Properties

Label 312.384.9-312.jl.2.4
Level $312$
Index $384$
Genus $9$
Cusps $16$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $312$ $\SL_2$-level: $24$ Newform level: $1$
Index: $384$ $\PSL_2$-index:$192$
Genus: $9 = 1 + \frac{ 192 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 16 }{2}$
Cusps: $16$ (of which $4$ are rational) Cusp widths $4^{4}\cdot8^{4}\cdot12^{4}\cdot24^{4}$ Cusp orbits $1^{4}\cdot2^{6}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: not computed
$\Q$-gonality: $3 \le \gamma \le 9$
$\overline{\Q}$-gonality: $3 \le \gamma \le 9$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 24AH9

Level structure

$\GL_2(\Z/312\Z)$-generators: $\begin{bmatrix}29&186\\132&299\end{bmatrix}$, $\begin{bmatrix}169&24\\160&179\end{bmatrix}$, $\begin{bmatrix}215&180\\228&155\end{bmatrix}$, $\begin{bmatrix}215&184\\236&219\end{bmatrix}$, $\begin{bmatrix}239&28\\164&9\end{bmatrix}$, $\begin{bmatrix}279&94\\64&225\end{bmatrix}$
Contains $-I$: no $\quad$ (see 312.192.9.jl.2 for the level structure with $-I$)
Cyclic 312-isogeny field degree: $28$
Cyclic 312-torsion field degree: $2688$
Full 312-torsion field degree: $5031936$

Rational points

This modular curve has 4 rational cusps but no known non-cuspidal rational points.

Modular covers

The following modular covers realize this modular curve as a fiber product over $X(1)$.

Factor curve Level Index Degree Genus Rank
$X_0(3)$ $3$ $96$ $48$ $0$ $0$
104.96.1-104.bf.2.4 $104$ $4$ $4$ $1$ $?$

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
24.192.3-24.bq.2.47 $24$ $2$ $2$ $3$ $0$
104.96.1-104.bf.2.4 $104$ $4$ $4$ $1$ $?$
312.192.3-24.bq.2.2 $312$ $2$ $2$ $3$ $?$
312.192.3-312.ew.1.8 $312$ $2$ $2$ $3$ $?$
312.192.3-312.ew.1.55 $312$ $2$ $2$ $3$ $?$
312.192.5-312.c.1.22 $312$ $2$ $2$ $5$ $?$
312.192.5-312.c.1.34 $312$ $2$ $2$ $5$ $?$