Properties

 Label 360.2.a.b Level $360$ Weight $2$ Character orbit 360.a Self dual yes Analytic conductor $2.875$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [360,2,Mod(1,360)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(360, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("360.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$360 = 2^{3} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 360.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$2.87461447277$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 120) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5}+O(q^{10})$$ q - q^5 $$q - q^{5} + 4 q^{11} + 6 q^{13} + 6 q^{17} - 4 q^{19} + q^{25} + 2 q^{29} - 8 q^{31} - 2 q^{37} + 6 q^{41} + 12 q^{43} - 8 q^{47} - 7 q^{49} - 6 q^{53} - 4 q^{55} - 12 q^{59} + 14 q^{61} - 6 q^{65} + 4 q^{67} - 8 q^{71} - 6 q^{73} - 8 q^{79} + 12 q^{83} - 6 q^{85} - 10 q^{89} + 4 q^{95} + 2 q^{97}+O(q^{100})$$ q - q^5 + 4 * q^11 + 6 * q^13 + 6 * q^17 - 4 * q^19 + q^25 + 2 * q^29 - 8 * q^31 - 2 * q^37 + 6 * q^41 + 12 * q^43 - 8 * q^47 - 7 * q^49 - 6 * q^53 - 4 * q^55 - 12 * q^59 + 14 * q^61 - 6 * q^65 + 4 * q^67 - 8 * q^71 - 6 * q^73 - 8 * q^79 + 12 * q^83 - 6 * q^85 - 10 * q^89 + 4 * q^95 + 2 * q^97

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.2.a.b 1
3.b odd 2 1 120.2.a.b 1
4.b odd 2 1 720.2.a.d 1
5.b even 2 1 1800.2.a.n 1
5.c odd 4 2 1800.2.f.j 2
8.b even 2 1 2880.2.a.x 1
8.d odd 2 1 2880.2.a.bb 1
9.c even 3 2 3240.2.q.q 2
9.d odd 6 2 3240.2.q.g 2
12.b even 2 1 240.2.a.c 1
15.d odd 2 1 600.2.a.c 1
15.e even 4 2 600.2.f.b 2
20.d odd 2 1 3600.2.a.t 1
20.e even 4 2 3600.2.f.c 2
21.c even 2 1 5880.2.a.a 1
24.f even 2 1 960.2.a.j 1
24.h odd 2 1 960.2.a.c 1
48.i odd 4 2 3840.2.k.o 2
48.k even 4 2 3840.2.k.j 2
60.h even 2 1 1200.2.a.o 1
60.l odd 4 2 1200.2.f.g 2
120.i odd 2 1 4800.2.a.cd 1
120.m even 2 1 4800.2.a.r 1
120.q odd 4 2 4800.2.f.i 2
120.w even 4 2 4800.2.f.bc 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.a.b 1 3.b odd 2 1
240.2.a.c 1 12.b even 2 1
360.2.a.b 1 1.a even 1 1 trivial
600.2.a.c 1 15.d odd 2 1
600.2.f.b 2 15.e even 4 2
720.2.a.d 1 4.b odd 2 1
960.2.a.c 1 24.h odd 2 1
960.2.a.j 1 24.f even 2 1
1200.2.a.o 1 60.h even 2 1
1200.2.f.g 2 60.l odd 4 2
1800.2.a.n 1 5.b even 2 1
1800.2.f.j 2 5.c odd 4 2
2880.2.a.x 1 8.b even 2 1
2880.2.a.bb 1 8.d odd 2 1
3240.2.q.g 2 9.d odd 6 2
3240.2.q.q 2 9.c even 3 2
3600.2.a.t 1 20.d odd 2 1
3600.2.f.c 2 20.e even 4 2
3840.2.k.j 2 48.k even 4 2
3840.2.k.o 2 48.i odd 4 2
4800.2.a.r 1 120.m even 2 1
4800.2.a.cd 1 120.i odd 2 1
4800.2.f.i 2 120.q odd 4 2
4800.2.f.bc 2 120.w even 4 2
5880.2.a.a 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(360))$$:

 $$T_{7}$$ T7 $$T_{11} - 4$$ T11 - 4

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T$$
$11$ $$T - 4$$
$13$ $$T - 6$$
$17$ $$T - 6$$
$19$ $$T + 4$$
$23$ $$T$$
$29$ $$T - 2$$
$31$ $$T + 8$$
$37$ $$T + 2$$
$41$ $$T - 6$$
$43$ $$T - 12$$
$47$ $$T + 8$$
$53$ $$T + 6$$
$59$ $$T + 12$$
$61$ $$T - 14$$
$67$ $$T - 4$$
$71$ $$T + 8$$
$73$ $$T + 6$$
$79$ $$T + 8$$
$83$ $$T - 12$$
$89$ $$T + 10$$
$97$ $$T - 2$$