Maass form invariants
| Level: | \( 10 = 2 \cdot 5 \) |
| Weight: | \( 0 \) |
| Character: | 10.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(6.73532969116928681445578804883 \pm 5 \cdot 10^{-12}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.62660498 \pm 1 \cdot 10^{-8} \) |
| \(a_{4}= +0.5 \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -0.44307663 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{7}= -1.82525550 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.60736620 \pm 1 \cdot 10^{-8} \) |
| \(a_{10}= +0.31622777 \pm 1.0 \cdot 10^{-8} \) | \(a_{11}= -1.35562472 \pm 1 \cdot 10^{-8} \) | \(a_{12}= -0.31330249 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{13}= +0.25154427 \pm 1 \cdot 10^{-8} \) | \(a_{14}= -1.29065054 \pm 2.1 \cdot 10^{-8} \) | \(a_{15}= -0.28022627 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{16}= +0.25 \) | \(a_{17}= +0.87267151 \pm 1 \cdot 10^{-8} \) | \(a_{18}= -0.42947276 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{19}= -0.22210979 \pm 1 \cdot 10^{-8} \) | \(a_{20}= +0.22360680 \pm 8.4 \cdot 10^{-8} \) | \(a_{21}= +1.14371419 \pm 1 \cdot 10^{-8} \) |
| \(a_{22}= -0.95857143 \pm 1.8 \cdot 10^{-8} \) | \(a_{23}= -1.00866229 \pm 1.2 \cdot 10^{-8} \) | \(a_{24}= -0.22153831 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{25}= +0.2 \) | \(a_{26}= +0.17786866 \pm 1.9 \cdot 10^{-8} \) | \(a_{27}= +1.00718366 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{28}= -0.91262775 \pm 2.1 \cdot 10^{-8} \) | \(a_{29}= -0.32650830 \pm 1.3 \cdot 10^{-8} \) | \(a_{30}= -0.19814989 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{31}= +0.56994706 \pm 1 \cdot 10^{-8} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.84944120 \pm 1 \cdot 10^{-8} \) |
| \(a_{34}= +0.61707194 \pm 1.6 \cdot 10^{-8} \) | \(a_{35}= -0.81627908 \pm 2.1 \cdot 10^{-8} \) | \(a_{36}= -0.30368310 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{37}= +0.13581799 \pm 1.0 \cdot 10^{-8} \) | \(a_{38}= -0.15705534 \pm 1.7 \cdot 10^{-8} \) | \(a_{39}= -0.15761889 \pm 1 \cdot 10^{-8} \) |
| \(a_{40}= +0.15811388 \pm 1.2 \cdot 10^{-7} \) | \(a_{41}= -1.38146285 \pm 1 \cdot 10^{-8} \) | \(a_{42}= +0.80872806 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{43}= -0.17745402 \pm 1 \cdot 10^{-8} \) | \(a_{44}= -0.67781236 \pm 1.8 \cdot 10^{-8} \) | \(a_{45}= -0.27162242 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{46}= -0.71323195 \pm 2.3 \cdot 10^{-8} \) | \(a_{47}= +1.59014301 \pm 1 \cdot 10^{-8} \) | \(a_{48}= -0.15665124 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{49}= +2.33155765 \pm 1.0 \cdot 10^{-8} \) | \(a_{50}= +0.14142136 \pm 1.5 \cdot 10^{-7} \) | \(a_{51}= -0.54682031 \pm 1 \cdot 10^{-8} \) |
| \(a_{52}= +0.12577214 \pm 1.9 \cdot 10^{-8} \) | \(a_{53}= -0.53942038 \pm 1 \cdot 10^{-8} \) | \(a_{54}= +0.71218640 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{55}= -0.60625380 \pm 1.8 \cdot 10^{-8} \) | \(a_{56}= -0.64532527 \pm 2.1 \cdot 10^{-8} \) | \(a_{57}= +0.13917510 \pm 1 \cdot 10^{-8} \) |
| \(a_{58}= -0.23087623 \pm 2.3 \cdot 10^{-8} \) | \(a_{59}= -1.40253316 \pm 1 \cdot 10^{-8} \) | \(a_{60}= -0.14011313 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{61}= -0.83614247 \pm 1 \cdot 10^{-8} \) | \(a_{62}= +0.40301343 \pm 1.8 \cdot 10^{-8} \) | \(a_{63}= +1.10859850 \pm 1 \cdot 10^{-8} \) |
| \(a_{64}= +0.125 \) | \(a_{65}= +0.11249402 \pm 1.9 \cdot 10^{-8} \) | \(a_{66}= +0.60064563 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{67}= -0.16473658 \pm 1 \cdot 10^{-8} \) | \(a_{68}= +0.43633576 \pm 1.6 \cdot 10^{-8} \) | \(a_{69}= +0.63203282 \pm 1 \cdot 10^{-8} \) |
| \(a_{70}= -0.57719647 \pm 2.1 \cdot 10^{-8} \) | \(a_{71}= -0.69966066 \pm 1 \cdot 10^{-8} \) | \(a_{72}= -0.21473638 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{73}= +0.47602213 \pm 1.2 \cdot 10^{-8} \) | \(a_{74}= +0.09603782 \pm 2.0 \cdot 10^{-8} \) | \(a_{75}= -0.12532100 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{76}= -0.11105489 \pm 1.7 \cdot 10^{-8} \) | \(a_{77}= +2.47436148 \pm 1 \cdot 10^{-8} \) | \(a_{78}= -0.11145339 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{79}= -1.61751972 \pm 1.0 \cdot 10^{-8} \) | \(a_{80}= +0.11180340 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= -0.02374010 \pm 1 \cdot 10^{-8} \) |
| \(a_{82}= -0.97684175 \pm 1.7 \cdot 10^{-8} \) | \(a_{83}= -1.07867931 \pm 1.2 \cdot 10^{-8} \) | \(a_{84}= +0.57185709 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{85}= +0.39027056 \pm 1.6 \cdot 10^{-8} \) | \(a_{86}= -0.12547894 \pm 1.9 \cdot 10^{-8} \) | \(a_{87}= +0.20459173 \pm 1 \cdot 10^{-8} \) |
| \(a_{88}= -0.47928572 \pm 1.8 \cdot 10^{-8} \) | \(a_{89}= +0.57541305 \pm 1.2 \cdot 10^{-8} \) | \(a_{90}= -0.19206606 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{91}= -0.45913257 \pm 1 \cdot 10^{-8} \) | \(a_{92}= -0.50433115 \pm 2.3 \cdot 10^{-8} \) | \(a_{93}= -0.35713166 \pm 1 \cdot 10^{-8} \) |
| \(a_{94}= +1.12440091 \pm 1.7 \cdot 10^{-8} \) | \(a_{95}= -0.09933052 \pm 1.7 \cdot 10^{-8} \) | \(a_{96}= -0.11076916 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{97}= -0.40123960 \pm 1.3 \cdot 10^{-8} \) | \(a_{98}= +1.64866023 \pm 2.1 \cdot 10^{-8} \) | \(a_{99}= +0.82336063 \pm 1 \cdot 10^{-8} \) |
| \(a_{100}= +0.1 \) | \(a_{101}= +0.12181622 \pm 1 \cdot 10^{-8} \) | \(a_{102}= -0.38666035 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{103}= -1.17158131 \pm 1.3 \cdot 10^{-8} \) | \(a_{104}= +0.08893433 \pm 1.9 \cdot 10^{-8} \) | \(a_{105}= +0.51148453 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{106}= -0.38142781 \pm 2.0 \cdot 10^{-8} \) | \(a_{107}= +1.49652489 \pm 1 \cdot 10^{-8} \) | \(a_{108}= +0.50359183 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{109}= -1.10702814 \pm 1.0 \cdot 10^{-8} \) | \(a_{110}= -0.42868618 \pm 1.8 \cdot 10^{-8} \) | \(a_{111}= -0.08510423 \pm 1 \cdot 10^{-8} \) |
| \(a_{112}= -0.45631388 \pm 2.1 \cdot 10^{-8} \) | \(a_{113}= +0.37129337 \pm 1 \cdot 10^{-8} \) | \(a_{114}= +0.09841166 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{115}= -0.45108749 \pm 2.3 \cdot 10^{-8} \) | \(a_{116}= -0.16325415 \pm 2.3 \cdot 10^{-8} \) | \(a_{117}= -0.15277949 \pm 1 \cdot 10^{-8} \) |
| \(a_{118}= -0.99174071 \pm 1.7 \cdot 10^{-8} \) | \(a_{119}= -1.59284848 \pm 1 \cdot 10^{-8} \) | \(a_{120}= -0.09907495 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{121}= +0.83771838 \pm 1 \cdot 10^{-8} \) | \(a_{122}= -0.59124201 \pm 2.0 \cdot 10^{-8} \) | \(a_{123}= +0.86563150 \pm 1 \cdot 10^{-8} \) |
| \(a_{124}= +0.28497353 \pm 1.8 \cdot 10^{-8} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +0.78389752 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{127}= +1.11498506 \pm 1.2 \cdot 10^{-8} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.11119357 \pm 1 \cdot 10^{-8} \) |
