Properties

Label 24.6.0.k.1
Level $24$
Index $6$
Genus $0$
Analytic rank $0$
Cusps $1$
$\Q$-cusps $1$

Related objects

Downloads

Learn more

Invariants

Level: $24$ $\SL_2$-level: $6$
Index: $6$ $\PSL_2$-index:$6$
Genus: $0 = 1 + \frac{ 6 }{12} - \frac{ 4 }{4} - \frac{ 0 }{3} - \frac{ 1 }{2}$
Cusps: $1$ (which is rational) Cusp widths $6$ Cusp orbits $1$
Elliptic points: $4$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $1$
Rational CM points: yes $\quad(D =$ $-4,-8$)

Other labels

Cummins and Pauli (CP) label: 6B0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 24.6.0.12

Level structure

$\GL_2(\Z/24\Z)$-generators: $\begin{bmatrix}1&5\\23&14\end{bmatrix}$, $\begin{bmatrix}8&21\\9&16\end{bmatrix}$, $\begin{bmatrix}13&10\\10&5\end{bmatrix}$, $\begin{bmatrix}19&15\\0&7\end{bmatrix}$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 24-isogeny field degree: $48$
Cyclic 24-torsion field degree: $384$
Full 24-torsion field degree: $12288$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 8 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 6 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle 2^6\,\frac{x^{6}(3x^{2}+2y^{2})^{3}}{x^{12}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_{\mathrm{ns}}^+(3)$ $3$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
24.12.1.p.1 $24$ $2$ $2$ $1$
24.12.1.q.1 $24$ $2$ $2$ $1$
24.12.1.s.1 $24$ $2$ $2$ $1$
24.12.1.t.1 $24$ $2$ $2$ $1$
24.12.1.bb.1 $24$ $2$ $2$ $1$
24.12.1.bc.1 $24$ $2$ $2$ $1$
24.12.1.be.1 $24$ $2$ $2$ $1$
24.12.1.bf.1 $24$ $2$ $2$ $1$
24.18.0.g.1 $24$ $3$ $3$ $0$
24.24.0.fe.1 $24$ $4$ $4$ $0$
72.18.1.b.1 $72$ $3$ $3$ $1$
72.54.1.a.1 $72$ $9$ $9$ $1$
120.12.1.ea.1 $120$ $2$ $2$ $1$
120.12.1.eb.1 $120$ $2$ $2$ $1$
120.12.1.eg.1 $120$ $2$ $2$ $1$
120.12.1.eh.1 $120$ $2$ $2$ $1$
120.12.1.em.1 $120$ $2$ $2$ $1$
120.12.1.en.1 $120$ $2$ $2$ $1$
120.12.1.es.1 $120$ $2$ $2$ $1$
120.12.1.et.1 $120$ $2$ $2$ $1$
120.30.2.bc.1 $120$ $5$ $5$ $2$
120.36.1.sm.1 $120$ $6$ $6$ $1$
120.60.3.gm.1 $120$ $10$ $10$ $3$
168.12.1.dw.1 $168$ $2$ $2$ $1$
168.12.1.dx.1 $168$ $2$ $2$ $1$
168.12.1.ec.1 $168$ $2$ $2$ $1$
168.12.1.ed.1 $168$ $2$ $2$ $1$
168.12.1.ei.1 $168$ $2$ $2$ $1$
168.12.1.ej.1 $168$ $2$ $2$ $1$
168.12.1.eo.1 $168$ $2$ $2$ $1$
168.12.1.ep.1 $168$ $2$ $2$ $1$
168.48.4.m.1 $168$ $8$ $8$ $4$
168.126.5.q.1 $168$ $21$ $21$ $5$
168.168.9.ea.1 $168$ $28$ $28$ $9$
264.12.1.dw.1 $264$ $2$ $2$ $1$
264.12.1.dx.1 $264$ $2$ $2$ $1$
264.12.1.ec.1 $264$ $2$ $2$ $1$
264.12.1.ed.1 $264$ $2$ $2$ $1$
264.12.1.ei.1 $264$ $2$ $2$ $1$
264.12.1.ej.1 $264$ $2$ $2$ $1$
264.12.1.eo.1 $264$ $2$ $2$ $1$
264.12.1.ep.1 $264$ $2$ $2$ $1$
264.72.6.m.1 $264$ $12$ $12$ $6$
264.330.19.e.1 $264$ $55$ $55$ $19$
264.330.23.i.1 $264$ $55$ $55$ $23$
312.12.1.dw.1 $312$ $2$ $2$ $1$
312.12.1.dx.1 $312$ $2$ $2$ $1$
312.12.1.ec.1 $312$ $2$ $2$ $1$
312.12.1.ed.1 $312$ $2$ $2$ $1$
312.12.1.ei.1 $312$ $2$ $2$ $1$
312.12.1.ej.1 $312$ $2$ $2$ $1$
312.12.1.eo.1 $312$ $2$ $2$ $1$
312.12.1.ep.1 $312$ $2$ $2$ $1$
312.84.5.bg.1 $312$ $14$ $14$ $5$