Properties

Label 44.24.0-4.b.1.1
Level $44$
Index $24$
Genus $0$
Analytic rank $0$
Cusps $4$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $44$ $\SL_2$-level: $4$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (all of which are rational) Cusp widths $2^{2}\cdot4^{2}$ Cusp orbits $1^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 4E0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 44.24.0.11

Level structure

$\GL_2(\Z/44\Z)$-generators: $\begin{bmatrix}27&42\\42&15\end{bmatrix}$, $\begin{bmatrix}31&42\\12&9\end{bmatrix}$, $\begin{bmatrix}35&28\\28&11\end{bmatrix}$
Contains $-I$: no $\quad$ (see 4.12.0.b.1 for the level structure with $-I$)
Cyclic 44-isogeny field degree: $12$
Cyclic 44-torsion field degree: $240$
Full 44-torsion field degree: $52800$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 2569 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{x^{12}(256x^{4}-16x^{2}y^{2}+y^{4})^{3}}{y^{4}x^{16}(4x-y)^{2}(4x+y)^{2}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
44.12.0-2.a.1.1 $44$ $2$ $2$ $0$ $0$
44.12.0-4.c.1.1 $44$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
44.48.0-4.b.1.1 $44$ $2$ $2$ $0$
88.48.0-8.c.1.1 $88$ $2$ $2$ $0$
88.48.0-8.d.1.1 $88$ $2$ $2$ $0$
88.48.0-8.d.2.1 $88$ $2$ $2$ $0$
88.48.0-8.e.1.1 $88$ $2$ $2$ $0$
88.48.0-8.e.2.1 $88$ $2$ $2$ $0$
88.48.0-8.h.1.1 $88$ $2$ $2$ $0$
88.48.0-8.i.1.1 $88$ $2$ $2$ $0$
88.48.1-8.c.1.9 $88$ $2$ $2$ $1$
88.48.1-8.d.1.8 $88$ $2$ $2$ $1$
132.48.0-12.c.1.3 $132$ $2$ $2$ $0$
132.72.2-12.b.1.5 $132$ $3$ $3$ $2$
132.96.1-12.b.1.10 $132$ $4$ $4$ $1$
220.48.0-20.c.1.2 $220$ $2$ $2$ $0$
220.120.4-20.b.1.2 $220$ $5$ $5$ $4$
220.144.3-20.b.1.4 $220$ $6$ $6$ $3$
220.240.7-20.b.1.3 $220$ $10$ $10$ $7$
264.48.0-24.e.1.4 $264$ $2$ $2$ $0$
264.48.0-24.h.1.2 $264$ $2$ $2$ $0$
264.48.0-24.h.2.4 $264$ $2$ $2$ $0$
264.48.0-24.i.1.2 $264$ $2$ $2$ $0$
264.48.0-24.i.2.4 $264$ $2$ $2$ $0$
264.48.0-24.l.1.2 $264$ $2$ $2$ $0$
264.48.0-24.m.1.2 $264$ $2$ $2$ $0$
264.48.1-24.c.1.6 $264$ $2$ $2$ $1$
264.48.1-24.d.1.4 $264$ $2$ $2$ $1$
308.48.0-28.c.1.3 $308$ $2$ $2$ $0$
308.192.5-28.b.1.7 $308$ $8$ $8$ $5$
308.504.16-28.b.1.3 $308$ $21$ $21$ $16$
44.48.0-44.c.1.2 $44$ $2$ $2$ $0$
44.288.9-44.b.1.1 $44$ $12$ $12$ $9$
44.1320.46-44.b.1.2 $44$ $55$ $55$ $46$
44.1320.46-44.f.1.4 $44$ $55$ $55$ $46$
44.1584.55-44.b.1.6 $44$ $66$ $66$ $55$
88.48.0-88.e.1.3 $88$ $2$ $2$ $0$
88.48.0-88.h.1.10 $88$ $2$ $2$ $0$
88.48.0-88.h.2.3 $88$ $2$ $2$ $0$
88.48.0-88.i.1.11 $88$ $2$ $2$ $0$
88.48.0-88.i.2.2 $88$ $2$ $2$ $0$
88.48.0-88.l.1.12 $88$ $2$ $2$ $0$
88.48.0-88.m.1.9 $88$ $2$ $2$ $0$
88.48.1-88.c.1.10 $88$ $2$ $2$ $1$
88.48.1-88.d.1.5 $88$ $2$ $2$ $1$
132.48.0-132.c.1.5 $132$ $2$ $2$ $0$
220.48.0-220.c.1.5 $220$ $2$ $2$ $0$
264.48.0-264.e.1.5 $264$ $2$ $2$ $0$
264.48.0-264.t.1.21 $264$ $2$ $2$ $0$
264.48.0-264.t.2.1 $264$ $2$ $2$ $0$
264.48.0-264.u.1.19 $264$ $2$ $2$ $0$
264.48.0-264.u.2.1 $264$ $2$ $2$ $0$
264.48.0-264.x.1.12 $264$ $2$ $2$ $0$
264.48.0-264.y.1.12 $264$ $2$ $2$ $0$
264.48.1-264.c.1.20 $264$ $2$ $2$ $1$
264.48.1-264.d.1.10 $264$ $2$ $2$ $1$
308.48.0-308.c.1.3 $308$ $2$ $2$ $0$