| \(a_{130}= +0.07954528 \pm 1.9 \cdot 10^{-8} \) | \(a_{131}= -0.46420707 \pm 1 \cdot 10^{-8} \) | \(a_{132}= +0.42472060 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{133}= +0.40540711 \pm 1 \cdot 10^{-8} \) | \(a_{134}= -0.11648635 \pm 1.8 \cdot 10^{-8} \) | \(a_{135}= +0.45042623 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{136}= +0.30853597 \pm 1.6 \cdot 10^{-8} \) | \(a_{137}= +0.52324566 \pm 1.0 \cdot 10^{-8} \) | \(a_{138}= +0.44691469 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{139}= -0.71827127 \pm 1.0 \cdot 10^{-8} \) | \(a_{140}= -0.40813954 \pm 2.1 \cdot 10^{-8} \) | \(a_{141}= -0.99639153 \pm 1 \cdot 10^{-8} \) |
| \(a_{142}= -0.49473480 \pm 1.8 \cdot 10^{-8} \) | \(a_{143}= -0.34099963 \pm 1 \cdot 10^{-8} \) | \(a_{144}= -0.15184155 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{145}= -0.14601895 \pm 2.3 \cdot 10^{-8} \) | \(a_{146}= +0.33659847 \pm 2.2 \cdot 10^{-8} \) | \(a_{147}= -1.46096563 \pm 1 \cdot 10^{-8} \) |
| \(a_{148}= +0.06790899 \pm 2.0 \cdot 10^{-8} \) | \(a_{149}= +1.40740498 \pm 1.2 \cdot 10^{-8} \) | \(a_{150}= -0.08861533 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{151}= -1.27204756 \pm 1.4 \cdot 10^{-8} \) | \(a_{152}= -0.07852767 \pm 1.7 \cdot 10^{-8} \) | \(a_{153}= -0.53003118 \pm 1 \cdot 10^{-8} \) |
| \(a_{154}= +1.74963778 \pm 2.9 \cdot 10^{-8} \) | \(a_{155}= +0.25488807 \pm 1.8 \cdot 10^{-8} \) | \(a_{156}= -0.07880945 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{157}= -0.46638715 \pm 1 \cdot 10^{-8} \) | \(a_{158}= -1.14375916 \pm 2.1 \cdot 10^{-8} \) | \(a_{159}= +0.33800350 \pm 1 \cdot 10^{-8} \) |
| \(a_{160}= +0.07905694 \pm 3.8 \cdot 10^{-7} \) | \(a_{161}= +1.84106640 \pm 1 \cdot 10^{-8} \) | \(a_{162}= -0.01678678 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{163}= +0.09081799 \pm 1.1 \cdot 10^{-8} \) | \(a_{164}= -0.69073142 \pm 1.7 \cdot 10^{-8} \) | \(a_{165}= +0.37988165 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{166}= -0.76274146 \pm 2.3 \cdot 10^{-8} \) | \(a_{167}= +1.50973309 \pm 1 \cdot 10^{-8} \) | \(a_{168}= +0.40436403 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{169}= -0.93672548 \pm 1 \cdot 10^{-8} \) | \(a_{170}= +0.27596296 \pm 1.6 \cdot 10^{-8} \) | \(a_{171}= +0.13490198 \pm 1 \cdot 10^{-8} \) |
| \(a_{172}= -0.08872701 \pm 1.9 \cdot 10^{-8} \) | \(a_{173}= -1.17457975 \pm 1 \cdot 10^{-8} \) | \(a_{174}= +0.14466820 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{175}= -0.36505110 \pm 2.1 \cdot 10^{-8} \) | \(a_{176}= -0.33890618 \pm 1.8 \cdot 10^{-8} \) | \(a_{177}= +0.87883426 \pm 1 \cdot 10^{-8} \) |
| \(a_{178}= +0.40687847 \pm 2.2 \cdot 10^{-8} \) | \(a_{179}= +1.29051686 \pm 1 \cdot 10^{-8} \) | \(a_{180}= -0.13581121 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{181}= +0.62490323 \pm 1 \cdot 10^{-8} \) | \(a_{182}= -0.32465575 \pm 3.0 \cdot 10^{-8} \) | \(a_{183}= +0.52393104 \pm 1 \cdot 10^{-8} \) |
| \(a_{184}= -0.35661597 \pm 2.3 \cdot 10^{-8} \) | \(a_{185}= +0.06073965 \pm 2.0 \cdot 10^{-8} \) | \(a_{186}= -0.25253022 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{187}= -1.18301507 \pm 1 \cdot 10^{-8} \) | \(a_{188}= +0.79507151 \pm 1.7 \cdot 10^{-8} \) | \(a_{189}= -1.83836753 \pm 1 \cdot 10^{-8} \) |
| \(a_{190}= -0.07023728 \pm 1.7 \cdot 10^{-8} \) | \(a_{191}= -1.54422483 \pm 1 \cdot 10^{-8} \) | \(a_{192}= -0.07832562 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{193}= -0.43851316 \pm 1.1 \cdot 10^{-8} \) | \(a_{194}= -0.28371924 \pm 2.4 \cdot 10^{-8} \) | \(a_{195}= -0.07048931 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{196}= +1.16577883 \pm 2.1 \cdot 10^{-8} \) | \(a_{197}= +0.67040462 \pm 1.2 \cdot 10^{-8} \) | \(a_{198}= +0.58220389 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{199}= -0.43098053 \pm 1.1 \cdot 10^{-8} \) | \(a_{200}= +0.07071068 \pm 4.7 \cdot 10^{-7} \) | \(a_{201}= +0.10322476 \pm 1 \cdot 10^{-8} \) |
| \(a_{202}= +0.08613707 \pm 2.0 \cdot 10^{-8} \) | \(a_{203}= +0.59596107 \pm 1.4 \cdot 10^{-8} \) | \(a_{204}= -0.27341016 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{205}= -0.61780897 \pm 1.7 \cdot 10^{-8} \) | \(a_{206}= -0.82843309 \pm 2.4 \cdot 10^{-8} \) | \(a_{207}= +0.61262739 \pm 1 \cdot 10^{-8} \) |
| \(a_{208}= +0.06288607 \pm 1.9 \cdot 10^{-8} \) | \(a_{209}= +0.30109752 \pm 1 \cdot 10^{-8} \) | \(a_{210}= +0.36167418 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{211}= +1.96164157 \pm 1.2 \cdot 10^{-8} \) | \(a_{212}= -0.26971019 \pm 2.0 \cdot 10^{-8} \) | \(a_{213}= +0.43841085 \pm 1 \cdot 10^{-8} \) |
| \(a_{214}= +1.05820290 \pm 1.6 \cdot 10^{-8} \) | \(a_{215}= -0.07935985 \pm 1.9 \cdot 10^{-8} \) | \(a_{216}= +0.35609320 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{217}= -1.04029900 \pm 1 \cdot 10^{-8} \) | \(a_{218}= -0.78278710 \pm 2.0 \cdot 10^{-8} \) | \(a_{219}= -0.29827784 \pm 1 \cdot 10^{-8} \) |
| \(a_{220}= -0.30312690 \pm 1.8 \cdot 10^{-8} \) | \(a_{221}= +0.21951552 \pm 1 \cdot 10^{-8} \) | \(a_{222}= -0.06017778 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{223}= +0.74580049 \pm 1.1 \cdot 10^{-8} \) | \(a_{224}= -0.32266264 \pm 2.1 \cdot 10^{-8} \) | \(a_{225}= -0.12147324 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{226}= +0.26254406 \pm 1.8 \cdot 10^{-8} \) | \(a_{227}= -0.45905532 \pm 1 \cdot 10^{-8} \) | \(a_{228}= +0.06958755 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{229}= +0.94769878 \pm 1 \cdot 10^{-8} \) | \(a_{230}= -0.31896702 \pm 2.3 \cdot 10^{-8} \) | \(a_{231}= -1.55044722 \pm 1 \cdot 10^{-8} \) |
| \(a_{232}= -0.11543812 \pm 2.3 \cdot 10^{-8} \) | \(a_{233}= -1.05581791 \pm 1.1 \cdot 10^{-8} \) | \(a_{234}= -0.10803141 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{235}= +0.71113357 \pm 1.7 \cdot 10^{-8} \) | \(a_{236}= -0.70126658 \pm 1.7 \cdot 10^{-8} \) | \(a_{237}= +1.01354591 \pm 1 \cdot 10^{-8} \) |
| \(a_{238}= -1.12631396 \pm 2.6 \cdot 10^{-8} \) | \(a_{239}= -0.03691806 \pm 1.0 \cdot 10^{-8} \) | \(a_{240}= -0.07005657 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{241}= -1.17342889 \pm 1 \cdot 10^{-8} \) | \(a_{242}= +0.59235635 \pm 1.9 \cdot 10^{-8} \) | \(a_{243}= -0.99230800 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{244}= -0.41807124 \pm 2.0 \cdot 10^{-8} \) | \(a_{245}= +1.04270428 \pm 2.1 \cdot 10^{-8} \) | \(a_{246}= +0.61209390 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{247}= -0.05587044 \pm 1 \cdot 10^{-8} \) | \(a_{248}= +0.20150671 \pm 1.8 \cdot 10^{-8} \) | \(a_{249}= +0.67590583 \pm 1 \cdot 10^{-8} \) |
