Properties

Label 231.96.3-33.a.1.6
Level $231$
Index $96$
Genus $3$
Cusps $4$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $231$ $\SL_2$-level: $33$ Newform level: $33$
Index: $96$ $\PSL_2$-index:$48$
Genus: $3 = 1 + \frac{ 48 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (all of which are rational) Cusp widths $1\cdot3\cdot11\cdot33$ Cusp orbits $1^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: not computed
$\Q$-gonality: $2 \le \gamma \le 3$
$\overline{\Q}$-gonality: $2 \le \gamma \le 3$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 33C3

Level structure

$\GL_2(\Z/231\Z)$-generators: $\begin{bmatrix}37&57\\46&59\end{bmatrix}$, $\begin{bmatrix}90&134\\128&129\end{bmatrix}$, $\begin{bmatrix}115&65\\51&140\end{bmatrix}$, $\begin{bmatrix}139&53\\103&12\end{bmatrix}$
Contains $-I$: no $\quad$ (see 33.48.3.a.1 for the level structure with $-I$)
Cyclic 231-isogeny field degree: $8$
Cyclic 231-torsion field degree: $960$
Full 231-torsion field degree: $13305600$

Models

Embedded model Embedded model in $\mathbb{P}^{4}$

$ 0 $ $=$ $ x^{2} t - x z t - y z t $
$=$ $x^{2} w - x z w - y z w$
$=$ $x^{2} z - x z^{2} - y z^{2}$
$=$ $x^{3} - x^{2} z - x y z$
$=$$\cdots$
Copy content Toggle raw display

Singular plane model Singular plane model

$ 0 $ $=$ $ x^{5} y - 4 x^{4} y z + 11 x^{3} y z^{2} - 11 x^{2} y^{2} z^{2} - 10 x^{2} y z^{3} - x^{2} z^{4} + \cdots - 2 z^{6} $
Copy content Toggle raw display

Weierstrass model Weierstrass model

$ y^{2} + \left(x^{4} + x^{2} + 1\right) y $ $=$ $ 2x^{6} - 2x^{5} + 11x^{4} - 10x^{3} + 20x^{2} - 11x + 8 $
Copy content Toggle raw display

Rational points

This modular curve has 4 rational cusps but no known non-cuspidal rational points. The following are the coordinates of the rational cusps on this modular curve.

