Properties

Label 136.24.0-8.n.1.8
Level $136$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $136$ $\SL_2$-level: $8$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (all of which are rational) Cusp widths $1^{2}\cdot2\cdot8$ Cusp orbits $1^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C0

Level structure

$\GL_2(\Z/136\Z)$-generators: $\begin{bmatrix}22&83\\115&118\end{bmatrix}$, $\begin{bmatrix}85&104\\24&29\end{bmatrix}$, $\begin{bmatrix}89&110\\16&63\end{bmatrix}$, $\begin{bmatrix}93&128\\122&75\end{bmatrix}$, $\begin{bmatrix}114&39\\115&62\end{bmatrix}$
Contains $-I$: no $\quad$ (see 8.12.0.n.1 for the level structure with $-I$)
Cyclic 136-isogeny field degree: $18$
Cyclic 136-torsion field degree: $1152$
Full 136-torsion field degree: $5013504$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 5199 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{x^{12}(x^{4}-16x^{2}y^{2}+16y^{4})^{3}}{y^{8}x^{14}(x-4y)(x+4y)}$

Modular covers

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
136.48.0-8.i.1.3 $136$ $2$ $2$ $0$
136.48.0-8.k.1.3 $136$ $2$ $2$ $0$
136.48.0-8.q.1.4 $136$ $2$ $2$ $0$
136.48.0-8.r.1.4 $136$ $2$ $2$ $0$
136.48.0-8.ba.1.2 $136$ $2$ $2$ $0$
136.48.0-8.ba.1.7 $136$ $2$ $2$ $0$
136.48.0-8.ba.2.2 $136$ $2$ $2$ $0$
136.48.0-8.ba.2.7 $136$ $2$ $2$ $0$
136.48.0-8.bb.1.2 $136$ $2$ $2$ $0$
136.48.0-8.bb.1.7 $136$ $2$ $2$ $0$
136.48.0-8.bb.2.2 $136$ $2$ $2$ $0$
136.48.0-8.bb.2.7 $136$ $2$ $2$ $0$
136.48.0-136.bj.1.3 $136$ $2$ $2$ $0$
136.48.0-136.bl.1.1 $136$ $2$ $2$ $0$
136.48.0-136.bn.1.9 $136$ $2$ $2$ $0$
136.48.0-136.bp.1.9 $136$ $2$ $2$ $0$
136.48.0-136.ca.1.2 $136$ $2$ $2$ $0$
136.48.0-136.ca.1.15 $136$ $2$ $2$ $0$
136.48.0-136.ca.2.4 $136$ $2$ $2$ $0$
136.48.0-136.ca.2.13 $136$ $2$ $2$ $0$
136.48.0-136.cb.1.4 $136$ $2$ $2$ $0$
136.48.0-136.cb.1.13 $136$ $2$ $2$ $0$
136.48.0-136.cb.2.2 $136$ $2$ $2$ $0$
136.48.0-136.cb.2.15 $136$ $2$ $2$ $0$
136.432.15-136.cj.1.3 $136$ $18$ $18$ $15$
272.48.0-16.e.1.5 $272$ $2$ $2$ $0$
272.48.0-16.e.1.12 $272$ $2$ $2$ $0$
272.48.0-16.e.2.7 $272$ $2$ $2$ $0$
272.48.0-16.e.2.10 $272$ $2$ $2$ $0$
272.48.0-16.f.1.5 $272$ $2$ $2$ $0$
272.48.0-16.f.1.12 $272$ $2$ $2$ $0$
272.48.0-16.f.2.7 $272$ $2$ $2$ $0$
272.48.0-16.f.2.10 $272$ $2$ $2$ $0$
272.48.0-16.g.1.8 $272$ $2$ $2$ $0$
272.48.0-16.g.1.9 $272$ $2$ $2$ $0$
272.48.0-16.h.1.8 $272$ $2$ $2$ $0$
272.48.0-16.h.1.9 $272$ $2$ $2$ $0$
272.48.0-272.m.1.7 $272$ $2$ $2$ $0$
272.48.0-272.m.1.26 $272$ $2$ $2$ $0$
272.48.0-272.m.2.15 $272$ $2$ $2$ $0$
272.48.0-272.m.2.18 $272$ $2$ $2$ $0$
272.48.0-272.n.1.15 $272$ $2$ $2$ $0$
272.48.0-272.n.1.18 $272$ $2$ $2$ $0$
272.48.0-272.n.2.7 $272$ $2$ $2$ $0$
272.48.0-272.n.2.26 $272$ $2$ $2$ $0$
272.48.0-272.o.1.2 $272$ $2$ $2$ $0$
272.48.0-272.o.1.31 $272$ $2$ $2$ $0$
272.48.0-272.p.1.2 $272$ $2$ $2$ $0$
272.48.0-272.p.1.31 $272$ $2$ $2$ $0$
272.48.1-16.a.1.8 $272$ $2$ $2$ $1$
272.48.1-16.a.1.9 $272$ $2$ $2$ $1$
272.48.1-272.a.1.2 $272$ $2$ $2$ $1$
272.48.1-272.a.1.31 $272$ $2$ $2$ $1$
272.48.1-16.b.1.8 $272$ $2$ $2$ $1$
272.48.1-16.b.1.9 $272$ $2$ $2$ $1$
272.48.1-272.b.1.2 $272$ $2$ $2$ $1$
272.48.1-272.b.1.31 $272$ $2$ $2$ $1$