= -0.29007735 \pm 4.0 \cdot 10^{-8} \) | \(a_{459}= +2.37805391 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{460}= -0.27867703 \pm 7.0 \cdot 10^{-8} \) | \(a_{461}= -0.72594675 \pm 4.1 \cdot 10^{-8} \) | \(a_{462}= +0.46027511 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{463}= +0.33056114 \pm 4.4 \cdot 10^{-8} \) | \(a_{464}= +0.42168217 \pm 7.2 \cdot 10^{-8} \) | \(a_{465}= +0.19386150 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{466}= -1.21463066 \pm 6.5 \cdot 10^{-8} \) | \(a_{467}= +1.19463637 \pm 1.9 \cdot 10^{-8} \) | \(a_{468}= -0.50675476 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{469}= -0.48063995 \pm 2.9 \cdot 10^{-8} \) | \(a_{470}= +0.07615533 \pm 4.2 \cdot 10^{-8} \) | \(a_{471}= +0.36572385 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{472}= +0.14264555 \pm 4.3 \cdot 10^{-8} \) | \(a_{473}= +0.32273129 \pm 2.8 \cdot 10^{-8} \) | \(a_{474}= +0.66884289 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{475}= -0.09803706 \pm 4.4 \cdot 10^{-8} \) | \(a_{476}= -0.19862956 \pm 8.6 \cdot 10^{-8} \) | \(a_{477}= -2.95587298 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{478}= -1.07829761 \pm 6.1 \cdot 10^{-8} \) | \(a_{479}= -1.65667435 \pm 5.1 \cdot 10^{-8} \) | \(a_{480}= -0.15329822 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{481}= +0.53867579 \pm 4.6 \cdot 10^{-8} \) | \(a_{482}= +0.88601983 \pm 4.8 \cdot 10^{-8} \) | \(a_{483}= -1.37780828 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{484}= -0.32666361 \pm 5.1 \cdot 10^{-8} \) | \(a_{485}= -0.12616945 \pm 7.5 \cdot 10^{-8} \) | \(a_{486}= +2.87637071 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{487}= -1.30474799 \pm 3.3 \cdot 10^{-8} \) | \(a_{488}= +0.29785003 \pm 5.5 \cdot 10^{-8} \) | \(a_{489}= +2.15042800 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{490}= -0.21343772 \pm 6.0 \cdot 10^{-8} \) | \(a_{491}= +1.30798453 \pm 5.9 \cdot 10^{-8} \) | \(a_{492}= +0.52215299 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{493}= -1.17528607 \pm 2.4 \cdot 10^{-8} \) | \(a_{494}= -0.12727860 \pm 8.8 \cdot 10^{-8} \) | \(a_{495}= -0.72676265 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{496}= +0.05588812 \pm 4.6 \cdot 10^{-8} \) | \(a_{497}= +0.55061660 \pm 4.9 \cdot 10^{-8} \) | \(a_{498}= +0.51436838 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{499}= +0.04645377 \pm 5.0 \cdot 10^{-8} \) | \(a_{500}= -0.04472136 \pm 9.8 \cdot 10^{-7} \) | \(a_{501}= -1.39053278 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{502}= +0.38384341 \pm 5.6 \cdot 10^{-8} \) | \(a_{503}= +0.89873319 \pm 5.6 \cdot 10^{-8} \) | \(a_{504}= -0.55635022 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{505}= +0.39140973 \pm 5.6 \cdot 10^{-8} \) | \(a_{506}= -0.51887296 \pm 1.0 \cdot 10^{-7} \) | \(a_{507}= +1.67761888 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{508}= -0.65492229 \pm 6.6 \cdot 10^{-8} \) | \(a_{509}= +1.09443735 \pm 3.6 \cdot 10^{-8} \) | \(a_{510}= +0.42726317 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{511}= -0.11811389 \pm 7.4 \cdot 10^{-8} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +1.67295260 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{514}= +0.86903725 \pm 5.0 \cdot 10^{-8} \) | \(a_{515}= +0.04931355 \pm 7.5 \cdot 10^{-8} \) | \(a_{516}= -0.53143274 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{517}= +0.14179475 \pm 1.6 \cdot 10^{-8} \) | \(a_{518}= +0.59139533 \pm 1.0 \cdot 10^{-7} \) | \(a_{519}= -2.32249676 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{520}= -0.05806041 \pm 5.4 \cdot 10^{-8} \) | \(a_{521}= +0.05458246 \pm 4.2 \cdot 10^{-8} \) | \(a_{522}= -3.29191011 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{523}= +0.44029219 \pm 5.2 \cdot 10^{-8} \) | \(a_{524}= +0.41969872 \pm 5.3 \cdot 10^{-8} \) | \(a_{525}= -0.22110706 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{526}= +0.77297711 \pm 7.0 \cdot 10^{-8} \) | \(a_{527}= -0.15576785 \pm 1.7 \cdot 10^{-8} \) | \(a_{528}= -0.28542826 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{529}= +0.55321772 \pm 6.4 \cdot 10^{-8} \) | \(a_{530}= -0.33866322 \pm 5.5 \cdot 10^{-8} \) | \(a_{531}= -1.11357885 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{532}= -0.13973520 \pm 9.4 \cdot 10^{-8} \) | \(a_{533}= +0.19776105 \pm 2.8 \cdot 10^{-8} \) | \(a_{534}= -2.32220700 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{535}= +0.12018726 \pm 3.6 \cdot 10^{-8} \) | \(a_{536}= +0.29805701 \pm 4.6 \cdot 10^{-8} \) | \(a_{537}= +1.98135796 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{538}= +1.00776497 \pm 7.7 \cdot 10^{-8} \) | \(a_{539}= -0.39740291 \pm 3.3 \cdot 10^{-8} \) | \(a_{540}= +0.76314724 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{541}= +0.77381836 \pm 5.0 \cdot 10^{-8} \) | \(a_{542}= +0.10684409 \pm 7.8 \cdot 10^{-8} \) | \(a_{543}= +0.93998752 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{544}= +0.12317523 \pm 3.6 \cdot 10^{-8} \) | \(a_{545}= +0.25026391 \pm 5.8 \cdot 10^{-8} \) | \(a_{546}= -0.28705672 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{547}= -1.64255247 \pm 5.0 \cdot 10^{-8} \) | \(a_{548}= +0.61244315 \pm 6.1 \cdot 10^{-8} \) | \(a_{549}= -2.32520031 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{550}= -0.08326737 \pm 4.8 \cdot 10^{-8} \) | \(a_{551}= -0.82680963 \pm 4.1 \cdot 10^{-8} \) | \(a_{552}= +0.85441384 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{553}= +0.27811059 \pm 2.8 \cdot 10^{-8} \) | \(a_{554}= +0.04056494 \pm 5.2 \cdot 10^{-8} \) | \(a_{555}= -1.27212405 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{556}= -0.38462005 \pm 5.7 \cdot 10^{-8} \) | \(a_{557}= +0.30513643 \pm 6.1 \cdot 10^{-8} \) | \(a_{558}= -0.43629698 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{559}= -0.20127568 \pm 3.2 \cdot 10^{-8} \) | \(a_{560}= -0.06374271 \pm 5.9 \cdot 10^{-8} \) | \(a_{561}= +0.79552773 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{562}= +1.11824586 \pm 4.1 \cdot 10^{-8} \) | \(a_{563}= -1.14053172 \pm 3.6 \cdot 10^{-8} \) | \(a_{564}= -0.23348952 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{565}= -0.14636625 \pm 4.8 \cdot 10^{-8} \) | \(a_{566}= -1.26076136 \pm 4.8 \cdot 10^{-8} \) | \(a_{567}= +2.19948346 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{568}= -0.34145131 \pm 4.8 \cdot 10^{-8} \) | \(a_{569}= +0.56790356 \pm 5.0 \cdot 10^{-8} \) | \(a_{570}= +0.30057814 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{571}= +1.10020566 \pm 4.9 \cdot 10^{-8} \) | \(a_{572}= -0.10810355 \pm 9.2 \cdot 10^{-8} \) | \(a_{573}= -1.59225423 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{574}= +0.21711568 \pm 9.0 \cdot 10^{-8} \) | \(a_{575}= +0.24925631 \pm 7.0 \cdot 10^{-8} \) | \(a_{576}= +0.34500687 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{577}= -1.54908256 \pm 5.5 \cdot 10^{-8} \) | \(a_{578}= +0.36380053 \pm 5.2 \cdot 10^{-8} \) | \(a_{579}= +2.83994965 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{580}= -0.37716400 \pm 7.2 \cdot 10^{-8} \) | \(a_{581}= +0.21387877 \pm 4.3 \cdot 10^{-8} \) | \(a_{582}= +0.38683105 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{583}= -0.63056215 \pm 2.2 \cdot 10^{-8} \) | \(a_{584}= +0.07324542 \pm 6.6 \cdot 10^{-8} \) | \(a_{585}= +0.45325523 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{586}= +0.47231037 \pm 2.8 \cdot 10^{-8} \) | \(a_{587}= -1.43050005 \pm 5.5 \cdot 10^{-8} \) | \(a_{588}= +0.65439246 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{589}= -0.10958214 \pm 2.2 \cdot 10^{-8} \) | \(a_{590}= -0.12758606 \pm 4.3 \cdot 10^{-8} \) | \(a_{591}= +3.14204209 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{592}= -0.36673924 \pm 5.8 \cdot 10^{-8} \) | \(a_{593}= -0.34673442 \pm 3.2 \cdot 10^{-8} \) | \(a_{594}= +1.42091535 