Properties

Label 120.144.4-24.ci.1.1
Level $120$
Index $144$
Genus $4$
Cusps $6$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $120$ $\SL_2$-level: $24$ Newform level: $576$
Index: $144$ $\PSL_2$-index:$72$
Genus: $4 = 1 + \frac{ 72 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (none of which are rational) Cusp widths $6^{4}\cdot24^{2}$ Cusp orbits $2^{3}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: not computed
$\Q$-gonality: $3 \le \gamma \le 6$
$\overline{\Q}$-gonality: $3 \le \gamma \le 4$
Rational cusps: $0$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 24D4

Level structure

$\GL_2(\Z/120\Z)$-generators: $\begin{bmatrix}21&109\\76&85\end{bmatrix}$, $\begin{bmatrix}27&59\\100&81\end{bmatrix}$, $\begin{bmatrix}39&74\\104&77\end{bmatrix}$, $\begin{bmatrix}49&40\\88&59\end{bmatrix}$, $\begin{bmatrix}67&118\\16&83\end{bmatrix}$
Contains $-I$: no $\quad$ (see 24.72.4.ci.1 for the level structure with $-I$)
Cyclic 120-isogeny field degree: $48$
Cyclic 120-torsion field degree: $1536$
Full 120-torsion field degree: $245760$

Models

Canonical model in $\mathbb{P}^{ 3 }$

$ 0 $ $=$ $ 16 y^{2} + 2 z^{2} + w^{2} $
$=$ $2 x^{3} - y z w$
Copy content Toggle raw display

Singular plane model Singular plane model

$ 0 $ $=$ $ x^{6} + y^{4} z^{2} + 2 y^{2} z^{4} $
Copy content Toggle raw display

Rational points

This modular curve has no real points and no $\Q_p$ points for $p=7$, and therefore no rational points.

Maps to other modular curves

$j$-invariant map of degree 72 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -2^3\,\frac{(4z^{4}-28z^{2}w^{2}+w^{4})^{3}}{w^{2}z^{2}(2z^{2}+w^{2})^{4}}$

Map of degree 1 from the canonical model of this modular curve to the plane model of the modular curve 24.72.4.ci.1 :

$\displaystyle X$ $=$ $\displaystyle x$
$\displaystyle Y$ $=$ $\displaystyle 2y$
$\displaystyle Z$ $=$ $\displaystyle \frac{1}{2}z$

Equation of the image curve:

$0$ $=$ $ X^{6}+Y^{4}Z^{2}+2Y^{2}Z^{4} $

Modular covers

The following modular covers realize this modular curve as a fiber product over $X(1)$.

Factor curve Level Index Degree Genus Rank
$X_{\mathrm{ns}}^+(3)$ $3$ $48$ $24$ $0$ $0$
40.48.0-8.j.1.2 $40$ $3$ $3$ $0$ $0$

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
40.48.0-8.j.1.2 $40$ $3$ $3$ $0$ $0$
120.72.2-24.j.1.2 $120$ $2$ $2$ $2$ $?$
120.72.2-24.j.1.13 $120$ $2$ $2$ $2$ $?$
120.72.2-24.ci.1.14 $120$ $2$ $2$ $2$ $?$
120.72.2-24.ci.1.23 $120$ $2$ $2$ $2$ $?$
120.72.2-24.cw.1.14 $120$ $2$ $2$ $2$ $?$
120.72.2-24.cw.1.27 $120$ $2$ $2$ $2$ $?$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
120.288.7-24.in.1.1 $120$ $2$ $2$ $7$
120.288.7-24.io.1.1 $120$ $2$ $2$ $7$
120.288.7-24.iv.1.1 $120$ $2$ $2$ $7$
120.288.7-24.iw.1.1 $120$ $2$ $2$ $7$
120.288.7-24.jf.1.1 $120$ $2$ $2$ $7$
120.288.7-24.jg.1.1 $120$ $2$ $2$ $7$
120.288.7-24.jn.1.1 $120$ $2$ $2$ $7$
120.288.7-24.jo.1.1 $120$ $2$ $2$ $7$
120.288.7-120.bob.1.3 $120$ $2$ $2$ $7$
120.288.7-120.boc.1.6 $120$ $2$ $2$ $7$
120.288.7-120.bor.1.13 $120$ $2$ $2$ $7$
120.288.7-120.bos.1.3 $120$ $2$ $2$ $7$
120.288.7-120.bph.1.3 $120$ $2$ $2$ $7$
120.288.7-120.bpi.1.2 $120$ $2$ $2$ $7$
120.288.7-120.bpx.1.2 $120$ $2$ $2$ $7$
120.288.7-120.bpy.1.2 $120$ $2$ $2$ $7$
240.288.9-48.i.1.8 $240$ $2$ $2$ $9$
240.288.9-240.i.1.30 $240$ $2$ $2$ $9$
240.288.9-48.k.1.8 $240$ $2$ $2$ $9$
240.288.9-240.k.1.21 $240$ $2$ $2$ $9$
240.288.9-48.m.1.2 $240$ $2$ $2$ $9$
240.288.9-240.m.1.19 $240$ $2$ $2$ $9$
240.288.9-48.o.1.2 $240$ $2$ $2$ $9$
240.288.9-240.o.1.1 $240$ $2$ $2$ $9$
240.288.9-48.q.1.1 $240$ $2$ $2$ $9$
240.288.9-240.q.1.10 $240$ $2$ $2$ $9$
240.288.9-48.s.1.1 $240$ $2$ $2$ $9$
240.288.9-240.s.1.1 $240$ $2$ $2$ $9$
240.288.9-48.u.1.7 $240$ $2$ $2$ $9$
240.288.9-240.u.1.26 $240$ $2$ $2$ $9$
240.288.9-48.w.1.7 $240$ $2$ $2$ $9$
240.288.9-240.w.1.9 $240$ $2$ $2$ $9$