Properties

Label 48.48.0-48.g.1.11
Level $48$
Index $48$
Genus $0$
Analytic rank $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $48$ $\SL_2$-level: $16$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $1^{4}\cdot4\cdot16$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 16C0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 48.48.0.339

Level structure

$\GL_2(\Z/48\Z)$-generators: $\begin{bmatrix}29&3\\20&37\end{bmatrix}$, $\begin{bmatrix}31&14\\44&17\end{bmatrix}$, $\begin{bmatrix}37&9\\20&41\end{bmatrix}$, $\begin{bmatrix}41&47\\20&9\end{bmatrix}$, $\begin{bmatrix}45&5\\40&15\end{bmatrix}$
Contains $-I$: no $\quad$ (see 48.24.0.g.1 for the level structure with $-I$)
Cyclic 48-isogeny field degree: $8$
Cyclic 48-torsion field degree: $64$
Full 48-torsion field degree: $24576$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 108 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 24 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -\frac{2^4}{3^8}\cdot\frac{x^{24}(81x^{8}-144x^{4}y^{4}+16y^{8})^{3}}{y^{4}x^{40}(3x^{2}-y^{2})(3x^{2}+y^{2})}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
16.24.0-8.n.1.8 $16$ $2$ $2$ $0$ $0$
24.24.0-8.n.1.10 $24$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
48.96.0-48.bc.1.5 $48$ $2$ $2$ $0$
48.96.0-48.bc.2.1 $48$ $2$ $2$ $0$
48.96.0-48.bd.1.5 $48$ $2$ $2$ $0$
48.96.0-48.bd.2.1 $48$ $2$ $2$ $0$
48.96.0-48.be.1.5 $48$ $2$ $2$ $0$
48.96.0-48.be.2.1 $48$ $2$ $2$ $0$
48.96.0-48.bf.1.5 $48$ $2$ $2$ $0$
48.96.0-48.bf.2.1 $48$ $2$ $2$ $0$
48.96.0-48.bg.1.1 $48$ $2$ $2$ $0$
48.96.0-48.bg.2.9 $48$ $2$ $2$ $0$
48.96.0-48.bh.1.1 $48$ $2$ $2$ $0$
48.96.0-48.bh.2.9 $48$ $2$ $2$ $0$
48.96.0-48.bi.1.1 $48$ $2$ $2$ $0$
48.96.0-48.bi.2.9 $48$ $2$ $2$ $0$
48.96.0-48.bj.1.1 $48$ $2$ $2$ $0$
48.96.0-48.bj.2.9 $48$ $2$ $2$ $0$
48.96.1-48.b.2.4 $48$ $2$ $2$ $1$
48.96.1-48.d.1.2 $48$ $2$ $2$ $1$
48.96.1-48.h.1.4 $48$ $2$ $2$ $1$
48.96.1-48.i.1.2 $48$ $2$ $2$ $1$
48.96.1-48.r.1.2 $48$ $2$ $2$ $1$
48.96.1-48.s.1.2 $48$ $2$ $2$ $1$
48.96.1-48.v.1.2 $48$ $2$ $2$ $1$
48.96.1-48.w.1.2 $48$ $2$ $2$ $1$
48.144.4-48.bg.1.17 $48$ $3$ $3$ $4$
48.192.3-48.qf.1.18 $48$ $4$ $4$ $3$
240.96.0-240.ee.1.2 $240$ $2$ $2$ $0$
240.96.0-240.ee.2.1 $240$ $2$ $2$ $0$
240.96.0-240.ef.1.17 $240$ $2$ $2$ $0$
240.96.0-240.ef.2.1 $240$ $2$ $2$ $0$
240.96.0-240.eg.1.2 $240$ $2$ $2$ $0$
240.96.0-240.eg.2.1 $240$ $2$ $2$ $0$
240.96.0-240.eh.1.17 $240$ $2$ $2$ $0$
240.96.0-240.eh.2.1 $240$ $2$ $2$ $0$
240.96.0-240.ei.1.17 $240$ $2$ $2$ $0$
240.96.0-240.ei.2.1 $240$ $2$ $2$ $0$
240.96.0-240.ej.1.1 $240$ $2$ $2$ $0$
240.96.0-240.ej.2.2 $240$ $2$ $2$ $0$
240.96.0-240.ek.1.17 $240$ $2$ $2$ $0$
240.96.0-240.ek.2.1 $240$ $2$ $2$ $0$
240.96.0-240.el.1.1 $240$ $2$ $2$ $0$
240.96.0-240.el.2.2 $240$ $2$ $2$ $0$
240.96.1-240.go.1.2 $240$ $2$ $2$ $1$
240.96.1-240.gp.1.2 $240$ $2$ $2$ $1$
240.96.1-240.gs.1.2 $240$ $2$ $2$ $1$
240.96.1-240.gt.1.2 $240$ $2$ $2$ $1$
240.96.1-240.he.1.2 $240$ $2$ $2$ $1$
240.96.1-240.hf.1.2 $240$ $2$ $2$ $1$
240.96.1-240.hi.1.2 $240$ $2$ $2$ $1$
240.96.1-240.hj.1.2 $240$ $2$ $2$ $1$
240.240.8-240.y.1.2 $240$ $5$ $5$ $8$
240.288.7-240.ym.1.66 $240$ $6$ $6$ $7$
240.480.15-240.ca.1.2 $240$ $10$ $10$ $15$