Properties

Label 132.24.0-6.a.1.11
Level $132$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $132$ $\SL_2$-level: $12$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (all of which are rational) Cusp widths $1\cdot2\cdot3\cdot6$ Cusp orbits $1^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 6F0

Level structure

$\GL_2(\Z/132\Z)$-generators: $\begin{bmatrix}37&48\\6&1\end{bmatrix}$, $\begin{bmatrix}41&54\\44&61\end{bmatrix}$, $\begin{bmatrix}75&28\\88&93\end{bmatrix}$, $\begin{bmatrix}90&121\\11&64\end{bmatrix}$, $\begin{bmatrix}117&92\\116&45\end{bmatrix}$
Contains $-I$: no $\quad$ (see 6.12.0.a.1 for the level structure with $-I$)
Cyclic 132-isogeny field degree: $24$
Cyclic 132-torsion field degree: $960$
Full 132-torsion field degree: $2534400$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 9048 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{1}{2^6}\cdot\frac{x^{12}(x+2y)^{3}(x^{3}+6x^{2}y-84xy^{2}-568y^{3})^{3}}{y^{6}x^{12}(x-10y)(x+6y)^{3}(x+8y)^{2}}$

Modular covers

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
132.48.0-6.a.1.3 $132$ $2$ $2$ $0$
132.48.0-66.a.1.11 $132$ $2$ $2$ $0$
132.48.0-6.b.1.6 $132$ $2$ $2$ $0$
132.48.0-66.b.1.11 $132$ $2$ $2$ $0$
132.48.0-12.d.1.11 $132$ $2$ $2$ $0$
132.48.0-12.f.1.8 $132$ $2$ $2$ $0$
132.48.0-12.g.1.10 $132$ $2$ $2$ $0$
132.48.0-12.h.1.7 $132$ $2$ $2$ $0$
132.48.0-12.i.1.7 $132$ $2$ $2$ $0$
132.48.0-12.j.1.5 $132$ $2$ $2$ $0$
132.48.0-132.m.1.10 $132$ $2$ $2$ $0$
132.48.0-132.n.1.14 $132$ $2$ $2$ $0$
132.48.0-132.o.1.16 $132$ $2$ $2$ $0$
132.48.0-132.p.1.2 $132$ $2$ $2$ $0$
132.48.0-132.q.1.2 $132$ $2$ $2$ $0$
132.48.0-132.r.1.4 $132$ $2$ $2$ $0$
132.48.1-12.i.1.8 $132$ $2$ $2$ $1$
132.48.1-12.j.1.6 $132$ $2$ $2$ $1$
132.48.1-12.k.1.7 $132$ $2$ $2$ $1$
132.48.1-12.l.1.9 $132$ $2$ $2$ $1$
132.48.1-132.m.1.13 $132$ $2$ $2$ $1$
132.48.1-132.n.1.15 $132$ $2$ $2$ $1$
132.48.1-132.o.1.1 $132$ $2$ $2$ $1$
132.48.1-132.p.1.3 $132$ $2$ $2$ $1$
132.72.0-6.a.1.3 $132$ $3$ $3$ $0$
132.288.9-66.a.1.6 $132$ $12$ $12$ $9$
264.48.0-24.p.1.13 $264$ $2$ $2$ $0$
264.48.0-24.y.1.15 $264$ $2$ $2$ $0$
264.48.0-24.bw.1.6 $264$ $2$ $2$ $0$
264.48.0-24.bx.1.5 $264$ $2$ $2$ $0$
264.48.0-24.ca.1.13 $264$ $2$ $2$ $0$
264.48.0-24.cb.1.13 $264$ $2$ $2$ $0$
264.48.0-24.cc.1.4 $264$ $2$ $2$ $0$
264.48.0-24.cd.1.7 $264$ $2$ $2$ $0$
264.48.0-264.fg.1.28 $264$ $2$ $2$ $0$
264.48.0-264.fh.1.22 $264$ $2$ $2$ $0$
264.48.0-264.fi.1.22 $264$ $2$ $2$ $0$
264.48.0-264.fj.1.24 $264$ $2$ $2$ $0$
264.48.0-264.fk.1.16 $264$ $2$ $2$ $0$
264.48.0-264.fl.1.26 $264$ $2$ $2$ $0$
264.48.0-264.fm.1.18 $264$ $2$ $2$ $0$
264.48.0-264.fn.1.4 $264$ $2$ $2$ $0$
264.48.1-24.eq.1.5 $264$ $2$ $2$ $1$
264.48.1-24.er.1.5 $264$ $2$ $2$ $1$
264.48.1-24.es.1.7 $264$ $2$ $2$ $1$
264.48.1-24.et.1.5 $264$ $2$ $2$ $1$
264.48.1-264.hk.1.29 $264$ $2$ $2$ $1$
264.48.1-264.hl.1.23 $264$ $2$ $2$ $1$
264.48.1-264.hm.1.5 $264$ $2$ $2$ $1$
264.48.1-264.hn.1.19 $264$ $2$ $2$ $1$