| \(a_{250}= +0.06324555 \pm 5.5 \cdot 10^{-7} \) | \(a_{251}= +0.48937312 \pm 1 \cdot 10^{-8} \) | \(a_{252}= +0.55429925 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{253}= +1.36736754 \pm 1 \cdot 10^{-8} \) | \(a_{254}= +0.78841350 \pm 2.2 \cdot 10^{-8} \) | \(a_{255}= -0.24454548 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{256}= +0.0625 \) | \(a_{257}= -0.50018978 \pm 1 \cdot 10^{-8} \) | \(a_{258}= +0.07862573 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{259}= -0.24790253 \pm 1 \cdot 10^{-8} \) | \(a_{260}= +0.05624701 \pm 1.9 \cdot 10^{-8} \) | \(a_{261}= +0.19831011 \pm 1 \cdot 10^{-8} \) |
| \(a_{262}= -0.32824396 \pm 1.9 \cdot 10^{-8} \) | \(a_{263}= -0.43274360 \pm 1.2 \cdot 10^{-8} \) | \(a_{264}= +0.30032282 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{265}= -0.24123613 \pm 2.0 \cdot 10^{-8} \) | \(a_{266}= +0.28666612 \pm 2.8 \cdot 10^{-8} \) | \(a_{267}= -0.36055668 \pm 1 \cdot 10^{-8} \) |
| \(a_{268}= -0.08236829 \pm 1.8 \cdot 10^{-8} \) | \(a_{269}= -0.14288606 \pm 1.4 \cdot 10^{-8} \) | \(a_{270}= +0.31849944 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{271}= -0.58039784 \pm 1.4 \cdot 10^{-8} \) | \(a_{272}= +0.21816788 \pm 1.6 \cdot 10^{-8} \) | \(a_{273}= +0.28769475 \pm 1 \cdot 10^{-8} \) |
| \(a_{274}= +0.36999056 \pm 2.1 \cdot 10^{-8} \) | \(a_{275}= -0.27112494 \pm 1.8 \cdot 10^{-8} \) | \(a_{276}= +0.31601641 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{277}= -0.84996353 \pm 1 \cdot 10^{-8} \) | \(a_{278}= -0.50789448 \pm 2.0 \cdot 10^{-8} \) | \(a_{279}= -0.34616658 \pm 1 \cdot 10^{-8} \) |
| \(a_{280}= -0.28859824 \pm 2.1 \cdot 10^{-8} \) | \(a_{281}= +0.18366278 \pm 1 \cdot 10^{-8} \) | \(a_{282}= -0.70455521 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{283}= -0.53397588 \pm 1 \cdot 10^{-8} \) | \(a_{284}= -0.34983033 \pm 1.8 \cdot 10^{-8} \) | \(a_{285}= +0.06224100 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{286}= -0.24112315 \pm 2.8 \cdot 10^{-8} \) | \(a_{287}= +2.52152267 \pm 1 \cdot 10^{-8} \) | \(a_{288}= -0.10736819 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{289}= -0.23844443 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -0.10325099 \pm 2.3 \cdot 10^{-8} \) | \(a_{291}= +0.25141873 \pm 1 \cdot 10^{-8} \) |
| \(a_{292}= +0.23801106 \pm 2.2 \cdot 10^{-8} \) | \(a_{293}= +1.00334900 \pm 1 \cdot 10^{-8} \) | \(a_{294}= -1.03305871 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{295}= -0.62723190 \pm 1.7 \cdot 10^{-8} \) | \(a_{296}= +0.04801891 \pm 2.0 \cdot 10^{-8} \) | \(a_{297}= -1.36536307 \pm 1 \cdot 10^{-8} \) |
| \(a_{298}= +0.99518561 \pm 2.3 \cdot 10^{-8} \) | \(a_{299}= -0.25372322 \pm 1.3 \cdot 10^{-8} \) | \(a_{300}= -0.06266050 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{301}= +0.32389892 \pm 1.0 \cdot 10^{-8} \) | \(a_{302}= -0.89947345 \pm 2.5 \cdot 10^{-8} \) | \(a_{303}= -0.07633065 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{304}= -0.05552745 \pm 1.7 \cdot 10^{-8} \) | \(a_{305}= -0.37393428 \pm 2.0 \cdot 10^{-8} \) | \(a_{306}= -0.37478864 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{307}= +0.11910422 \pm 1.0 \cdot 10^{-8} \) | \(a_{308}= +1.23718074 \pm 2.9 \cdot 10^{-8} \) | \(a_{309}= +0.73411868 \pm 1 \cdot 10^{-8} \) |
| \(a_{310}= +0.18023308 \pm 1.8 \cdot 10^{-8} \) | \(a_{311}= +1.64880237 \pm 1 \cdot 10^{-8} \) | \(a_{312}= -0.05572669 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{313}= +0.19439356 \pm 1.0 \cdot 10^{-8} \) | \(a_{314}= -0.32978552 \pm 1.5 \cdot 10^{-8} \) | \(a_{315}= +0.49578032 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{316}= -0.80875986 \pm 2.1 \cdot 10^{-8} \) | \(a_{317}= +0.28733595 \pm 1.0 \cdot 10^{-8} \) | \(a_{318}= +0.23900456 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{319}= +0.44262272 \pm 1.0 \cdot 10^{-8} \) | \(a_{320}= +0.05590170 \pm 6.9 \cdot 10^{-7} \) | \(a_{321}= -0.93772995 \pm 1 \cdot 10^{-8} \) |
| \(a_{322}= +1.30183054 \pm 3.4 \cdot 10^{-8} \) | \(a_{323}= -0.19382888 \pm 1 \cdot 10^{-8} \) | \(a_{324}= -0.01187005 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{325}= +0.05030885 \pm 1.9 \cdot 10^{-8} \) | \(a_{326}= +0.06421801 \pm 2.2 \cdot 10^{-8} \) | \(a_{327}= +0.69366934 \pm 1 \cdot 10^{-8} \) |
| \(a_{328}= -0.48842087 \pm 1.7 \cdot 10^{-8} \) | \(a_{329}= -2.90241729 \pm 1 \cdot 10^{-8} \) | \(a_{330}= +0.26861689 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{331}= +0.71469192 \pm 1 \cdot 10^{-8} \) | \(a_{332}= -0.53933966 \pm 2.3 \cdot 10^{-8} \) | \(a_{333}= -0.08249126 \pm 1 \cdot 10^{-8} \) |
| \(a_{334}= +1.06754251 \pm 1.7 \cdot 10^{-8} \) | \(a_{335}= -0.07367244 \pm 1.8 \cdot 10^{-8} \) | \(a_{336}= +0.28592855 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{337}= +0.03260929 \pm 1.1 \cdot 10^{-8} \) | \(a_{338}= -0.66236494 \pm 1.6 \cdot 10^{-8} \) | \(a_{339}= -0.23265427 \pm 1 \cdot 10^{-8} \) |
| \(a_{340}= +0.19513528 \pm 1.6 \cdot 10^{-8} \) | \(a_{341}= -0.77263432 \pm 1 \cdot 10^{-8} \) | \(a_{342}= +0.09539010 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{343}= -2.43043294 \pm 1 \cdot 10^{-8} \) | \(a_{344}= -0.06273947 \pm 1.9 \cdot 10^{-8} \) | \(a_{345}= +0.28265367 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{346}= -0.83055331 \pm 2.0 \cdot 10^{-8} \) | \(a_{347}= -1.45871662 \pm 1.3 \cdot 10^{-8} \) | \(a_{348}= +0.10229586 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{349}= +1.83591619 \pm 1 \cdot 10^{-8} \) | \(a_{350}= -0.25813011 \pm 2.1 \cdot 10^{-8} \) | \(a_{351}= +0.25335128 \pm 1 \cdot 10^{-8} \) |
| \(a_{352}= -0.23964286 \pm 1.8 \cdot 10^{-8} \) | \(a_{353}= +0.59389484 \pm 1.1 \cdot 10^{-8} \) | \(a_{354}= +0.62142966 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{355}= -0.31289776 \pm 1.8 \cdot 10^{-8} \) | \(a_{356}= +0.28770653 \pm 2.2 \cdot 10^{-8} \) | \(a_{357}= +0.99808679 \pm 1 \cdot 10^{-8} \) |
| \(a_{358}= +0.91253323 \pm 1.9 \cdot 10^{-8} \) | \(a_{359}= +1.48345875 \pm 1.2 \cdot 10^{-8} \) | \(a_{360}= -0.09603303 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{361}= -0.95066724 \pm 1 \cdot 10^{-8} \) | \(a_{362}= +0.44187331 \pm 1.8 \cdot 10^{-8} \) | \(a_{363}= -0.52491851 \pm 1 \cdot 10^{-8} \) |
| \(a_{364}= -0.22956628 \pm 3.0 \cdot 10^{-8} \) | \(a_{365}= +0.21288357 \pm 2.2 \cdot 10^{-8} \) | \(a_{366}= +0.37047519 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{367}= -0.25791151 \pm 1.0 \cdot 10^{-8} \) | \(a_{368}= -0.25216557 \pm 2.3 \cdot 10^{-8} \) | \(a_{369}= +0.83905384 \pm 1 \cdot 10^{-8} \) |
| \(a_{370}= +0.04294942 \pm 2.0 \cdot 10^{-8} \) | \(a_{371}= +0.98458002 \pm 1 \cdot 10^{-8} \) | \(a_{372}= -0.17856583 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{373}= +0.77373116 \pm 1.6 \cdot 10^{-8} \) | \(a_{374}= -0.83651798 \pm 2.4 \cdot 10^{-8} \) | \(a_{375}= -0.05604525 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{376}= +0.56220045 \pm 1.7 \cdot 10^{-8} \) | \(a_{377}= -0.08213129 \pm 1.0 \cdot 10^{-8} \) | \(a_{378}= -1.29992214 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{379}= +0.72041176 \pm 1.1 \cdot 10^{-8} \) | \(a_{380}= -0.04966526 \pm 1.7 \cdot 10^{-8} \) | \(a_{381}= -0.69865519 \pm 1 \cdot 10^{-8} \) |
