Properties

Label 24.8.0.c.1
Level $24$
Index $8$
Genus $0$
Analytic rank $0$
Cusps $2$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $24$ $\SL_2$-level: $6$
Index: $8$ $\PSL_2$-index:$8$
Genus: $0 = 1 + \frac{ 8 }{12} - \frac{ 0 }{4} - \frac{ 2 }{3} - \frac{ 2 }{2}$
Cusps: $2$ (all of which are rational) Cusp widths $2\cdot6$ Cusp orbits $1^{2}$
Elliptic points: $0$ of order $2$ and $2$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 6C0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 24.8.0.12

Level structure

$\GL_2(\Z/24\Z)$-generators: $\begin{bmatrix}11&15\\15&14\end{bmatrix}$, $\begin{bmatrix}13&8\\3&1\end{bmatrix}$, $\begin{bmatrix}17&13\\0&23\end{bmatrix}$, $\begin{bmatrix}20&13\\9&13\end{bmatrix}$
Contains $-I$: yes
Quadratic refinements: 24.16.0-24.c.1.1, 24.16.0-24.c.1.2, 24.16.0-24.c.1.3, 24.16.0-24.c.1.4, 24.16.0-24.c.1.5, 24.16.0-24.c.1.6, 24.16.0-24.c.1.7, 24.16.0-24.c.1.8, 120.16.0-24.c.1.1, 120.16.0-24.c.1.2, 120.16.0-24.c.1.3, 120.16.0-24.c.1.4, 120.16.0-24.c.1.5, 120.16.0-24.c.1.6, 120.16.0-24.c.1.7, 120.16.0-24.c.1.8, 168.16.0-24.c.1.1, 168.16.0-24.c.1.2, 168.16.0-24.c.1.3, 168.16.0-24.c.1.4, 168.16.0-24.c.1.5, 168.16.0-24.c.1.6, 168.16.0-24.c.1.7, 168.16.0-24.c.1.8, 264.16.0-24.c.1.1, 264.16.0-24.c.1.2, 264.16.0-24.c.1.3, 264.16.0-24.c.1.4, 264.16.0-24.c.1.5, 264.16.0-24.c.1.6, 264.16.0-24.c.1.7, 264.16.0-24.c.1.8, 312.16.0-24.c.1.1, 312.16.0-24.c.1.2, 312.16.0-24.c.1.3, 312.16.0-24.c.1.4, 312.16.0-24.c.1.5, 312.16.0-24.c.1.6, 312.16.0-24.c.1.7, 312.16.0-24.c.1.8
Cyclic 24-isogeny field degree: $12$
Cyclic 24-torsion field degree: $96$
Full 24-torsion field degree: $9216$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 150 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 8 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{3^3}{2^9}\cdot\frac{x^{8}(x^{2}+8y^{2})^{3}(x^{2}+72y^{2})}{y^{6}x^{10}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_0(3)$ $3$ $2$ $2$ $0$ $0$
24.2.0.a.1 $24$ $4$ $4$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
24.24.0.ca.1 $24$ $3$ $3$ $0$
24.24.1.cl.1 $24$ $3$ $3$ $1$
24.32.1.c.1 $24$ $4$ $4$ $1$
72.24.0.c.1 $72$ $3$ $3$ $0$
72.24.1.c.1 $72$ $3$ $3$ $1$
72.24.2.c.1 $72$ $3$ $3$ $2$
120.40.2.c.1 $120$ $5$ $5$ $2$
120.48.3.bs.1 $120$ $6$ $6$ $3$
120.80.5.c.1 $120$ $10$ $10$ $5$
168.64.3.c.1 $168$ $8$ $8$ $3$
168.168.12.c.1 $168$ $21$ $21$ $12$
168.224.15.c.1 $168$ $28$ $28$ $15$
264.96.7.c.1 $264$ $12$ $12$ $7$
312.112.7.c.1 $312$ $14$ $14$ $7$