Properties

Label 120.24.0.dh.1
Level $120$
Index $24$
Genus $0$
Cusps $6$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $120$ $\SL_2$-level: $8$
Index: $24$ $\PSL_2$-index:$24$
Genus: $0 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (of which $2$ are rational) Cusp widths $2^{4}\cdot8^{2}$ Cusp orbits $1^{2}\cdot2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8G0

Level structure

$\GL_2(\Z/120\Z)$-generators: $\begin{bmatrix}7&64\\67&105\end{bmatrix}$, $\begin{bmatrix}23&48\\106&83\end{bmatrix}$, $\begin{bmatrix}41&104\\111&13\end{bmatrix}$, $\begin{bmatrix}41&112\\47&3\end{bmatrix}$, $\begin{bmatrix}59&112\\117&109\end{bmatrix}$, $\begin{bmatrix}87&40\\74&7\end{bmatrix}$
Contains $-I$: yes
Quadratic refinements: 120.48.0-120.dh.1.1, 120.48.0-120.dh.1.2, 120.48.0-120.dh.1.3, 120.48.0-120.dh.1.4, 120.48.0-120.dh.1.5, 120.48.0-120.dh.1.6, 120.48.0-120.dh.1.7, 120.48.0-120.dh.1.8, 120.48.0-120.dh.1.9, 120.48.0-120.dh.1.10, 120.48.0-120.dh.1.11, 120.48.0-120.dh.1.12, 120.48.0-120.dh.1.13, 120.48.0-120.dh.1.14, 120.48.0-120.dh.1.15, 120.48.0-120.dh.1.16, 120.48.0-120.dh.1.17, 120.48.0-120.dh.1.18, 120.48.0-120.dh.1.19, 120.48.0-120.dh.1.20, 120.48.0-120.dh.1.21, 120.48.0-120.dh.1.22, 120.48.0-120.dh.1.23, 120.48.0-120.dh.1.24, 240.48.0-120.dh.1.1, 240.48.0-120.dh.1.2, 240.48.0-120.dh.1.3, 240.48.0-120.dh.1.4, 240.48.0-120.dh.1.5, 240.48.0-120.dh.1.6, 240.48.0-120.dh.1.7, 240.48.0-120.dh.1.8, 240.48.0-120.dh.1.9, 240.48.0-120.dh.1.10, 240.48.0-120.dh.1.11, 240.48.0-120.dh.1.12, 240.48.0-120.dh.1.13, 240.48.0-120.dh.1.14, 240.48.0-120.dh.1.15, 240.48.0-120.dh.1.16
Cyclic 120-isogeny field degree: $24$
Cyclic 120-torsion field degree: $768$
Full 120-torsion field degree: $1474560$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points but none with conductor small enough to be contained within the database of elliptic curves over $\Q$.

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_0(8)$ $8$ $2$ $2$ $0$ $0$
60.12.0.h.1 $60$ $2$ $2$ $0$ $0$
120.12.0.z.1 $120$ $2$ $2$ $0$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
120.48.0.el.1 $120$ $2$ $2$ $0$
120.48.0.el.2 $120$ $2$ $2$ $0$
120.48.0.em.1 $120$ $2$ $2$ $0$
120.48.0.em.2 $120$ $2$ $2$ $0$
120.48.0.en.1 $120$ $2$ $2$ $0$
120.48.0.en.2 $120$ $2$ $2$ $0$
120.48.0.eo.1 $120$ $2$ $2$ $0$
120.48.0.eo.2 $120$ $2$ $2$ $0$
120.72.4.mf.1 $120$ $3$ $3$ $4$
120.96.3.pn.1 $120$ $4$ $4$ $3$
120.120.8.ff.1 $120$ $5$ $5$ $8$
120.144.7.dvs.1 $120$ $6$ $6$ $7$
120.240.15.lx.1 $120$ $10$ $10$ $15$
240.48.0.ca.1 $240$ $2$ $2$ $0$
240.48.0.ca.2 $240$ $2$ $2$ $0$
240.48.0.cb.1 $240$ $2$ $2$ $0$
240.48.0.cb.2 $240$ $2$ $2$ $0$
240.48.0.cc.1 $240$ $2$ $2$ $0$
240.48.0.cc.2 $240$ $2$ $2$ $0$
240.48.0.cd.1 $240$ $2$ $2$ $0$
240.48.0.cd.2 $240$ $2$ $2$ $0$
240.48.1.u.1 $240$ $2$ $2$ $1$
240.48.1.w.1 $240$ $2$ $2$ $1$
240.48.1.eh.1 $240$ $2$ $2$ $1$
240.48.1.ei.1 $240$ $2$ $2$ $1$
240.48.1.hj.1 $240$ $2$ $2$ $1$
240.48.1.hk.1 $240$ $2$ $2$ $1$
240.48.1.hy.1 $240$ $2$ $2$ $1$
240.48.1.ia.1 $240$ $2$ $2$ $1$