| \(a_{382}= -1.09193185 \pm 1.8 \cdot 10^{-8} \) | \(a_{383}= +0.61143616 \pm 1.1 \cdot 10^{-8} \) | \(a_{384}= -0.05538458 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{385}= +1.10656809 \pm 2.9 \cdot 10^{-8} \) | \(a_{386}= -0.31007563 \pm 2.1 \cdot 10^{-8} \) | \(a_{387}= +0.10777957 \pm 1 \cdot 10^{-8} \) |
| \(a_{388}= -0.20061980 \pm 2.4 \cdot 10^{-8} \) | \(a_{389}= -1.18273094 \pm 1 \cdot 10^{-8} \) | \(a_{390}= -0.04984347 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{391}= -0.88023085 \pm 1 \cdot 10^{-8} \) | \(a_{392}= +0.82433011 \pm 2.1 \cdot 10^{-8} \) | \(a_{393}= +0.29087446 \pm 1 \cdot 10^{-8} \) |
| \(a_{394}= +0.47404765 \pm 2.2 \cdot 10^{-8} \) | \(a_{395}= -0.72337681 \pm 2.1 \cdot 10^{-8} \) | \(a_{396}= +0.41168032 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{397}= -1.01826174 \pm 1.1 \cdot 10^{-8} \) | \(a_{398}= -0.30474926 \pm 2.1 \cdot 10^{-8} \) | \(a_{399}= -0.25403012 \pm 1 \cdot 10^{-8} \) |
| \(a_{400}= +0.05 \) | \(a_{401}= -0.39219924 \pm 1.0 \cdot 10^{-8} \) | \(a_{402}= +0.07299093 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{403}= +0.14336692 \pm 1 \cdot 10^{-8} \) | \(a_{404}= +0.06090811 \pm 2.0 \cdot 10^{-8} \) | \(a_{405}= -0.01061689 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{406}= +0.42140812 \pm 3.4 \cdot 10^{-8} \) | \(a_{407}= -0.18411822 \pm 1 \cdot 10^{-8} \) | \(a_{408}= -0.19333018 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{409}= -1.09859749 \pm 1.3 \cdot 10^{-8} \) | \(a_{410}= -0.43685691 \pm 1.7 \cdot 10^{-8} \) | \(a_{411}= -0.32786834 \pm 1 \cdot 10^{-8} \) |
| \(a_{412}= -0.58579066 \pm 2.4 \cdot 10^{-8} \) | \(a_{413}= +2.55998136 \pm 1 \cdot 10^{-8} \) | \(a_{414}= +0.43319298 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{415}= -0.48240005 \pm 2.3 \cdot 10^{-8} \) | \(a_{416}= +0.04446717 \pm 1.9 \cdot 10^{-8} \) | \(a_{417}= +0.45007235 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{418}= +0.21290810 \pm 2.6 \cdot 10^{-8} \) | \(a_{419}= -1.80165381 \pm 1 \cdot 10^{-8} \) | \(a_{420}= +0.25574227 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{421}= +1.61496283 \pm 1.0 \cdot 10^{-8} \) | \(a_{422}= +1.38709006 \pm 2.2 \cdot 10^{-8} \) | \(a_{423}= -0.96579912 \pm 1 \cdot 10^{-8} \) |
| \(a_{424}= -0.19071390 \pm 2.0 \cdot 10^{-8} \) | \(a_{425}= +0.17453430 \pm 1.6 \cdot 10^{-8} \) | \(a_{426}= +0.31000329 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{427}= +1.52617365 \pm 1.3 \cdot 10^{-8} \) | \(a_{428}= +0.74826245 \pm 1.6 \cdot 10^{-8} \) | \(a_{429}= +0.21367207 \pm 1 \cdot 10^{-8} \) |
| \(a_{430}= -0.05611589 \pm 1.9 \cdot 10^{-8} \) | \(a_{431}= +0.34078020 \pm 1 \cdot 10^{-8} \) | \(a_{432}= +0.25179592 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{433}= -1.74829075 \pm 1 \cdot 10^{-8} \) | \(a_{434}= -0.73560248 \pm 2.8 \cdot 10^{-8} \) | \(a_{435}= +0.09149620 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{436}= -0.55351407 \pm 2.0 \cdot 10^{-8} \) | \(a_{437}= +0.22403377 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.21091428 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{439}= +0.21658250 \pm 1.1 \cdot 10^{-8} \) | \(a_{440}= -0.21434309 \pm 1.8 \cdot 10^{-8} \) | \(a_{441}= -1.41610931 \pm 1 \cdot 10^{-8} \) |
| \(a_{442}= +0.15522091 \pm 2.5 \cdot 10^{-8} \) | \(a_{443}= +0.93582620 \pm 1.4 \cdot 10^{-8} \) | \(a_{444}= -0.04255211 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{445}= +0.25733254 \pm 2.2 \cdot 10^{-8} \) | \(a_{446}= +0.52736059 \pm 2.1 \cdot 10^{-8} \) | \(a_{447}= -0.88188697 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{448}= -0.22815694 \pm 2.1 \cdot 10^{-8} \) | \(a_{449}= -0.03936456 \pm 1 \cdot 10^{-8} \) | \(a_{450}= -0.08589455 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{451}= +1.87274518 \pm 1 \cdot 10^{-8} \) | \(a_{452}= +0.18564668 \pm 1.8 \cdot 10^{-8} \) | \(a_{453}= +0.79707133 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{454}= -0.32460113 \pm 2.0 \cdot 10^{-8} \) | \(a_{455}= -0.20533033 \pm 3.0 \cdot 10^{-8} \) | \(a_{456}= +0.04920583 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{457}= -0.96833172 \pm 1.0 \cdot 10^{-8} \) | \(a_{458}= +0.67012424 \pm 1.6 \cdot 10^{-8} \) | \(a_{459}= +0.87894049 \pm 1 \cdot 10^{-8} \) |
| \(a_{460}= -0.22554375 \pm 2.3 \cdot 10^{-8} \) | \(a_{461}= -1.06696665 \pm 1 \cdot 10^{-8} \) | \(a_{462}= -1.09633175 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{463}= -0.66485545 \pm 1 \cdot 10^{-8} \) | \(a_{464}= -0.08162708 \pm 2.3 \cdot 10^{-8} \) | \(a_{465}= -0.15971414 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{466}= -0.74657601 \pm 2.2 \cdot 10^{-8} \) | \(a_{467}= -0.66626444 \pm 1 \cdot 10^{-8} \) | \(a_{468}= -0.07638974 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{469}= +0.30068635 \pm 1 \cdot 10^{-8} \) | \(a_{470}= +0.50284737 \pm 1.7 \cdot 10^{-8} \) | \(a_{471}= +0.29224051 \pm 1 \cdot 10^{-8} \) |
| \(a_{472}= -0.49587035 \pm 1.7 \cdot 10^{-8} \) | \(a_{473}= +0.24056105 \pm 1 \cdot 10^{-8} \) | \(a_{474}= +0.71668518 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{475}= -0.04442196 \pm 1.7 \cdot 10^{-8} \) | \(a_{476}= -0.79642424 \pm 2.6 \cdot 10^{-8} \) | \(a_{477}= +0.32762571 \pm 1 \cdot 10^{-8} \) |
| \(a_{478}= -0.02610501 \pm 2.1 \cdot 10^{-8} \) | \(a_{479}= +0.25722327 \pm 1.1 \cdot 10^{-8} \) | \(a_{480}= -0.04953747 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{481}= +0.03416424 \pm 1.0 \cdot 10^{-8} \) | \(a_{482}= -0.82973952 \pm 1.8 \cdot 10^{-8} \) | \(a_{483}= -1.15362138 \pm 1 \cdot 10^{-8} \) |
| \(a_{484}= +0.41885919 \pm 1.9 \cdot 10^{-8} \) | \(a_{485}= -0.17943981 \pm 2.4 \cdot 10^{-8} \) | \(a_{486}= -0.70166772 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{487}= +0.84389026 \pm 1 \cdot 10^{-8} \) | \(a_{488}= -0.29562101 \pm 2.0 \cdot 10^{-8} \) | \(a_{489}= -0.05690700 \pm 1 \cdot 10^{-8} \) |
| \(a_{490}= +0.73730327 \pm 2.1 \cdot 10^{-8} \) | \(a_{491}= +1.18588086 \pm 1.2 \cdot 10^{-8} \) | \(a_{492}= +0.43281575 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{493}= -0.28493449 \pm 1 \cdot 10^{-8} \) | \(a_{494}= -0.03950637 \pm 2.7 \cdot 10^{-8} \) | \(a_{495}= +0.36821807 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{496}= +0.14248676 \pm 1.8 \cdot 10^{-8} \) | \(a_{497}= +1.27705948 \pm 1.0 \cdot 10^{-8} \) | \(a_{498}= +0.47793759 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{499}= +1.20128096 \pm 1.0 \cdot 10^{-8} \) | \(a_{500}= +0.04472136 \pm 9.8 \cdot 10^{-7} \) | \(a_{501}= -0.94600627 \pm 1 \cdot 10^{-8} \) |