Embedded model
$(0:1:0:0:0)$, $(0:0:0:-3/2:1)$, $(0:0:0:0:1)$, $(0:0:0:1/3:1)$

Maps to other modular curves

$j$-invariant map of degree 48 from the embedded model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle 11\,\frac{17519694xzt^{6}+22031343xw^{3}t^{4}-17200407xw^{2}t^{5}-43249388xwt^{6}-24984278xt^{7}-5832y^{8}-138510y^{7}w-600939y^{7}t-764721y^{6}w^{2}-3399327y^{6}wt+453519y^{6}t^{2}-1974861y^{5}w^{3}-16035327y^{5}w^{2}t+585306y^{5}wt^{2}+5726214y^{5}t^{3}-3642084y^{4}w^{4}-32360796y^{4}w^{3}t-13436442y^{4}w^{2}t^{2}+13451832y^{4}wt^{3}+21677454y^{4}t^{4}-56256444y^{3}w^{4}t-47728197y^{3}w^{3}t^{2}+42575598y^{3}w^{2}t^{3}+93574998y^{3}wt^{4}+7003647y^{3}t^{5}-152478531y^{2}w^{4}t^{2}-75744369y^{2}w^{3}t^{3}+337734234y^{2}w^{2}t^{4}+52068699y^{2}wt^{5}-21053090y^{2}t^{6}-203347557yw^{4}t^{3}+294648723yw^{3}t^{4}+311270556yw^{2}t^{5}-52997296ywt^{6}-25323630yt^{7}+57119562z^{2}wt^{5}+8415933z^{2}t^{6}+3087315zw^{7}+8812881zw^{6}t+10674666zw^{5}t^{2}+35921691zw^{4}t^{3}+10334358zw^{3}t^{4}+10787898zw^{2}t^{5}-32687778zwt^{6}+1163970zt^{7}-4998753w^{8}-27700056w^{7}t-103268682w^{6}t^{2}-143070570w^{5}t^{3}+90535239w^{4}t^{4}+245492910w^{3}t^{5}+27602219w^{2}t^{6}-35626821wt^{7}-658449t^{8}}{10896051xzt^{6}+41676624xw^{3}t^{4}+131527389xw^{2}t^{5}+14304323xwt^{6}+1961841xt^{7}-90639y^{6}t^{2}-424521y^{5}wt^{2}+2330451y^{5}t^{3}+23328y^{4}w^{3}t-2143503y^{4}w^{2}t^{2}+8350614y^{4}wt^{3}-15468039y^{4}t^{4}+75087y^{3}w^{4}t-4444551y^{3}w^{3}t^{2}+32675967y^{3}w^{2}t^{3}-56858949y^{3}wt^{4}+3113403y^{3}t^{5}-9867501y^{2}w^{4}t^{2}+32944671y^{2}w^{3}t^{3}-203069025y^{2}w^{2}t^{4}-17325210y^{2}wt^{5}+16331796y^{2}t^{6}+46184148yw^{4}t^{3}-220205700yw^{3}t^{4}-96575007yw^{2}t^{5}+63490459ywt^{6}-2847338yt^{7}-52082616z^{2}wt^{5}-14427537z^{2}t^{6}-54675zw^{7}+798012zw^{6}t+14441004zw^{5}t^{2}+16008759zw^{4}t^{3}+37943550zw^{3}t^{4}-78711786zw^{2}t^{5}+69610041zwt^{6}+69984w^{8}-1618380w^{7}t-9492876w^{6}t^{2}-69594849w^{5}t^{3}-203237235w^{4}t^{4}-102446919w^{3}t^{5}+95652735w^{2}t^{6}-12073500wt^{7}}$

Map of degree 1 from the embedded model of this modular curve to the plane model of the modular curve $X_0(33)$ :

$\displaystyle X$ $=$ $\displaystyle x$
$\displaystyle Y$ $=$ $\displaystyle \frac{1}{3}t$
$\displaystyle Z$ $=$ $\displaystyle z$

Equation of the image curve:

$0$ $=$ $ X^{5}Y-4X^{4}YZ+11X^{3}YZ^{2}-11X^{2}Y^{2}Z^{2}-10X^{2}YZ^{3}-X^{2}Z^{4}+13XYZ^{4}+XZ^{5}-2Z^{6} $

Map of degree 1 from the embedded model of this modular curve to the Weierstrass model of the modular curve $X_0(33)$ :

$\displaystyle X$ $=$ $\displaystyle -x+z$
$\displaystyle Y$ $=$ $\displaystyle 2x^{2}z^{2}-2xz^{3}-\frac{11}{3}xz^{2}t+5z^{4}$
$\displaystyle Z$ $=$ $\displaystyle z$

Modular covers

The following modular covers realize this modular curve as a fiber product over $X(1)$.

Factor curve Level Index Degree Genus Rank
21.8.0-3.a.1.1 $21$ $12$ $12$ $0$ $0$
$X_0(11)$ $11$ $8$ $4$ $1$ $0$

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
21.8.0-3.a.1.1 $21$ $12$ $12$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
231.192.5-33.a.1.2 $231$ $2$ $2$ $5$
231.192.5-33.a.2.3 $231$ $2$ $2$ $5$
231.192.5-33.a.3.4 $231$ $2$ $2$ $5$
231.192.5-33.a.4.4 $231$ $2$ $2$ $5$
231.288.9-33.a.1.2 $231$ $3$ $3$ $9$
231.480.11-33.a.1.8 $231$ $5$ $5$ $11$
231.480.11-33.a.2.8 $231$ $5$ $5$ $11$
231.480.11-33.b.1.8 $231$ $5$ $5$ $11$
231.480.11-33.b.2.8 $231$ $5$ $5$ $11$
231.480.11-33.c.1.6 $231$ $5$ $5$ $11$
231.192.5-231.a.1.7 $231$ $2$ $2$ $5$
231.192.5-231.a.2.5 $231$ $2$ $2$ $5$
231.192.5-231.a.3.5 $231$ $2$ $2$ $5$
231.192.5-231.a.4.1 $231$ $2$ $2$ $5$