Properties

Label 264.48.0-264.t.1.48
Level $264$
Index $48$
Genus $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $264$ $\SL_2$-level: $8$
Index: $48$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $2^{2}\cdot4^{3}\cdot8$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8J0

Level structure

$\GL_2(\Z/264\Z)$-generators: $\begin{bmatrix}9&236\\208&187\end{bmatrix}$, $\begin{bmatrix}85&184\\100&165\end{bmatrix}$, $\begin{bmatrix}89&64\\44&237\end{bmatrix}$, $\begin{bmatrix}149&120\\216&101\end{bmatrix}$, $\begin{bmatrix}175&52\\218&3\end{bmatrix}$, $\begin{bmatrix}263&144\\122&107\end{bmatrix}$
Contains $-I$: no $\quad$ (see 264.24.0.t.1 for the level structure with $-I$)
Cyclic 264-isogeny field degree: $96$
Cyclic 264-torsion field degree: $7680$
Full 264-torsion field degree: $20275200$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
4.24.0-4.b.1.2 $4$ $2$ $2$ $0$ $0$
264.24.0-4.b.1.3 $264$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
264.96.0-264.a.1.21 $264$ $2$ $2$ $0$
264.96.0-264.b.1.3 $264$ $2$ $2$ $0$
264.96.0-264.d.1.12 $264$ $2$ $2$ $0$
264.96.0-264.e.2.14 $264$ $2$ $2$ $0$
264.96.0-264.g.2.4 $264$ $2$ $2$ $0$
264.96.0-264.i.1.15 $264$ $2$ $2$ $0$
264.96.0-264.k.2.14 $264$ $2$ $2$ $0$
264.96.0-264.m.2.12 $264$ $2$ $2$ $0$
264.96.0-264.p.1.7 $264$ $2$ $2$ $0$
264.96.0-264.r.1.1 $264$ $2$ $2$ $0$
264.96.0-264.t.2.10 $264$ $2$ $2$ $0$
264.96.0-264.v.1.16 $264$ $2$ $2$ $0$
264.96.0-264.x.2.2 $264$ $2$ $2$ $0$
264.96.0-264.bc.1.8 $264$ $2$ $2$ $0$
264.96.0-264.bf.2.16 $264$ $2$ $2$ $0$
264.96.0-264.bk.2.10 $264$ $2$ $2$ $0$
264.96.0-264.bn.2.21 $264$ $2$ $2$ $0$
264.96.0-264.bs.1.31 $264$ $2$ $2$ $0$
264.96.0-264.bv.1.26 $264$ $2$ $2$ $0$
264.96.0-264.ca.2.20 $264$ $2$ $2$ $0$
264.96.0-264.cd.1.30 $264$ $2$ $2$ $0$
264.96.0-264.cf.2.18 $264$ $2$ $2$ $0$
264.96.0-264.ch.2.20 $264$ $2$ $2$ $0$
264.96.0-264.cj.1.28 $264$ $2$ $2$ $0$
264.96.0-264.cl.1.29 $264$ $2$ $2$ $0$
264.96.0-264.cn.1.23 $264$ $2$ $2$ $0$
264.96.0-264.cp.2.26 $264$ $2$ $2$ $0$
264.96.0-264.cr.1.20 $264$ $2$ $2$ $0$
264.96.0-264.ct.1.22 $264$ $2$ $2$ $0$
264.96.0-264.cu.1.26 $264$ $2$ $2$ $0$
264.96.0-264.cw.1.24 $264$ $2$ $2$ $0$
264.96.0-264.cx.2.28 $264$ $2$ $2$ $0$
264.96.1-264.m.2.11 $264$ $2$ $2$ $1$
264.96.1-264.q.2.25 $264$ $2$ $2$ $1$
264.96.1-264.w.1.30 $264$ $2$ $2$ $1$
264.96.1-264.x.2.24 $264$ $2$ $2$ $1$
264.96.1-264.ca.2.27 $264$ $2$ $2$ $1$
264.96.1-264.cc.2.29 $264$ $2$ $2$ $1$
264.96.1-264.ce.2.24 $264$ $2$ $2$ $1$
264.96.1-264.cg.2.30 $264$ $2$ $2$ $1$
264.96.1-264.dk.1.21 $264$ $2$ $2$ $1$
264.96.1-264.dm.2.27 $264$ $2$ $2$ $1$
264.96.1-264.do.2.32 $264$ $2$ $2$ $1$
264.96.1-264.dq.1.22 $264$ $2$ $2$ $1$
264.96.1-264.ds.2.31 $264$ $2$ $2$ $1$
264.96.1-264.dx.1.27 $264$ $2$ $2$ $1$
264.96.1-264.ea.2.22 $264$ $2$ $2$ $1$
264.96.1-264.ef.2.32 $264$ $2$ $2$ $1$
264.144.4-264.bj.2.30 $264$ $3$ $3$ $4$
264.192.3-264.dw.2.124 $264$ $4$ $4$ $3$