| \(a_{502}= +0.34603905 \pm 2.0 \cdot 10^{-8} \) | \(a_{503}= -0.46421726 \pm 1.2 \cdot 10^{-8} \) | \(a_{504}= +0.39194876 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{505}= +0.05447787 \pm 2.0 \cdot 10^{-8} \) | \(a_{506}= +0.96687486 \pm 3.1 \cdot 10^{-8} \) | \(a_{507}= +0.58695685 \pm 1 \cdot 10^{-8} \) |
| \(a_{508}= +0.55749253 \pm 2.2 \cdot 10^{-8} \) | \(a_{509}= +0.42225989 \pm 1 \cdot 10^{-8} \) | \(a_{510}= -0.17291977 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{511}= -0.86886201 \pm 1.5 \cdot 10^{-8} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.22370535 \pm 1 \cdot 10^{-8} \) |
| \(a_{514}= -0.35368759 \pm 1.9 \cdot 10^{-8} \) | \(a_{515}= -0.52394709 \pm 2.4 \cdot 10^{-8} \) | \(a_{516}= +0.05559679 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{517}= -2.15563718 \pm 1 \cdot 10^{-8} \) | \(a_{518}= -0.17529356 \pm 3.1 \cdot 10^{-8} \) | \(a_{519}= +0.73599752 \pm 1 \cdot 10^{-8} \) |
| \(a_{520}= +0.03977264 \pm 1.9 \cdot 10^{-8} \) | \(a_{521}= -0.28646964 \pm 1 \cdot 10^{-8} \) | \(a_{522}= +0.14022642 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{523}= -1.84725696 \pm 1.1 \cdot 10^{-8} \) | \(a_{524}= -0.23210353 \pm 1.9 \cdot 10^{-8} \) | \(a_{525}= +0.22874284 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{526}= -0.30599594 \pm 2.3 \cdot 10^{-8} \) | \(a_{527}= +0.49737656 \pm 1 \cdot 10^{-8} \) | \(a_{528}= +0.21236030 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{529}= +0.01739962 \pm 1.3 \cdot 10^{-8} \) | \(a_{530}= -0.17057970 \pm 2.0 \cdot 10^{-8} \) | \(a_{531}= +0.85185123 \pm 1 \cdot 10^{-8} \) |
| \(a_{532}= +0.20270356 \pm 2.8 \cdot 10^{-8} \) | \(a_{533}= -0.34749907 \pm 1 \cdot 10^{-8} \) | \(a_{534}= -0.25495208 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{535}= +0.66926628 \pm 1.6 \cdot 10^{-8} \) | \(a_{536}= -0.05824318 \pm 1.8 \cdot 10^{-8} \) | \(a_{537}= -0.80864429 \pm 1 \cdot 10^{-8} \) |
| \(a_{538}= -0.10103570 \pm 2.4 \cdot 10^{-8} \) | \(a_{539}= -3.16071719 \pm 1 \cdot 10^{-8} \) | \(a_{540}= +0.22521311 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{541}= +0.35383260 \pm 1.0 \cdot 10^{-8} \) | \(a_{542}= -0.41040325 \pm 2.4 \cdot 10^{-8} \) | \(a_{543}= -0.39156748 \pm 1 \cdot 10^{-8} \) |
| \(a_{544}= +0.15426799 \pm 1.6 \cdot 10^{-8} \) | \(a_{545}= -0.49507803 \pm 2.0 \cdot 10^{-8} \) | \(a_{546}= +0.20343091 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{547}= +1.54759506 \pm 1.0 \cdot 10^{-8} \) | \(a_{548}= +0.26162283 \pm 2.1 \cdot 10^{-8} \) | \(a_{549}= +0.50784468 \pm 1 \cdot 10^{-8} \) |
| \(a_{550}= -0.19171429 \pm 1.8 \cdot 10^{-8} \) | \(a_{551}= +0.07252069 \pm 1 \cdot 10^{-8} \) | \(a_{552}= +0.22345734 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{553}= +2.95238676 \pm 1 \cdot 10^{-8} \) | \(a_{554}= -0.60101498 \pm 1.9 \cdot 10^{-8} \) | \(a_{555}= -0.03805977 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{556}= -0.35913563 \pm 2.0 \cdot 10^{-8} \) | \(a_{557}= +0.66789589 \pm 1.3 \cdot 10^{-8} \) | \(a_{558}= -0.24477673 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{559}= -0.04463754 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.20406977 \pm 2.1 \cdot 10^{-8} \) | \(a_{561}= +0.74128313 \pm 1 \cdot 10^{-8} \) |
| \(a_{562}= +0.12986920 \pm 1.7 \cdot 10^{-8} \) | \(a_{563}= +0.66090522 \pm 1 \cdot 10^{-8} \) | \(a_{564}= -0.49819576 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{565}= +0.16604744 \pm 1.8 \cdot 10^{-8} \) | \(a_{566}= -0.37757796 \pm 1.8 \cdot 10^{-8} \) | \(a_{567}= +0.04333174 \pm 1 \cdot 10^{-8} \) |
| \(a_{568}= -0.24736740 \pm 1.8 \cdot 10^{-8} \) | \(a_{569}= -0.38053032 \pm 1.0 \cdot 10^{-8} \) | \(a_{570}= +0.04401103 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{571}= -1.60624842 \pm 1.0 \cdot 10^{-8} \) | \(a_{572}= -0.17049982 \pm 2.8 \cdot 10^{-8} \) | \(a_{573}= +0.96761897 \pm 1 \cdot 10^{-8} \) |
| \(a_{574}= +1.78298578 \pm 2.7 \cdot 10^{-8} \) | \(a_{575}= -0.20173246 \pm 2.3 \cdot 10^{-8} \) | \(a_{576}= -0.07592078 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{577}= -1.42542598 \pm 1.1 \cdot 10^{-8} \) | \(a_{578}= -0.16860568 \pm 1.9 \cdot 10^{-8} \) | \(a_{579}= +0.27477453 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{580}= -0.07300948 \pm 2.3 \cdot 10^{-8} \) | \(a_{581}= +1.96886535 \pm 1 \cdot 10^{-8} \) | \(a_{582}= +0.17777989 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{583}= +0.73125160 \pm 1 \cdot 10^{-8} \) | \(a_{584}= +0.16829924 \pm 2.2 \cdot 10^{-8} \) | \(a_{585}= -0.06832506 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{586}= +0.70947488 \pm 1.4 \cdot 10^{-8} \) | \(a_{587}= -1.43792406 \pm 1.1 \cdot 10^{-8} \) | \(a_{588}= -0.73048282 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{589}= -0.12659082 \pm 1 \cdot 10^{-8} \) | \(a_{590}= -0.44351993 \pm 1.7 \cdot 10^{-8} \) | \(a_{591}= -0.42007887 \pm 1 \cdot 10^{-8} \) |
| \(a_{592}= +0.03395450 \pm 2.0 \cdot 10^{-8} \) | \(a_{593}= +1.03551224 \pm 1 \cdot 10^{-8} \) | \(a_{594}= -0.96545749 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{595}= -0.71234350 \pm 2.6 \cdot 10^{-8} \) | \(a_{596}= +0.70370249 \pm 2.3 \cdot 10^{-8} \) | \(a_{597}= +0.27005455 \pm 1 \cdot 10^{-8} \) |
| \(a_{598}= -0.17940941 \pm 3.2 \cdot 10^{-8} \) | \(a_{599}= -0.03654045 \pm 1 \cdot 10^{-8} \) | \(a_{600}= -0.04430766 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{601}= -1.48276829 \pm 1.0 \cdot 10^{-8} \) | \(a_{602}= +0.22903112 \pm 3.0 \cdot 10^{-8} \) | \(a_{603}= +0.10005543 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{604}= -0.63602378 \pm 2.5 \cdot 10^{-8} \) | \(a_{605}= +0.37463905 \pm 1.9 \cdot 10^{-8} \) | \(a_{606}= -0.05397392 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{607}= +0.77508589 \pm 1.1 \cdot 10^{-8} \) | \(a_{608}= -0.03926383 \pm 1.7 \cdot 10^{-8} \) | \(a_{609}= -0.37343218 \pm 1 \cdot 10^{-8} \) |
| \(a_{610}= -0.26441147 \pm 2.0 \cdot 10^{-8} \) | \(a_{611}= +0.39999137 \pm 1 \cdot 10^{-8} \) | \(a_{612}= -0.26501559 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{613}= -1.55004680 \pm 1 \cdot 10^{-8} \) | \(a_{614}= +0.08421940 \pm 2.1 \cdot 10^{-8} \) | \(a_{615}= +0.38712217 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{616}= +0.87481889 \pm 2.9 \cdot 10^{-8} \) | \(a_{617}= -0.11307549 \pm 1 \cdot 10^{-8} \) | \(a_{618}= +0.51910030 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{619}= -0.20172181 \pm 1.3 \cdot 10^{-8} \) | \(a_{620}= +0.12744404 \pm 1.8 \cdot 10^{-8} \) | \(a_{621}= -1.01590819 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{622}= +1.16587934 \pm 1.5 \cdot 10^{-8} \) | \(a_{623}= -1.05027584 \pm 1.4 \cdot 10^{-8} \) | \(a_{624}= -0.03940472 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{625}= +0.04 \) | \(a_{626}= +0.13745701 \pm 2.1 \cdot 10^{-8} \) | \(a_{627}= -0.18866920 \pm 1 \cdot 10^{-8} \) |