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{595}= +0.17765968 \pm 8.6 \cdot 10^{-8} \) | \(a_{596}= -0.22772856 \pm 7.1 \cdot 10^{-8} \) | \(a_{597}= +0.82250428 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{598}= +0.32360205 \pm 1.1 \cdot 10^{-7} \) | \(a_{599}= -0.35634774 \pm 3.8 \cdot 10^{-8} \) | \(a_{600}= +0.13711409 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{601}= -0.75825348 \pm 4.8 \cdot 10^{-8} \) | \(a_{602}= -0.22097428 \pm 1.0 \cdot 10^{-7} \) | \(a_{603}= -2.32681619 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{604}= +0.23805156 \pm 7.8 \cdot 10^{-8} \) | \(a_{605}= +0.29217682 \pm 5.1 \cdot 10^{-8} \) | \(a_{606}= -1.20004828 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{607}= -0.81824887 \pm 5.2 \cdot 10^{-8} \) | \(a_{608}= +0.08665334 \pm 4.4 \cdot 10^{-8} \) | \(a_{609}= -1.86473812 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{610}= -0.26640516 \pm 5.5 \cdot 10^{-8} \) | \(a_{611}= -0.08843219 \pm 2.9 \cdot 10^{-8} \) | \(a_{612}= -0.96158150 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{613}= +1.94099873 \pm 3.2 \cdot 10^{-8} \) | \(a_{614}= +0.28487386 \pm 6.0 \cdot 10^{-8} \) | \(a_{615}= -0.46702783 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{616}= -0.11868351 \pm 9.8 \cdot 10^{-8} \) | \(a_{617}= -0.84664990 \pm 2.8 \cdot 10^{-8} \) | \(a_{618}= -0.15119357 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{619}= +0.58876066 \pm 6.3 \cdot 10^{-8} \) | \(a_{620}= -0.04998785 \pm 4.6 \cdot 10^{-8} \) | \(a_{621}= -4.25343212 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{622}= +1.18448760 \pm 3.5 \cdot 10^{-8} \) | \(a_{623}= -0.96559354 \pm 6.7 \cdot 10^{-8} \) | \(a_{624}= +0.17801115 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{625}= +0.04 \) | \(a_{626}= -0.52547019 \pm 5.9 \cdot 10^{-8} \) | \(a_{627}= +0.55965097 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{628}= -0.09430315 \pm 3.3 \cdot 10^{-8} \) | \(a_{629}= +1.02215257 \pm 2.2 \cdot 10^{-8} \) | \(a_{630}= +0.49761476 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{631}= -0.17249434 \pm 3.9 \cdot 10^{-8} \) | \(a_{632}= -0.17246343 \pm 6.0 \cdot 10^{-8} \) | \(a_{633}= +3.44464402 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{634}= -1.34245859 \pm 6.0 \cdot 10^{-8} \) | \(a_{635}= +0.58578031 \pm 6.6 \cdot 10^{-8} \) | \(a_{636}= +1.03832936 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{637}= +0.24784563 \pm 3.6 \cdot 10^{-8} \) | \(a_{638}= -0.70224733 \pm 1.1 \cdot 10^{-7} \) | \(a_{639}= +2.66557874 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{640}= +0.03952847 \pm 1.2 \cdot 10^{-6} \) | \(a_{641}= +1.51570753 \pm 3.8 \cdot 10^{-8} \) | \(a_{642}= -0.36848987 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{643}= +0.20771392 \pm 5.2 \cdot 10^{-8} \) | \(a_{644}= +0.35527258 \pm 1.2 \cdot 10^{-7} \) | \(a_{645}= +0.47532789 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{646}= -0.24151475 \pm 7.0 \cdot 10^{-8} \) | \(a_{647}= -0.05527191 \pm 5.5 \cdot 10^{-8} \) | \(a_{648}= -1.36395545 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{649}= -0.23755441 \pm 3.4 \cdot 10^{-8} \) | \(a_{650}= +0.05193081 \pm 5.4 \cdot 10^{-8} \) | \(a_{651}= -0.24714515 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{652}= -0.55449523 \pm 6.5 \cdot 10^{-8} \) | \(a_{653}= -0.86719822 \pm 3.3 \cdot 10^{-8} \) | \(a_{654}= -0.76730024 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{655}= -0.37538995 \pm 5.3 \cdot 10^{-8} \) | \(a_{656}= -0.13463894 \pm 4.1 \cdot 10^{-8} \) | \(a_{657}= -0.57179872 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{658}= -0.09708694 \pm 9.1 \cdot 10^{-8} \) | \(a_{659}= -0.16991761 \pm 5.3 \cdot 10^{-8} \) | \(a_{660}= +0.25529480 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{661}= -0.00079248 \pm 6.9 \cdot 10^{-8} \) | \(a_{662}= +0.29354742 \pm 4.9 \cdot 10^{-8} \) | \(a_{663}= -0.49614149 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{664}= -0.13263165 \pm 7.0 \cdot 10^{-8} \) | \(a_{665}= +0.12498296 \pm 9.4 \cdot 10^{-8} \) | \(a_{666}= +2.86299180 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{667}= +2.10213885 \pm 7.5 \cdot 10^{-8} \) | \(a_{668}= +0.35855364 \pm 4.5 \cdot 10^{-8} \) | \(a_{669}= -2.17485868 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{670}= -0.26659030 \pm 4.6 \cdot 10^{-8} \) | \(a_{671}= -0.49602378 \pm 3.3 \cdot 10^{-8} \) | \(a_{672}= +0.19543288 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{673}= +0.03558102 \pm 5.1 \cdot 10^{-8} \) | \(a_{674}= +0.57958304 \pm 6.6 \cdot 10^{-8} \) | \(a_{675}= -0.68257965 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{676}= -0.43257978 \pm 3.8 \cdot 10^{-8} \) | \(a_{677}= +1.28643660 \pm 3.8 \cdot 10^{-8} \) | \(a_{678}= +0.44875371 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{679}= +0.16084766 \pm 2.3 \cdot 10^{-8} \) | \(a_{680}= -0.11017127 \pm 3.6 \cdot 10^{-8} \) | \(a_{681}= -0.53509656 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{682}= -0.09307313 \pm 8.5 \cdot 10^{-8} \) | \(a_{683}= -1.05149029 \pm 6.4 \cdot 10^{-8} \) | \(a_{684}= -0.67646922 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{685}= -0.54778581 \pm 6.1 \cdot 10^{-8} \) | \(a_{686}= +0.67524628 \pm 4.1 \cdot 10^{-8} \) | \(a_{687}= -0.79547388 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{688}= +0.13703175 \pm 5.2 \cdot 10^{-8} \) | \(a_{689}= +0.39325850 \pm 4.1 \cdot 10^{-8} \) | \(a_{690}= -0.76421097 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{691}= +0.54632238 \pm 6.2 \cdot 10^{-8} \) | \(a_{692}= +0.59886375 \pm 5.5 \cdot 10^{-8} \) | \(a_{693}= +0.92651643 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{694}= +0.86775940 \pm 7.3 \cdot 10^{-8} \) | \(a_{695}= +0.34401463 \pm 5.7 \cdot 10^{-8} \) | \(a_{696}= +1.15637138 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{697}= +0.37525719 \pm 3.0 \cdot 10^{-8} \) | \(a_{698}= -1.10391181 \pm 5.1 \cdot 10^{-8} \) | \(a_{699}= -3.33085967 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{700}= +0.05701321 \pm 5.9 \cdot 10^{-8} \) | \(a_{701}= -0.40010551 \pm 5.5 \cdot 10^{-8} \) | \(a_{702}= -0.88617283 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{703}= +0.71908075 \pm 2.4 \cdot 10^{-8} \) | \(a_{704}= +0.07359866 \pm 4.8 \cdot 10^{-8} \) | \(a_{705}= +0.20883937 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{706}= -1.31398328 \pm 6.5 \cdot 10^{-8} \) | \(a_{707}= -0.49899034 \pm 3.9 \cdot 10^{-8} \) | \(a_{708}= +0.39117432 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{709}= -1.82166334 \pm 4.8 \cdot 10^{-8} \) | \(a_{710}= +0.30540334 \pm 4.8 \cdot 10^{-8} \) | \(a_{711}= +1.34635549 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{712}= +0.59878903 \pm 6.8 \cdot 10^{-8} \) | \(a_{713}= +0.27860932 \pm 3.6 \cdot 10^{-8} \) | \(a_{714}= -0.54469825 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{715}= +0.09669076 \pm 9.2 \cdot 10^{-8} \) | \(a_{716}= -0.51089994 \pm 5.4 \cdot 10^{-8} \) | \(a_{717}= -2.95699602 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{718}= -0.01005452 \pm 6.9 \cdot 10^{-8} \) | \(a_{719}= +1.57633857 \pm 4.4 \cdot 10^{-8} \) | \(a_{720}= -0.30858353 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{721}= -0.06286758 \pm 6.4 \cdot 10^{-8} \) | \(a_{722}= +0.53720200 \pm 4.3 \cdot 10^{-8} \) | \(a_{723}= +2.42971614 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{724}= -0.24237900 \pm 4.8 \cdot 10^{-8} \) | \(a_{725}= +0.33734574 \pm 7.2 \cdot 10^{-8} \) | \(a_{726}= -0.89580372 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{727}= -0.06498538 \pm 4.1 \cdot 10^{-8} \) | \(a_{728}= +0.07401856 \pm 1.0 \cdot 10^{-7} \) | \(a_{729}= +4.02997071 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{730}= -0.06551269 \pm 6.6 \cdot 10^{-8} \) | \(a_{731}= -0.38192630 \pm 3.1 \cdot 10^{-8} \) | \(a_{732}= +0.81678873 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{733}= +0.07197933 \pm 3.4 \cdot 10^{-8} \) | \(a_{734}= +0.38584036 \pm 5.9 \cdot 10^{-8} \) | \(a_{735}= -0.58530641 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{736}= -0.22031354 \pm 7.0 \cdot 10^{-8} \) | \(a_{737}= -0.49636849 \pm 1.6 \cdot 10^{-8} \) | \(a_{738}= +1.05107426 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{739}= -0.98169606 \pm 6.5 \cdot 10^{-8} \) | \(a_{740}= +0.32802154 \pm 5.8 \cdot 10^{-8} \) | \(a_{741}= -0.34903380 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{742}= +0.43174623 \pm 1.0 \cdot 10^{-7} \) | \(a_{743}= -1.00488635 \pm 4.9 \cdot 10^{-8} \) | \(a_{744}= +0.15326097 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{745}= +0.20368661 \pm 7.1 \cdot 10^{-8} \) | \(a_{746}= -0.04904052 \pm 8.5 \cdot 10^{-8} \) | \(a_{747}= +1.03540415 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{748}= -0.20512955 \pm 7.5 \cdot 10^{-8} \) | \(a_{749}= -0.15322124 \pm 3.1 \cdot 10^{-8} \) | \(a_{750}= -0.12263857 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{751}= -0.42192687 \pm 3.5 \cdot 10^{-8} \) | \(a_{752}= +0.06020607 \pm 4.2 \cdot 10^{-8} \) | \(a_{753}= +1.05260683 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{754}= +0.43796593 \pm 1.1 \cdot 10^{-7} \) | \(a_{755}= -0.21291979 \pm 7.8 \cdot 10^{-8} \) | \(a_{756}= -0.97290148 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{757}= -0.14403273 \pm 6.3 \cdot 10^{-8} \) | \(a_{758}= -0.28697323 \pm 6.5 \cdot 10^{-8} \) | \(a_{759}= -1.42289592 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{760}= -0.07750510 \pm 4.4 \cdot 10^{-8} \) | \(a_{761}= +0.67442887 \pm 3.4 \cdot 10^{-8} \) | \(a_{762}= -1.79598155 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{763}= -0.31905001 \pm 4.9 \cdot 10^{-8} \) | \(a_{764}= +0.41056821 \pm 4.6 \cdot 10^{-8} \) | \(a_{765}= +0.86006464 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{766}= +0.03338120 \pm 6.5 \cdot 10^{-8} \) | \(a_{767}= +0.14815398 \pm 2.7 \cdot 10^{-8} \) | \(a_{768}= -0.12119288 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{769}= -0.06494910 \pm 3.9 \cdot 10^{-8} \) | \(a_{770}= +0.10615376 \pm 9.8 \cdot 10^{-8} \) | \(a_{771}= +2.38314512 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{772}= -0.73229075 \pm 6.3 \cdot 10^{-8} \) | \(a_{773}= -0.40052454 \pm 6.6 \cdot 10^{-8} \) | \(a_{774}= -1.06975406 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{775}= +0.04471049 \pm 4.6 \cdot 10^{-8} \) | \(a_{776}= -0.09974571 \pm 7.5 \cdot 10^{-8} \) | \(a_{777}= +1.62177270 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{778}= +1.03478631 \pm 5.4 \cdot 10^{-8} \) | \(a_{779}= +0.26399212 \pm 2.3 \cdot 10^{-8} \) | \(a_{780}= -0.15921801 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{781}= +0.56863508 \pm 2.9 \cdot 10^{-8} \) | \(a_{782}= +0.61404405 \pm 9.7 \cdot 10^{-8} \) | \(a_{783}= -5.75663333 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{784}= -0.16873734 \pm 6.0 \cdot 10^{-8} \) | \(a_{785}= +0.08434730 \pm 3.3 \cdot 10^{-8} \) | \(a_{786}= +1.15093221 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{787}= -0.06249955 \pm 3.3 \cdot 10^{-8} \) | \(a_{788}= -0.81018632 \pm 6.7 \cdot 10^{-8} \) | \(a_{789}= +2.11972114 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{790}= +0.15425598 \pm 6.0 \cdot 10^{-8} \) | \(a_{791}= +0.18659563 \pm 4.1 \cdot 10^{-8} \) | \(a_{792}= -0.57455632 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{793}= +0.30935186 \pm 2.0 \cdot 10^{-8} \) | \(a_{794}= -0.16153126 \pm 6.5 \cdot 10^{-8} \) | \(a_{795}= -0.92871001 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{796}= -0.21208555 \pm 6.2 \cdot 10^{-8} \) | \(a_{797}= -1.13137426 \pm 5.4 \cdot 10^{-8} \) | \(a_{798}= -0.38319331 