Properties

Label 48.48.0-48.f.1.1
Level $48$
Index $48$
Genus $0$
Analytic rank $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $48$ $\SL_2$-level: $16$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $1^{2}\cdot2^{3}\cdot16$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 16D0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 48.48.0.327

Level structure

$\GL_2(\Z/48\Z)$-generators: $\begin{bmatrix}1&42\\16&37\end{bmatrix}$, $\begin{bmatrix}17&17\\24&47\end{bmatrix}$, $\begin{bmatrix}19&5\\16&9\end{bmatrix}$, $\begin{bmatrix}29&33\\4&17\end{bmatrix}$, $\begin{bmatrix}41&45\\32&19\end{bmatrix}$
Contains $-I$: no $\quad$ (see 48.24.0.f.1 for the level structure with $-I$)
Cyclic 48-isogeny field degree: $8$
Cyclic 48-torsion field degree: $64$
Full 48-torsion field degree: $24576$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 109 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 24 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -\frac{2^2}{3^8}\cdot\frac{x^{24}(81x^{8}-1728x^{6}y^{2}+2880x^{4}y^{4}-1536x^{2}y^{6}+256y^{8})^{3}}{y^{2}x^{40}(3x^{2}-2y^{2})^{2}(3x^{2}-y^{2})}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
16.24.0-8.n.1.8 $16$ $2$ $2$ $0$ $0$
24.24.0-8.n.1.7 $24$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
48.96.0-48.d.2.3 $48$ $2$ $2$ $0$
48.96.0-48.f.1.11 $48$ $2$ $2$ $0$
48.96.0-48.k.1.10 $48$ $2$ $2$ $0$
48.96.0-48.l.1.10 $48$ $2$ $2$ $0$
48.96.0-48.u.1.1 $48$ $2$ $2$ $0$
48.96.0-48.x.1.11 $48$ $2$ $2$ $0$
48.96.0-48.z.2.13 $48$ $2$ $2$ $0$
48.96.0-48.ba.1.11 $48$ $2$ $2$ $0$
48.96.0-48.bg.2.1 $48$ $2$ $2$ $0$
48.96.0-48.bh.2.9 $48$ $2$ $2$ $0$
48.96.0-48.bo.1.9 $48$ $2$ $2$ $0$
48.96.0-48.bp.1.1 $48$ $2$ $2$ $0$
48.96.0-48.bu.2.1 $48$ $2$ $2$ $0$
48.96.0-48.bv.2.9 $48$ $2$ $2$ $0$
48.96.0-48.by.1.9 $48$ $2$ $2$ $0$
48.96.0-48.bz.1.1 $48$ $2$ $2$ $0$
48.96.1-48.bi.2.1 $48$ $2$ $2$ $1$
48.96.1-48.bj.2.5 $48$ $2$ $2$ $1$
48.96.1-48.bm.2.3 $48$ $2$ $2$ $1$
48.96.1-48.bn.2.1 $48$ $2$ $2$ $1$
48.96.1-48.bs.2.1 $48$ $2$ $2$ $1$
48.96.1-48.bt.2.9 $48$ $2$ $2$ $1$
48.96.1-48.ca.2.5 $48$ $2$ $2$ $1$
48.96.1-48.cb.2.1 $48$ $2$ $2$ $1$
48.144.4-48.be.2.17 $48$ $3$ $3$ $4$
48.192.3-48.qc.1.3 $48$ $4$ $4$ $3$
240.96.0-240.bj.2.2 $240$ $2$ $2$ $0$
240.96.0-240.bl.2.21 $240$ $2$ $2$ $0$
240.96.0-240.bn.2.17 $240$ $2$ $2$ $0$
240.96.0-240.bp.1.19 $240$ $2$ $2$ $0$
240.96.0-240.bu.1.2 $240$ $2$ $2$ $0$
240.96.0-240.by.1.21 $240$ $2$ $2$ $0$
240.96.0-240.cc.2.25 $240$ $2$ $2$ $0$
240.96.0-240.cg.1.21 $240$ $2$ $2$ $0$
240.96.0-240.cu.1.1 $240$ $2$ $2$ $0$
240.96.0-240.cv.2.2 $240$ $2$ $2$ $0$
240.96.0-240.dk.1.2 $240$ $2$ $2$ $0$
240.96.0-240.dl.1.1 $240$ $2$ $2$ $0$
240.96.0-240.du.1.1 $240$ $2$ $2$ $0$
240.96.0-240.dv.2.2 $240$ $2$ $2$ $0$
240.96.0-240.ec.1.2 $240$ $2$ $2$ $0$
240.96.0-240.ed.1.1 $240$ $2$ $2$ $0$
240.96.1-240.ey.2.1 $240$ $2$ $2$ $1$
240.96.1-240.ez.1.5 $240$ $2$ $2$ $1$
240.96.1-240.fg.2.9 $240$ $2$ $2$ $1$
240.96.1-240.fh.2.1 $240$ $2$ $2$ $1$
240.96.1-240.fu.2.1 $240$ $2$ $2$ $1$
240.96.1-240.fv.1.5 $240$ $2$ $2$ $1$
240.96.1-240.gk.2.9 $240$ $2$ $2$ $1$
240.96.1-240.gl.2.1 $240$ $2$ $2$ $1$
240.240.8-240.t.1.4 $240$ $5$ $5$ $8$
240.288.7-240.un.1.4 $240$ $6$ $6$ $7$
240.480.15-240.bv.1.20 $240$ $10$ $10$ $15$