| \(a_{628}= -0.23319357 \pm 1.5 \cdot 10^{-8} \) | \(a_{629}= +0.11852449 \pm 1 \cdot 10^{-8} \) | \(a_{630}= +0.35056963 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{631}= +0.46236869 \pm 1 \cdot 10^{-8} \) | \(a_{632}= -0.57187958 \pm 2.1 \cdot 10^{-8} \) | \(a_{633}= -1.22917437 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{634}= +0.20317720 \pm 2.1 \cdot 10^{-8} \) | \(a_{635}= +0.49863648 \pm 2.2 \cdot 10^{-8} \) | \(a_{636}= +0.16900175 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{637}= +0.58648997 \pm 1 \cdot 10^{-8} \) | \(a_{638}= +0.31298153 \pm 3.2 \cdot 10^{-8} \) | \(a_{639}= +0.42495024 \pm 1 \cdot 10^{-8} \) |
| \(a_{640}= +0.03952847 \pm 1.2 \cdot 10^{-6} \) | \(a_{641}= -0.66675103 \pm 1 \cdot 10^{-8} \) | \(a_{642}= -0.66307520 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{643}= +0.57083561 \pm 1.1 \cdot 10^{-8} \) | \(a_{644}= +0.92053320 \pm 3.4 \cdot 10^{-8} \) | \(a_{645}= +0.04972728 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{646}= -0.13705772 \pm 2.3 \cdot 10^{-8} \) | \(a_{647}= +0.09701931 \pm 1.1 \cdot 10^{-8} \) | \(a_{648}= -0.00839339 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{649}= +1.90130862 \pm 1 \cdot 10^{-8} \) | \(a_{650}= +0.03557373 \pm 1.9 \cdot 10^{-8} \) | \(a_{651}= +0.65185653 \pm 1 \cdot 10^{-8} \) |
| \(a_{652}= +0.04540899 \pm 2.2 \cdot 10^{-8} \) | \(a_{653}= +1.72017911 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.49049830 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{655}= -0.20759971 \pm 1.9 \cdot 10^{-8} \) | \(a_{656}= -0.34536571 \pm 1.7 \cdot 10^{-8} \) | \(a_{657}= -0.28911975 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{658}= -2.05231894 \pm 2.7 \cdot 10^{-8} \) | \(a_{659}= -0.60872022 \pm 1.1 \cdot 10^{-8} \) | \(a_{660}= +0.18994083 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{661}= -1.73094004 \pm 1.4 \cdot 10^{-8} \) | \(a_{662}= +0.50536351 \pm 1.8 \cdot 10^{-8} \) | \(a_{663}= -0.13754952 \pm 1 \cdot 10^{-8} \) |
| \(a_{664}= -0.38137073 \pm 2.3 \cdot 10^{-8} \) | \(a_{665}= +0.18130357 \pm 2.8 \cdot 10^{-8} \) | \(a_{666}= -0.05833013 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{667}= +0.32933661 \pm 1.6 \cdot 10^{-8} \) | \(a_{668}= +0.75486654 \pm 1.7 \cdot 10^{-8} \) | \(a_{669}= -0.46732230 \pm 1 \cdot 10^{-8} \) |
| \(a_{670}= -0.05209428 \pm 1.8 \cdot 10^{-8} \) | \(a_{671}= +1.13349541 \pm 1 \cdot 10^{-8} \) | \(a_{672}= +0.20218201 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{673}= -0.42450023 \pm 1.1 \cdot 10^{-8} \) | \(a_{674}= +0.02305825 \pm 2.2 \cdot 10^{-8} \) | \(a_{675}= +0.20143673 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{676}= -0.46836274 \pm 1.6 \cdot 10^{-8} \) | \(a_{677}= +1.22473957 \pm 1 \cdot 10^{-8} \) | \(a_{678}= -0.16451141 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{679}= +0.73236479 \pm 1 \cdot 10^{-8} \) | \(a_{680}= +0.13798148 \pm 1.6 \cdot 10^{-8} \) | \(a_{681}= +0.28764635 \pm 1 \cdot 10^{-8} \) |
| \(a_{682}= -0.54633497 \pm 2.6 \cdot 10^{-8} \) | \(a_{683}= -0.62100356 \pm 1.3 \cdot 10^{-8} \) | \(a_{684}= +0.06745099 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{685}= +0.23400257 \pm 2.1 \cdot 10^{-8} \) | \(a_{686}= -1.71857561 \pm 1.7 \cdot 10^{-8} \) | \(a_{687}= -0.59383278 \pm 1 \cdot 10^{-8} \) |
| \(a_{688}= -0.04436350 \pm 1.9 \cdot 10^{-8} \) | \(a_{689}= -0.13568811 \pm 1 \cdot 10^{-8} \) | \(a_{690}= +0.19986633 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{691}= -0.26506622 \pm 1.3 \cdot 10^{-8} \) | \(a_{692}= -0.58728988 \pm 2.0 \cdot 10^{-8} \) | \(a_{693}= -1.50284353 \pm 1 \cdot 10^{-8} \) |
| \(a_{694}= -1.03146842 \pm 2.4 \cdot 10^{-8} \) | \(a_{695}= -0.32122067 \pm 2.0 \cdot 10^{-8} \) | \(a_{696}= +0.07233410 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{697}= -1.20556327 \pm 1 \cdot 10^{-8} \) | \(a_{698}= +1.29818879 \pm 1.9 \cdot 10^{-8} \) | \(a_{699}= +0.66158076 \pm 1 \cdot 10^{-8} \) |
| \(a_{700}= -0.18252555 \pm 2.1 \cdot 10^{-8} \) | \(a_{701}= +0.07725448 \pm 1.1 \cdot 10^{-8} \) | \(a_{702}= +0.17914641 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{703}= -0.03016650 \pm 1 \cdot 10^{-8} \) | \(a_{704}= -0.16945309 \pm 1.8 \cdot 10^{-8} \) | \(a_{705}= -0.44559984 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{706}= +0.41994707 \pm 2.2 \cdot 10^{-8} \) | \(a_{707}= -0.22234572 \pm 1 \cdot 10^{-8} \) | \(a_{708}= +0.43941713 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{709}= -0.78936399 \pm 1.0 \cdot 10^{-8} \) | \(a_{710}= -0.22125213 \pm 1.8 \cdot 10^{-8} \) | \(a_{711}= +0.98242680 \pm 1 \cdot 10^{-8} \) |
| \(a_{712}= +0.20343924 \pm 2.2 \cdot 10^{-8} \) | \(a_{713}= -0.57488411 \pm 1 \cdot 10^{-8} \) | \(a_{714}= +0.70575394 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{715}= -0.15249967 \pm 2.8 \cdot 10^{-8} \) | \(a_{716}= +0.64525843 \pm 1.9 \cdot 10^{-8} \) | \(a_{717}= +0.02313304 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{718}= +1.04896374 \pm 2.3 \cdot 10^{-8} \) | \(a_{719}= +0.64775593 \pm 1 \cdot 10^{-8} \) | \(a_{720}= -0.06790561 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{721}= +2.13843524 \pm 1.3 \cdot 10^{-8} \) | \(a_{722}= -0.67222325 \pm 1.7 \cdot 10^{-8} \) | \(a_{723}= +0.73527638 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{724}= +0.31245162 \pm 1.8 \cdot 10^{-8} \) | \(a_{725}= -0.06530166 \pm 2.3 \cdot 10^{-8} \) | \(a_{726}= -0.37117344 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{727}= -0.21662484 \pm 1 \cdot 10^{-8} \) | \(a_{728}= -0.16232788 \pm 3.0 \cdot 10^{-8} \) | \(a_{729}= +0.64552523 \pm 1 \cdot 10^{-8} \) |
| \(a_{730}= +0.15053141 \pm 2.2 \cdot 10^{-8} \) | \(a_{731}= -0.15485906 \pm 1 \cdot 10^{-8} \) | \(a_{732}= +0.26196552 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{733}= +1.13072509 \pm 1 \cdot 10^{-8} \) | \(a_{734}= -0.18237098 \pm 2.1 \cdot 10^{-8} \) | \(a_{735}= -0.65336369 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{736}= -0.17830799 \pm 2.3 \cdot 10^{-8} \) | \(a_{737}= +0.22332098 \pm 1 \cdot 10^{-8} \) | \(a_{738}= +0.59330066 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{739}= -0.22732723 \pm 1.4 \cdot 10^{-8} \) | \(a_{740}= +0.03036983 \pm 2.0 \cdot 10^{-8} \) | \(a_{741}= +0.03500870 \pm 1 \cdot 10^{-8} \) |
| \(a_{742}= +0.69620321 \pm 3.0 \cdot 10^{-8} \) | \(a_{743}= -1.07557517 \pm 1.0 \cdot 10^{-8} \) | \(a_{744}= -0.12626511 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{745}= +0.62941064 \pm 2.3 \cdot 10^{-8} \) | \(a_{746}= +0.54711055 \pm 2.6 \cdot 10^{-8} \) | \(a_{747}= +0.65515335 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{748}= -0.59150754 \pm 2.4 \cdot 10^{-8} \) | \(a_{749}= -2.73154029 \pm 1 \cdot 10^{-8} \) | \(a_{750}= -0.03962998 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{751}= -1.28058500 \pm 1 \cdot 10^{-8} \) | \(a_{752}= +0.39753575 \pm 1.7 \cdot 10^{-8} \) | \(a_{753}= -0.30664363 \pm 1 \cdot 10^{-8} \) |
