Properties

Label 88.48.0-44.c.1.5
Level $88$
Index $48$
Genus $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $88$ $\SL_2$-level: $8$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $4^{6}$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 4G0

Level structure

$\GL_2(\Z/88\Z)$-generators: $\begin{bmatrix}33&12\\68&81\end{bmatrix}$, $\begin{bmatrix}35&56\\72&43\end{bmatrix}$, $\begin{bmatrix}37&26\\56&73\end{bmatrix}$, $\begin{bmatrix}67&18\\52&41\end{bmatrix}$, $\begin{bmatrix}77&32\\36&87\end{bmatrix}$
Contains $-I$: no $\quad$ (see 44.24.0.c.1 for the level structure with $-I$)
Cyclic 88-isogeny field degree: $24$
Cyclic 88-torsion field degree: $960$
Full 88-torsion field degree: $422400$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 29 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 24 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{2^4}{3^8\cdot11^2}\cdot\frac{(3x-y)^{24}(6698781x^{8}+41290560x^{7}y+126044100x^{6}y^{2}+252360360x^{5}y^{3}+348054084x^{4}y^{4}+318139920x^{3}y^{5}+180860400x^{2}y^{6}+57996480xy^{7}+8221456y^{8})^{3}}{(3x-y)^{24}(3x+2y)^{4}(3x+8y)^{4}(3x^{2}+5xy+3y^{2})^{4}(45x^{2}+42xy-10y^{2})^{4}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
8.24.0-4.b.1.10 $8$ $2$ $2$ $0$ $0$
88.24.0-4.b.1.8 $88$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
88.96.0-88.g.1.3 $88$ $2$ $2$ $0$
88.96.0-88.g.1.6 $88$ $2$ $2$ $0$
88.96.0-88.g.2.1 $88$ $2$ $2$ $0$
88.96.0-88.g.2.8 $88$ $2$ $2$ $0$
88.96.0-88.h.1.9 $88$ $2$ $2$ $0$
88.96.0-88.h.1.16 $88$ $2$ $2$ $0$
88.96.0-88.h.2.4 $88$ $2$ $2$ $0$
88.96.0-88.h.2.15 $88$ $2$ $2$ $0$
88.96.0-88.i.1.9 $88$ $2$ $2$ $0$
88.96.0-88.i.1.16 $88$ $2$ $2$ $0$
88.96.0-88.i.2.6 $88$ $2$ $2$ $0$
88.96.0-88.i.2.12 $88$ $2$ $2$ $0$
88.96.0-88.j.1.3 $88$ $2$ $2$ $0$
88.96.0-88.j.1.6 $88$ $2$ $2$ $0$
88.96.0-88.j.2.1 $88$ $2$ $2$ $0$
88.96.0-88.j.2.8 $88$ $2$ $2$ $0$
88.96.1-88.p.1.6 $88$ $2$ $2$ $1$
88.96.1-88.p.1.11 $88$ $2$ $2$ $1$
88.96.1-88.u.1.6 $88$ $2$ $2$ $1$
88.96.1-88.u.1.11 $88$ $2$ $2$ $1$
88.96.1-88.bs.1.2 $88$ $2$ $2$ $1$
88.96.1-88.bs.1.15 $88$ $2$ $2$ $1$
88.96.1-88.bu.1.6 $88$ $2$ $2$ $1$
88.96.1-88.bu.1.11 $88$ $2$ $2$ $1$
264.96.0-264.p.1.8 $264$ $2$ $2$ $0$
264.96.0-264.p.1.16 $264$ $2$ $2$ $0$
264.96.0-264.p.2.17 $264$ $2$ $2$ $0$
264.96.0-264.p.2.21 $264$ $2$ $2$ $0$
264.96.0-264.q.1.30 $264$ $2$ $2$ $0$
264.96.0-264.q.1.32 $264$ $2$ $2$ $0$
264.96.0-264.q.2.25 $264$ $2$ $2$ $0$
264.96.0-264.q.2.26 $264$ $2$ $2$ $0$
264.96.0-264.r.1.30 $264$ $2$ $2$ $0$
264.96.0-264.r.1.32 $264$ $2$ $2$ $0$
264.96.0-264.r.2.25 $264$ $2$ $2$ $0$
264.96.0-264.r.2.29 $264$ $2$ $2$ $0$
264.96.0-264.s.1.6 $264$ $2$ $2$ $0$
264.96.0-264.s.1.14 $264$ $2$ $2$ $0$
264.96.0-264.s.2.25 $264$ $2$ $2$ $0$
264.96.0-264.s.2.29 $264$ $2$ $2$ $0$
264.96.1-264.bt.1.25 $264$ $2$ $2$ $1$
264.96.1-264.bt.1.27 $264$ $2$ $2$ $1$
264.96.1-264.bw.1.21 $264$ $2$ $2$ $1$
264.96.1-264.bw.1.29 $264$ $2$ $2$ $1$
264.96.1-264.ey.1.25 $264$ $2$ $2$ $1$
264.96.1-264.ey.1.27 $264$ $2$ $2$ $1$
264.96.1-264.fc.1.25 $264$ $2$ $2$ $1$
264.96.1-264.fc.1.27 $264$ $2$ $2$ $1$
264.144.4-132.c.1.60 $264$ $3$ $3$ $4$
264.192.3-132.c.1.14 $264$ $4$ $4$ $3$