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{799}= -0.16780258 \pm 1.0 \cdot 10^{-8} \) | \(a_{800}= -0.03535534 \pm 1.4 \cdot 10^{-6} \) | \(a_{801}= -4.67451507 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{802}= -0.56626822 \pm 5.9 \cdot 10^{-8} \) | \(a_{803}= -0.12197907 \pm 5.4 \cdot 10^{-8} \) | \(a_{804}= +0.81735636 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{805}= -0.31776546 \pm 1.2 \cdot 10^{-7} \) | \(a_{806}= +0.05804630 \pm 9.0 \cdot 10^{-8} \) | \(a_{807}= +2.76357562 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{808}= +0.30943656 \pm 5.6 \cdot 10^{-8} \) | \(a_{809}= +1.07458518 \pm 5.7 \cdot 10^{-8} \) | \(a_{810}= +1.21995884 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{811}= +1.16987740 \pm 3.4 \cdot 10^{-8} \) | \(a_{812}= +0.48082911 \pm 1.2 \cdot 10^{-7} \) | \(a_{813}= +0.29299660 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{814}= +0.61074825 \pm 9.6 \cdot 10^{-8} \) | \(a_{815}= +0.49595561 \pm 6.5 \cdot 10^{-8} \) | \(a_{816}= +0.33778119 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{817}= -0.26868381 \pm 3.0 \cdot 10^{-8} \) | \(a_{818}= -0.71101349 \pm 7.3 \cdot 10^{-8} \) | \(a_{819}= -0.57783434 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{820}= +0.12042473 \pm 4.1 \cdot 10^{-8} \) | \(a_{821}= -0.48828367 \pm 5.1 \cdot 10^{-8} \) | \(a_{822}= +1.67949177 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{823}= -0.32608189 \pm 4.9 \cdot 10^{-8} \) | \(a_{824}= +0.03898578 \pm 7.5 \cdot 10^{-8} \) | \(a_{825}= -0.22834261 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{826}= +0.16265363 \pm 9.2 \cdot 10^{-8} \) | \(a_{827}= -0.03261216 \pm 3.6 \cdot 10^{-8} \) | \(a_{828}= +1.71990282 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{829}= +0.15528387 \pm 4.0 \cdot 10^{-8} \) | \(a_{830}= +0.11862935 \pm 7.0 \cdot 10^{-8} \) | \(a_{831}= +0.11124051 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{832}= -0.04590078 \pm 5.4 \cdot 10^{-8} \) | \(a_{833}= +0.47029411 \pm 1.9 \cdot 10^{-8} \) | \(a_{834}= -1.05473660 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{835}= -0.32070013 \pm 4.5 \cdot 10^{-8} \) | \(a_{836}= -0.14430792 \pm 8.3 \cdot 10^{-8} \) | \(a_{837}= -0.76296182 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{838}= +0.79615804 \pm 5.1 \cdot 10^{-8} \) | \(a_{839}= +1.82740610 \pm 2.9 \cdot 10^{-8} \) | \(a_{840}= -0.17480048 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{841}= +1.84505364 \pm 4.2 \cdot 10^{-8} \) | \(a_{842}= -1.29318325 \pm 5.8 \cdot 10^{-8} \) | \(a_{843}= +3.06654537 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{844}= -0.88821326 \pm 6.6 \cdot 10^{-8} \) | \(a_{845}= +0.38691111 \pm 3.8 \cdot 10^{-8} \) | \(a_{846}= -0.47000559 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{847}= -0.37248285 \pm 2.8 \cdot 10^{-8} \) | \(a_{848}= -0.26773678 \pm 5.5 \cdot 10^{-8} \) | \(a_{849}= -3.45736305 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{850}= +0.09854018 \pm 3.6 \cdot 10^{-8} \) | \(a_{851}= -1.82824138 \pm 6.9 \cdot 10^{-8} \) | \(a_{852}= -0.93635575 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{853}= -0.10775443 \pm 6.8 \cdot 10^{-8} \) | \(a_{854}= +0.33962774 \pm 1.0 \cdot 10^{-7} \) | \(a_{855}= +0.60505246 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{856}= +0.09501638 \pm 3.6 \cdot 10^{-8} \) | \(a_{857}= -1.29162890 \pm 4.2 \cdot 10^{-8} \) | \(a_{858}= -0.29645041 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{859}= -0.85006256 \pm 5.3 \cdot 10^{-8} \) | \(a_{860}= -0.12256493 \pm 5.2 \cdot 10^{-8} \) | \(a_{861}= +0.59539239 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{862}= -0.63849170 \pm 4.0 \cdot 10^{-8} \) | \(a_{863}= -0.52224403 \pm 5.5 \cdot 10^{-8} \) | \(a_{864}= +0.60332087 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{865}= -0.53564002 \pm 5.5 \cdot 