Properties

Label 2.0.8.1-16200.3-g
Base field Q(2)\Q(\sqrt{-2})
Weight 22
Level norm 1620016200
Level (90a) \left(90 a\right)
Dimension 11
CM no
Base change yes
Sign +1+1
Analytic rank 00

Related objects

Downloads

Learn more

Base field: Q(2)\Q(\sqrt{-2})

Generator aa, with minimal polynomial x2+2x^2 + 2; class number 11.

Form

Weight: 2
Level: 16200.3 = (90a) \left(90 a\right)
Level norm: 16200
Dimension: 1
CM: no
Base change: yes 360.2.a.b , 2880.2.a.bb
Newspace:2.0.8.1-16200.3 (dimension 7)
Sign of functional equation: +1+1
Analytic rank: 00

Associated elliptic curves

This Bianchi newform is associated to the isogeny class 2.0.8.1-16200.3-g of elliptic curves.

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 2 2.1 = (a) \left(a\right) 1 1
3 3 3.1 = (a1) \left(-a - 1\right) 1 -1
3 3 3.2 = (a1) \left(a - 1\right) 1 -1
25 25 25.1 = (5) \left(5\right) 1 -1

Hecke eigenvalues

The Hecke eigenvalue field is Q\Q. The eigenvalue of the Hecke operator TpT_{\mathfrak{p}} is apa_{\mathfrak{p}}. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues apa_{\mathfrak{p}} for primes p\mathfrak{p} which do not divide the level.

N(p)N(\mathfrak{p}) p\mathfrak{p} apa_{\mathfrak{p}}
11 11 11.1 = (a+3) \left(a + 3\right) 4 4
11 11 11.2 = (a3) \left(a - 3\right) 4 4
17 17 17.1 = (2a+3) \left(-2 a + 3\right) 6 6
17 17 17.2 = (2a+3) \left(2 a + 3\right) 6 6
19 19 19.1 = (3a+1) \left(-3 a + 1\right) 4 -4
19 19 19.2 = (3a+1) \left(3 a + 1\right) 4 -4
41 41 41.1 = (4a3) \left(-4 a - 3\right) 6 6
41 41 41.2 = (4a3) \left(4 a - 3\right) 6 6
43 43 43.1 = (3a5) \left(-3 a - 5\right) 12 12
43 43 43.2 = (3a5) \left(3 a - 5\right) 12 12
49 49 49.1 = (7) \left(7\right) 14 -14
59 59 59.1 = (5a+3) \left(-5 a + 3\right) 12 -12
59 59 59.2 = (5a3) \left(-5 a - 3\right) 12 -12
67 67 67.1 = (3a+7) \left(-3 a + 7\right) 4 4
67 67 67.2 = (3a+7) \left(3 a + 7\right) 4 4
73 73 73.1 = (6a+1) \left(-6 a + 1\right) 6 -6
73 73 73.2 = (6a+1) \left(6 a + 1\right) 6 -6
83 83 83.1 = (a+9) \left(a + 9\right) 12 12
83 83 83.2 = (a9) \left(a - 9\right) 12 12
89 89 89.1 = (2a+9) \left(-2 a + 9\right) 10 -10
Display number of eigenvalues