Properties

Label 264.24.0-88.ba.1.6
Level $264$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $264$ $\SL_2$-level: $8$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $1^{2}\cdot2\cdot8$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C0

Level structure

$\GL_2(\Z/264\Z)$-generators: $\begin{bmatrix}59&24\\126&193\end{bmatrix}$, $\begin{bmatrix}59&224\\162&61\end{bmatrix}$, $\begin{bmatrix}67&92\\236&71\end{bmatrix}$, $\begin{bmatrix}67&212\\122&53\end{bmatrix}$, $\begin{bmatrix}100&31\\103&128\end{bmatrix}$
Contains $-I$: no $\quad$ (see 88.12.0.ba.1 for the level structure with $-I$)
Cyclic 264-isogeny field degree: $96$
Cyclic 264-torsion field degree: $7680$
Full 264-torsion field degree: $40550400$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
24.12.0-4.c.1.5 $24$ $2$ $2$ $0$ $0$
132.12.0-4.c.1.2 $132$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
264.48.0-88.m.1.3 $264$ $2$ $2$ $0$
264.48.0-88.n.1.3 $264$ $2$ $2$ $0$
264.48.0-88.ba.1.4 $264$ $2$ $2$ $0$
264.48.0-88.bc.1.2 $264$ $2$ $2$ $0$
264.48.0-88.bf.1.9 $264$ $2$ $2$ $0$
264.48.0-88.bg.1.6 $264$ $2$ $2$ $0$
264.48.0-88.bq.1.8 $264$ $2$ $2$ $0$
264.48.0-88.bt.1.6 $264$ $2$ $2$ $0$
264.288.9-88.bo.1.28 $264$ $12$ $12$ $9$
264.48.0-264.bu.1.9 $264$ $2$ $2$ $0$
264.48.0-264.bw.1.5 $264$ $2$ $2$ $0$
264.48.0-264.cc.1.1 $264$ $2$ $2$ $0$
264.48.0-264.ce.1.5 $264$ $2$ $2$ $0$
264.48.0-264.dj.1.10 $264$ $2$ $2$ $0$
264.48.0-264.dk.1.6 $264$ $2$ $2$ $0$
264.48.0-264.du.1.1 $264$ $2$ $2$ $0$
264.48.0-264.dx.1.7 $264$ $2$ $2$ $0$
264.72.2-264.di.1.14 $264$ $3$ $3$ $2$
264.96.1-264.zy.1.25 $264$ $4$ $4$ $1$