10^{-8} \) | \(a_{866}= -1.18260236 \pm 4.6 \cdot 10^{-8} \) | \(a_{867}= +0.99764360 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{868}= +0.06372722 \pm 9.6 \cdot 10^{-8} \) | \(a_{869}= +0.28721153 \pm 2.9 \cdot 10^{-8} \) | \(a_{870}= -1.03429001 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{871}= +0.30956684 \pm 3.3 \cdot 10^{-8} \) | \(a_{872}= +0.19785100 \pm 5.8 \cdot 10^{-8} \) | \(a_{873}= +0.77867631 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{874}= +0.43197784 \pm 1.0 \cdot 10^{-7} \) | \(a_{875}= -0.05099417 \pm 5.9 \cdot 10^{-8} \) | \(a_{876}= +0.20085958 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{877}= -0.10592496 \pm 6.4 \cdot 10^{-8} \) | \(a_{878}= -0.13712743 \pm 6.1 \cdot 10^{-8} \) | \(a_{879}= +1.29520817 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{880}= -0.06582864 \pm 4.8 \cdot 10^{-8} \) | \(a_{881}= -0.54266913 \pm 3.0 \cdot 10^{-8} \) | \(a_{882}= +1.31726733 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{883}= -0.14610405 \pm 5.1 \cdot 10^{-8} \) | \(a_{884}= +0.12793178 \pm 8.0 \cdot 10^{-8} \) | \(a_{885}= -0.34987695 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{886}= +0.22259463 \pm 7.9 \cdot 10^{-8} \) | \(a_{887}= -0.75961951 \pm 5.2 \cdot 10^{-8} \) | \(a_{888}= -1.00570237 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{889}= -0.74678449 \pm 7.4 \cdot 10^{-8} \) | \(a_{890}= -0.53557319 \pm 6.8 \cdot 10^{-8} \) | \(a_{891}= +2.27145975 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{892}= +0.56079476 \pm 6.2 \cdot 10^{-8} \) | \(a_{893}= -0.11804853 \pm 1.4 \cdot 10^{-8} \) | \(a_{894}= -0.62449590 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{895}= +0.45696279 \pm 5.4 \cdot 10^{-8} \) | \(a_{896}= -0.05039304 \pm 5.9 \cdot 10^{-8} \) | \(a_{897}= +0.88740804 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{898}= +0.86986011 \pm 5.1 \cdot 10^{-8} \) | \(a_{899}= +0.37707236 \pm 4.6 \cdot 10^{-8} \) | \(a_{900}= +0.27600550 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{901}= +0.74621915 \pm 2.3 \cdot 10^{-8} \) | \(a_{902}= +0.22422061 \pm 7.9 \cdot 10^{-8} \) | \(a_{903}= -0.60597377 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{904}= -0.11571268 \pm 4.8 \cdot 10^{-8} \) | \(a_{905}= +0.21679037 \pm 4.8 \cdot 10^{-8} \) | \(a_{906}= +0.65280449 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{907}= -1.82359971 \pm 5.6 \cdot 10^{-8} \) | \(a_{908}= +0.13797648 \pm 5.5 \cdot 10^{-8} \) | \(a_{909}= -2.41565191 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{910}= -0.06620421 \pm 1.0 \cdot 10^{-7} \) | \(a_{911}= -0.10907387 \pm 4.9 \cdot 10^{-8} \) | \(a_{912}= +0.23762789 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{913}= +0.22087778 \pm 4.4 \cdot 10^{-8} \) | \(a_{914}= +0.29790147 \pm 5.7 \cdot 10^{-8} \) | \(a_{915}= -0.73055805 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{916}= +0.20511566 \pm 4.0 \cdot 10^{-8} \) | \(a_{917}= +0.47856746 \pm 3.3 \cdot 10^{-8} \) | \(a_{918}= -1.68153804 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{919}= +0.59769692 \pm 4.6 \cdot 10^{-8} \) | \(a_{920}= +0.19705442 \pm 7.0 \cdot 10^{-8} \) | \(a_{921}= +0.78120443 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{922}= +0.51332187 \pm 5.2 \cdot 10^{-8} \) | \(a_{923}= -0.35463686 \pm 2.7 \cdot 10^{-8} \) | \(a_{924}= -0.32546365 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{925}= -0.29339139 \pm 5.8 \cdot 10^{-8} \) | \(a_{926}= -0.23374202 \pm 5.5 \cdot 10^{-8} \) | \(a_{927}= -0.30434696 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{928}= -0.29817432 \pm 7.2 \cdot 10^{-8} \) | \(a_{929}= +1.34669408 \pm 4.2 \cdot 10^{-8} \) | \(a_{930}= -0.13708078 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{931}= +0.33085026 \pm 3.0 \cdot 10^{-8} \) | \(a_{932}= +0.85887358 \pm 6.5 \cdot 10^{-8} \) | \(a_{933}= +3.24819892 