Properties

Label 312.24.0-6.a.1.6
Level $312$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $312$ $\SL_2$-level: $6$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (all of which are rational) Cusp widths $1\cdot2\cdot3\cdot6$ Cusp orbits $1^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 6F0

Level structure

$\GL_2(\Z/312\Z)$-generators: $\begin{bmatrix}12&175\\239&220\end{bmatrix}$, $\begin{bmatrix}159&254\\158&99\end{bmatrix}$, $\begin{bmatrix}188&291\\57&176\end{bmatrix}$, $\begin{bmatrix}219&304\\262&45\end{bmatrix}$, $\begin{bmatrix}224&211\\77&276\end{bmatrix}$, $\begin{bmatrix}270&19\\121&234\end{bmatrix}$
Contains $-I$: no $\quad$ (see 6.12.0.a.1 for the level structure with $-I$)
Cyclic 312-isogeny field degree: $56$
Cyclic 312-torsion field degree: $5376$
Full 312-torsion field degree: $80510976$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 9048 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{1}{2^6}\cdot\frac{x^{12}(x+2y)^{3}(x^{3}+6x^{2}y-84xy^{2}-568y^{3})^{3}}{y^{6}x^{12}(x-10y)(x+6y)^{3}(x+8y)^{2}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
312.8.0-3.a.1.4 $312$ $3$ $3$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
312.48.0-6.a.1.8 $312$ $2$ $2$ $0$
312.48.0-6.b.1.3 $312$ $2$ $2$ $0$
312.48.0-78.b.1.10 $312$ $2$ $2$ $0$
312.48.0-78.c.1.13 $312$ $2$ $2$ $0$
312.48.0-12.d.1.4 $312$ $2$ $2$ $0$
312.48.0-12.f.1.7 $312$ $2$ $2$ $0$
312.48.0-12.g.1.11 $312$ $2$ $2$ $0$
312.48.0-12.h.1.4 $312$ $2$ $2$ $0$
312.48.0-12.i.1.7 $312$ $2$ $2$ $0$
312.48.0-12.j.1.7 $312$ $2$ $2$ $0$
312.48.0-156.o.1.16 $312$ $2$ $2$ $0$
312.48.0-24.p.1.1 $312$ $2$ $2$ $0$
312.48.0-156.p.1.11 $312$ $2$ $2$ $0$
312.48.0-156.q.1.11 $312$ $2$ $2$ $0$
312.48.0-156.r.1.10 $312$ $2$ $2$ $0$
312.48.0-156.s.1.11 $312$ $2$ $2$ $0$
312.48.0-156.t.1.11 $312$ $2$ $2$ $0$
312.48.0-24.y.1.7 $312$ $2$ $2$ $0$
312.48.0-24.bw.1.15 $312$ $2$ $2$ $0$
312.48.0-24.bx.1.12 $312$ $2$ $2$ $0$
312.48.0-24.ca.1.3 $312$ $2$ $2$ $0$
312.48.0-24.cb.1.7 $312$ $2$ $2$ $0$
312.48.0-24.cc.1.11 $312$ $2$ $2$ $0$
312.48.0-24.cd.1.14 $312$ $2$ $2$ $0$
312.48.0-312.fm.1.1 $312$ $2$ $2$ $0$
312.48.0-312.fn.1.25 $312$ $2$ $2$ $0$
312.48.0-312.fo.1.30 $312$ $2$ $2$ $0$
312.48.0-312.fp.1.6 $312$ $2$ $2$ $0$
312.48.0-312.fq.1.27 $312$ $2$ $2$ $0$
312.48.0-312.fr.1.7 $312$ $2$ $2$ $0$
312.48.0-312.fs.1.10 $312$ $2$ $2$ $0$
312.48.0-312.ft.1.10 $312$ $2$ $2$ $0$
312.48.1-12.i.1.4 $312$ $2$ $2$ $1$
312.48.1-12.j.1.4 $312$ $2$ $2$ $1$
312.48.1-12.k.1.4 $312$ $2$ $2$ $1$
312.48.1-12.l.1.7 $312$ $2$ $2$ $1$
312.48.1-156.m.1.12 $312$ $2$ $2$ $1$
312.48.1-156.n.1.12 $312$ $2$ $2$ $1$
312.48.1-156.o.1.12 $312$ $2$ $2$ $1$
312.48.1-156.p.1.12 $312$ $2$ $2$ $1$
312.48.1-24.eq.1.7 $312$ $2$ $2$ $1$
312.48.1-24.er.1.3 $312$ $2$ $2$ $1$
312.48.1-24.es.1.7 $312$ $2$ $2$ $1$
312.48.1-24.et.1.1 $312$ $2$ $2$ $1$
312.48.1-312.hk.1.13 $312$ $2$ $2$ $1$
312.48.1-312.hl.1.21 $312$ $2$ $2$ $1$
312.48.1-312.hm.1.25 $312$ $2$ $2$ $1$
312.48.1-312.hn.1.1 $312$ $2$ $2$ $1$
312.72.0-6.a.1.2 $312$ $3$ $3$ $0$
312.336.11-78.a.1.45 $312$ $14$ $14$ $11$