| \(a_{754}= -0.05807559 \pm 3.3 \cdot 10^{-8} \) | \(a_{755}= -0.56887696 \pm 2.5 \cdot 10^{-8} \) | \(a_{756}= -0.91918376 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{757}= +1.18074814 \pm 1.3 \cdot 10^{-8} \) | \(a_{758}= +0.50940804 \pm 2.2 \cdot 10^{-8} \) | \(a_{759}= -0.85679931 \pm 1 \cdot 10^{-8} \) |
| \(a_{760}= -0.03511864 \pm 1.7 \cdot 10^{-8} \) | \(a_{761}= -0.56128243 \pm 1 \cdot 10^{-8} \) | \(a_{762}= -0.49402382 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{763}= +2.02060920 \pm 1.0 \cdot 10^{-8} \) | \(a_{764}= -0.77211241 \pm 1.8 \cdot 10^{-8} \) | \(a_{765}= -0.23703715 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{766}= +0.43235065 \pm 2.2 \cdot 10^{-8} \) | \(a_{767}= -0.35279918 \pm 1 \cdot 10^{-8} \) | \(a_{768}= -0.03916281 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{769}= -1.02071213 \pm 1 \cdot 10^{-8} \) | \(a_{770}= +0.78246180 \pm 2.9 \cdot 10^{-8} \) | \(a_{771}= +0.31342141 \pm 1 \cdot 10^{-8} \) |
| \(a_{772}= -0.21925658 \pm 2.1 \cdot 10^{-8} \) | \(a_{773}= +0.43525584 \pm 1.4 \cdot 10^{-8} \) | \(a_{774}= +0.07621167 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{775}= +0.11398941 \pm 1.8 \cdot 10^{-8} \) | \(a_{776}= -0.14185962 \pm 2.4 \cdot 10^{-8} \) | \(a_{777}= +0.15533696 \pm 1 \cdot 10^{-8} \) |
| \(a_{778}= -0.83631707 \pm 1.9 \cdot 10^{-8} \) | \(a_{779}= +0.30683642 \pm 1 \cdot 10^{-8} \) | \(a_{780}= -0.03524466 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{781}= +0.94847729 \pm 1 \cdot 10^{-8} \) | \(a_{782}= -0.62241720 \pm 2.9 \cdot 10^{-8} \) | \(a_{783}= -0.32885383 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{784}= +0.58288941 \pm 2.1 \cdot 10^{-8} \) | \(a_{785}= -0.20857467 \pm 1.5 \cdot 10^{-8} \) | \(a_{786}= +0.20567930 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{787}= -0.89889756 \pm 1 \cdot 10^{-8} \) | \(a_{788}= +0.33520231 \pm 2.2 \cdot 10^{-8} \) | \(a_{789}= +0.27115930 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{790}= -0.51150465 \pm 2.1 \cdot 10^{-8} \) | \(a_{791}= -0.67770526 \pm 1 \cdot 10^{-8} \) | \(a_{792}= +0.29110194 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{793}= -0.21032685 \pm 1 \cdot 10^{-8} \) | \(a_{794}= -0.72001978 \pm 2.2 \cdot 10^{-8} \) | \(a_{795}= +0.15115976 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{796}= -0.21549027 \pm 2.1 \cdot 10^{-8} \) | \(a_{797}= +0.99385555 \pm 1.1 \cdot 10^{-8} \) | \(a_{798}= -0.17962642 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{799}= +1.38767251 \pm 1 \cdot 10^{-8} \) | \(a_{800}= +0.03535534 \pm 1.4 \cdot 10^{-6} \) | \(a_{801}= -0.34948644 \pm 1 \cdot 10^{-8} \) |
| \(a_{802}= -0.27732674 \pm 2.0 \cdot 10^{-8} \) | \(a_{803}= -0.64530736 \pm 1.1 \cdot 10^{-8} \) | \(a_{804}= +0.05161238 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{805}= +0.82334993 \pm 3.4 \cdot 10^{-8} \) | \(a_{806}= +0.10137572 \pm 2.7 \cdot 10^{-8} \) | \(a_{807}= +0.08953312 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{808}= +0.04306854 \pm 2.0 \cdot 10^{-8} \) | \(a_{809}= +1.69002942 \pm 1.2 \cdot 10^{-8} \) | \(a_{810}= -0.00750728 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{811}= -0.10134656 \pm 1 \cdot 10^{-8} \) | \(a_{812}= +0.29798054 \pm 3.4 \cdot 10^{-8} \) | \(a_{813}= +0.36368018 \pm 1 \cdot 10^{-8} \) |
| \(a_{814}= -0.13019124 \pm 2.8 \cdot 10^{-8} \) | \(a_{815}= +0.04061504 \pm 2.2 \cdot 10^{-8} \) | \(a_{816}= -0.13670508 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{817}= +0.03941427 \pm 1 \cdot 10^{-8} \) | \(a_{818}= -0.77682574 \pm 2.3 \cdot 10^{-8} \) | \(a_{819}= +0.27886160 \pm 1 \cdot 10^{-8} \) |
| \(a_{820}= -0.30890448 \pm 1.7 \cdot 10^{-8} \) | \(a_{821}= -0.04168939 \pm 1.1 \cdot 10^{-8} \) | \(a_{822}= -0.23183792 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{823}= -1.38293262 \pm 1.0 \cdot 10^{-8} \) | \(a_{824}= -0.41421655 \pm 2.4 \cdot 10^{-8} \) | \(a_{825}= +0.16988824 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{826}= +1.81018018 \pm 2.8 \cdot 10^{-8} \) | \(a_{827}= -0.51893152 \pm 1 \cdot 10^{-8} \) | \(a_{828}= +0.30631369 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{829}= -0.41474369 \pm 1 \cdot 10^{-8} \) | \(a_{830}= -0.34110835 \pm 2.3 \cdot 10^{-8} \) | \(a_{831}= +0.53259138 \pm 1 \cdot 10^{-8} \) |
| \(a_{832}= +0.03144303 \pm 1.9 \cdot 10^{-8} \) | \(a_{833}= +2.03468394 \pm 1 \cdot 10^{-8} \) | \(a_{834}= +0.31824921 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{835}= +0.67517316 \pm 1.7 \cdot 10^{-8} \) | \(a_{836}= +0.15054876 \pm 2.6 \cdot 10^{-8} \) | \(a_{837}= +0.57404136 \pm 1 \cdot 10^{-8} \) |
| \(a_{838}= -1.27396163 \pm 1.9 \cdot 10^{-8} \) | \(a_{839}= -0.39458038 \pm 1 \cdot 10^{-8} \) | \(a_{840}= +0.18083709 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{841}= -0.89339233 \pm 1 \cdot 10^{-8} \) | \(a_{842}= +1.14195117 \pm 2.0 \cdot 10^{-8} \) | \(a_{843}= -0.11508402 \pm 1 \cdot 10^{-8} \) |
| \(a_{844}= +0.98082079 \pm 2.2 \cdot 10^{-8} \) | \(a_{845}= -0.41891637 \pm 1.6 \cdot 10^{-8} \) | \(a_{846}= -0.68292311 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{847}= -1.52905008 \pm 1 \cdot 10^{-8} \) | \(a_{848}= -0.13485509 \pm 2.0 \cdot 10^{-8} \) | \(a_{849}= +0.33459194 \pm 1 \cdot 10^{-8} \) |
| \(a_{850}= +0.12341439 \pm 1.6 \cdot 10^{-8} \) | \(a_{851}= -0.13699448 \pm 1.4 \cdot 10^{-8} \) | \(a_{852}= +0.21920543 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{853}= -1.69100576 \pm 1.4 \cdot 10^{-8} \) | \(a_{854}= +1.07916774 \pm 3.0 \cdot 10^{-8} \) | \(a_{855}= +0.06033000 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{856}= +0.52910145 \pm 1.6 \cdot 10^{-8} \) | \(a_{857}= -1.30065322 \pm 1 \cdot 10^{-8} \) | \(a_{858}= +0.15108897 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{859}= +0.13514289 \pm 1.1 \cdot 10^{-8} \) | \(a_{860}= -0.03967992 \pm 1.9 \cdot 10^{-8} \) | \(a_{861}= -1.57999866 \pm 1 \cdot 10^{-8} \) |
| \(a_{862}= +0.24096799 \pm 1.6 \cdot 10^{-8} \) | \(a_{863}= -0.18014283 \pm 1.1 \cdot 10^{-8} \) | \(a_{864}= +0.17804660 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{865}= -0.52528803 \pm 2.0 \cdot 10^{-8} \) | \(a_{866}= -1.23622824 \pm 1.8 \cdot 10^{-8} \) | \(a_{867}= +0.14941047 \pm 1 \cdot 10^{-8} \) |
| \(a_{868}= -0.52014950 \pm 2.8 \cdot 10^{-8} \) | \(a_{869}= +2.19274971 \pm 1 \cdot 10^{-8} \) | \(a_{870}= +0.06469758 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{871}= -0.04143854 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.39139355 \pm 2.0 \cdot 10^{-8} \) | \(a_{873}= +0.24369937 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{874}= +0.15841580 \pm 3.0 \cdot 10^{-8} \) | \(a_{875}= -0.16325582 \pm 2.1 \cdot 10^{-8} \) | \(a_{876}= -0.14913892 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{877}= -1.71651094 \pm 1.3 \cdot 10^{-8} \) | \(a_{878}= +0.15314695 \pm 2.1 \cdot 10^{-8} \) | \(a_{879}= -0.62870348 \pm 1 \cdot 10^{-8} \) |
