Properties

Label 264.24.0-264.y.1.3
Level $264$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $264$ $\SL_2$-level: $8$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $1^{2}\cdot2\cdot8$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C0

Level structure

$\GL_2(\Z/264\Z)$-generators: $\begin{bmatrix}33&166\\68&235\end{bmatrix}$, $\begin{bmatrix}38&109\\227&188\end{bmatrix}$, $\begin{bmatrix}196&167\\225&154\end{bmatrix}$, $\begin{bmatrix}247&166\\56&249\end{bmatrix}$, $\begin{bmatrix}254&9\\25&2\end{bmatrix}$
Contains $-I$: no $\quad$ (see 264.12.0.y.1 for the level structure with $-I$)
Cyclic 264-isogeny field degree: $96$
Cyclic 264-torsion field degree: $7680$
Full 264-torsion field degree: $40550400$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
24.12.0-4.c.1.5 $24$ $2$ $2$ $0$ $0$
88.12.0-4.c.1.2 $88$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
264.48.0-264.x.1.14 $264$ $2$ $2$ $0$
264.48.0-264.z.1.10 $264$ $2$ $2$ $0$
264.48.0-264.bf.1.6 $264$ $2$ $2$ $0$
264.48.0-264.bh.1.6 $264$ $2$ $2$ $0$
264.48.0-264.bv.1.1 $264$ $2$ $2$ $0$
264.48.0-264.bw.1.1 $264$ $2$ $2$ $0$
264.48.0-264.by.1.9 $264$ $2$ $2$ $0$
264.48.0-264.cb.1.5 $264$ $2$ $2$ $0$
264.48.0-264.ck.1.11 $264$ $2$ $2$ $0$
264.48.0-264.cn.1.6 $264$ $2$ $2$ $0$
264.48.0-264.cp.1.3 $264$ $2$ $2$ $0$
264.48.0-264.cq.1.2 $264$ $2$ $2$ $0$
264.48.0-264.da.1.10 $264$ $2$ $2$ $0$
264.48.0-264.dd.1.5 $264$ $2$ $2$ $0$
264.48.0-264.dr.1.5 $264$ $2$ $2$ $0$
264.48.0-264.ds.1.9 $264$ $2$ $2$ $0$
264.72.2-264.cw.1.14 $264$ $3$ $3$ $2$
264.96.1-264.zu.1.5 $264$ $4$ $4$ $1$
264.288.9-264.ijy.1.39 $264$ $12$ $12$ $9$