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{934}= -0.84473548 \pm 3.0 \cdot 10^{-8} \) | \(a_{935}= +0.18347345 \pm 7.5 \cdot 10^{-8} \) | \(a_{936}= +0.35832972 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{937}= +1.63872553 \pm 3.9 \cdot 10^{-8} \) | \(a_{938}= +0.33986377 \pm 9.6 \cdot 10^{-8} \) | \(a_{939}= -1.44098739 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{940}= -0.05384995 \pm 4.2 \cdot 10^{-8} \) | \(a_{941}= -1.19559429 \pm 3.4 \cdot 10^{-8} \) | \(a_{942}= -0.25860581 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{943}= -0.67119209 \pm 2.5 \cdot 10^{-8} \) | \(a_{944}= -0.10086564 \pm 4.3 \cdot 10^{-8} \) | \(a_{945}= +0.87018954 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{946}= -0.22820548 \pm 9.1 \cdot 10^{-8} \) | \(a_{947}= +1.67136603 \pm 4.2 \cdot 10^{-8} \) | \(a_{948}= -0.47294334 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{949}= +0.07607387 \pm 3.6 \cdot 10^{-8} \) | \(a_{950}= +0.06932267 \pm 4.4 \cdot 10^{-8} \) | \(a_{951}= -3.68139990 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{952}= +0.14045231 \pm 8.6 \cdot 10^{-8} \) | \(a_{953}= -0.07416537 \pm 5.0 \cdot 10^{-8} \) | \(a_{954}= +2.09011783 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{955}= -0.36722337 \pm 4.6 \cdot 10^{-8} \) | \(a_{956}= +0.76247155 \pm 6.1 \cdot 10^{-8} \) | \(a_{957}= -1.92576014 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{958}= +1.17144567 \pm 6.2 \cdot 10^{-8} \) | \(a_{959}= +0.69834705 \pm 7.5 \cdot 10^{-8} \) | \(a_{960}= +0.10839821 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{961}= -0.95002429 \pm 3.6 \cdot 10^{-8} \) | \(a_{962}= -0.38090131 \pm 1.0 \cdot 10^{-7} \) | \(a_{963}= -0.74175620 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{964}= -0.62651063 \pm 4.8 \cdot 10^{-8} \) | \(a_{965}= +0.65498076 \pm 6.3 \cdot 10^{-8} \) | \(a_{966}= +0.97425757 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{967}= -0.56113732 \pm 4.4 \cdot 10^{-8} \) | \(a_{968}= +0.23098606 \pm 5.1 \cdot 10^{-8} \) | \(a_{969}= -0.66230152 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{970}= +0.08921528 \pm 7.5 \cdot 10^{-8} \) | \(a_{971}= -0.08519551 \pm 5.7 \cdot 10^{-8} \) | \(a_{972}= -2.03390123 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{973}= -0.43856850 \pm 3.8 \cdot 10^{-8} \) | \(a_{974}= +0.92259615 \pm 4.4 \cdot 10^{-8} \) | \(a_{975}= +0.14240892 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{976}= -0.21061177 \pm 5.5 \cdot 10^{-8} \) | \(a_{977}= -0.20623225 \pm 5.0 \cdot 10^{-8} \) | \(a_{978}= -1.52058222 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{979}= -0.99719179 \pm 5.4 \cdot 10^{-8} \) | \(a_{980}= +0.15092326 \pm 6.0 \cdot 10^{-8} \) | \(a_{981}= -1.54454644 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{982}= -0.92488473 \pm 6.9 \cdot 10^{-8} \) | \(a_{983}= -0.84306348 \pm 3.9 \cdot 10^{-8} \) | \(a_{984}= -0.36921792 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{985}= +0.72465267 \pm 6.7 \cdot 10^{-8} \) | \(a_{986}= +0.83105275 \pm 9.9 \cdot 10^{-8} \) | \(a_{987}= -0.26623975 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{988}= +0.08999956 \pm 8.8 \cdot 10^{-8} \) | \(a_{989}= +0.68312058 \pm 4.0 \cdot 10^{-8} \) | \(a_{990}= +0.51389880 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{991}= +1.51362158 \pm 6.9 \cdot 10^{-8} \) | \(a_{992}= -0.03951887 \pm 4.6 \cdot 10^{-8} \) | \(a_{993}= +0.80498979 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{994}= -0.38934473 \pm 9.7 \cdot 10^{-8} \) | \(a_{995}= +0.18969508 \pm 6.2 \cdot 10^{-8} \) | \(a_{996}= -0.36371337 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{997}= +0.66575599 \pm 5.0 \cdot 10^{-8} \) | \(a_{998}= -0.03284778 \pm 6.0 \cdot 10^{-8} \) | \(a_{999}= +5.00657474 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{1000}= +0.03162278 \pm 1.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000