| \(a_{880}= -0.15156345 \pm 1.8 \cdot 10^{-8} \) | \(a_{881}= +0.59408693 \pm 1 \cdot 10^{-8} \) | \(a_{882}= -1.00134050 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{883}= +1.63522229 \pm 1.1 \cdot 10^{-8} \) | \(a_{884}= +0.10975776 \pm 2.5 \cdot 10^{-8} \) | \(a_{885}= +0.39302663 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{886}= +0.66172905 \pm 2.5 \cdot 10^{-8} \) | \(a_{887}= +1.58756263 \pm 1.1 \cdot 10^{-8} \) | \(a_{888}= -0.03008889 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{889}= -2.03513262 \pm 1.6 \cdot 10^{-8} \) | \(a_{890}= +0.18196158 \pm 2.2 \cdot 10^{-8} \) | \(a_{891}= +0.03218266 \pm 1 \cdot 10^{-8} \) |
| \(a_{892}= +0.37290025 \pm 2.1 \cdot 10^{-8} \) | \(a_{893}= -0.35318633 \pm 1 \cdot 10^{-8} \) | \(a_{894}= -0.62358826 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{895}= +0.57713669 \pm 1.9 \cdot 10^{-8} \) | \(a_{896}= -0.16133132 \pm 2.1 \cdot 10^{-8} \) | \(a_{897}= +0.15898423 \pm 1 \cdot 10^{-8} \) |
| \(a_{898}= -0.02783495 \pm 1.9 \cdot 10^{-8} \) | \(a_{899}= -0.18609244 \pm 1 \cdot 10^{-8} \) | \(a_{900}= -0.06073662 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{901}= -0.47073680 \pm 1 \cdot 10^{-8} \) | \(a_{902}= +1.32423082 \pm 2.5 \cdot 10^{-8} \) | \(a_{903}= -0.20295668 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{904}= +0.13127203 \pm 1.8 \cdot 10^{-8} \) | \(a_{905}= +0.27946522 \pm 1.8 \cdot 10^{-8} \) | \(a_{906}= +0.56361454 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{907}= +0.91407297 \pm 1.2 \cdot 10^{-8} \) | \(a_{908}= -0.22952766 \pm 2.0 \cdot 10^{-8} \) | \(a_{909}= -0.07398705 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{910}= -0.14519047 \pm 3.0 \cdot 10^{-8} \) | \(a_{911}= +1.12976601 \pm 1.0 \cdot 10^{-8} \) | \(a_{912}= +0.03479377 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{913}= +1.46228434 \pm 1 \cdot 10^{-8} \) | \(a_{914}= -0.68471393 \pm 2.0 \cdot 10^{-8} \) | \(a_{915}= +0.23430908 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{916}= +0.47384939 \pm 1.6 \cdot 10^{-8} \) | \(a_{917}= +0.84729650 \pm 1 \cdot 10^{-8} \) | \(a_{918}= +0.62150478 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{919}= +0.23540619 \pm 1 \cdot 10^{-8} \) | \(a_{920}= -0.15948351 \pm 2.3 \cdot 10^{-8} \) | \(a_{921}= -0.07463130 \pm 1 \cdot 10^{-8} \) |
| \(a_{922}= -0.75445935 \pm 1.9 \cdot 10^{-8} \) | \(a_{923}= -0.17599563 \pm 1 \cdot 10^{-8} \) | \(a_{924}= -0.77522361 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{925}= +0.02716360 \pm 2.0 \cdot 10^{-8} \) | \(a_{926}= -0.47012380 \pm 2.0 \cdot 10^{-8} \) | \(a_{927}= +0.71157889 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{928}= -0.05771906 \pm 2.3 \cdot 10^{-8} \) | \(a_{929}= -0.34536049 \pm 1 \cdot 10^{-8} \) | \(a_{930}= -0.11293495 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{931}= -0.51786178 \pm 1 \cdot 10^{-8} \) | \(a_{932}= -0.52790896 \pm 2.2 \cdot 10^{-8} \) | \(a_{933}= -1.03314778 \pm 1 \cdot 10^{-8} \) |
| \(a_{934}= -0.47112011 \pm 1.4 \cdot 10^{-8} \) | \(a_{935}= -0.52906042 \pm 2.4 \cdot 10^{-8} \) | \(a_{936}= -0.05401571 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{937}= +0.18917832 \pm 1 \cdot 10^{-8} \) | \(a_{938}= +0.21261735 \pm 2.8 \cdot 10^{-8} \) | \(a_{939}= -0.12180797 \pm 1 \cdot 10^{-8} \) |
| \(a_{940}= +0.35556679 \pm 1.7 \cdot 10^{-8} \) | \(a_{941}= +1.75199211 \pm 1 \cdot 10^{-8} \) | \(a_{942}= +0.20664525 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{943}= +1.39342949 \pm 1 \cdot 10^{-8} \) | \(a_{944}= -0.35063329 \pm 1.7 \cdot 10^{-8} \) | \(a_{945}= -0.82214295 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{946}= +0.17010235 \pm 2.7 \cdot 10^{-8} \) | \(a_{947}= -0.98632642 \pm 1 \cdot 10^{-8} \) | \(a_{948}= +0.50677295 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{949}= +0.11974064 \pm 1 \cdot 10^{-8} \) | \(a_{950}= -0.03141107 \pm 1.7 \cdot 10^{-8} \) | \(a_{951}= -0.18004614 \pm 1 \cdot 10^{-8} \) |
| \(a_{952}= -0.56315698 \pm 2.6 \cdot 10^{-8} \) | \(a_{953}= -1.59784909 \pm 1.0 \cdot 10^{-8} \) | \(a_{954}= +0.23166636 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{955}= -0.69059834 \pm 1.8 \cdot 10^{-8} \) | \(a_{956}= -0.01845903 \pm 2.1 \cdot 10^{-8} \) | \(a_{957}= -0.27734960 \pm 1 \cdot 10^{-8} \) |
| \(a_{958}= +0.18188432 \pm 2.1 \cdot 10^{-8} \) | \(a_{959}= -0.95505702 \pm 1.6 \cdot 10^{-8} \) | \(a_{960}= -0.03502828 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{961}= -0.67516035 \pm 1 \cdot 10^{-8} \) | \(a_{962}= +0.02415776 \pm 3.0 \cdot 10^{-8} \) | \(a_{963}= -0.90893864 \pm 1 \cdot 10^{-8} \) |
| \(a_{964}= -0.58671444 \pm 1.8 \cdot 10^{-8} \) | \(a_{965}= -0.19610904 \pm 2.1 \cdot 10^{-8} \) | \(a_{966}= -0.81573350 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{967}= +0.84534061 \pm 1 \cdot 10^{-8} \) | \(a_{968}= +0.29617817 \pm 1.9 \cdot 10^{-8} \) | \(a_{969}= +0.12145414 \pm 1 \cdot 10^{-8} \) |
| \(a_{970}= -0.12688310 \pm 2.4 \cdot 10^{-8} \) | \(a_{971}= +0.36370463 \pm 1.2 \cdot 10^{-8} \) | \(a_{972}= -0.49615400 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{973}= +1.31102858 \pm 1 \cdot 10^{-8} \) | \(a_{974}= +0.59672052 \pm 1.7 \cdot 10^{-8} \) | \(a_{975}= -0.03152378 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{976}= -0.20903562 \pm 2.0 \cdot 10^{-8} \) | \(a_{977}= -0.81600103 \pm 1.0 \cdot 10^{-8} \) | \(a_{978}= -0.04023933 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{979}= -0.78004416 \pm 1.1 \cdot 10^{-8} \) | \(a_{980}= +0.52135214 \pm 2.1 \cdot 10^{-8} \) | \(a_{981}= +0.67237147 \pm 1 \cdot 10^{-8} \) |
| \(a_{982}= +0.83854440 \pm 2.3 \cdot 10^{-8} \) | \(a_{983}= +0.83537627 \pm 1 \cdot 10^{-8} \) | \(a_{984}= +0.30604695 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{985}= +0.29981406 \pm 2.2 \cdot 10^{-8} \) | \(a_{986}= -0.20147911 \pm 2.9 \cdot 10^{-8} \) | \(a_{987}= +1.81866912 \pm 1 \cdot 10^{-8} \) |
| \(a_{988}= -0.02793522 \pm 2.7 \cdot 10^{-8} \) | \(a_{989}= +0.17899118 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.26036949 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{991}= -0.15502391 \pm 1.4 \cdot 10^{-8} \) | \(a_{992}= +0.10075336 \pm 1.8 \cdot 10^{-8} \) | \(a_{993}= -0.44782952 \pm 1 \cdot 10^{-8} \) |
| \(a_{994}= +0.90301742 \pm 2.9 \cdot 10^{-8} \) | \(a_{995}= -0.19274035 \pm 2.1 \cdot 10^{-8} \) | \(a_{996}= +0.33795291 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{997}= -1.63443192 \pm 1.0 \cdot 10^{-8} \) | \(a_{998}= +0.84943391 \pm 2.1 \cdot 10^{-8} \) | \(a_{999}= +0.13679366 \pm 1 \cdot 10^{-8} \) |
| \(a_{1000}= +0.03162278 \pm 1.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000