Properties

Label 12.6.0.f.1
Level $12$
Index $6$
Genus $0$
Analytic rank $0$
Cusps $2$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $12$ $\SL_2$-level: $4$
Index: $6$ $\PSL_2$-index:$6$
Genus: $0 = 1 + \frac{ 6 }{12} - \frac{ 2 }{4} - \frac{ 0 }{3} - \frac{ 2 }{2}$
Cusps: $2$ (all of which are rational) Cusp widths $2\cdot4$ Cusp orbits $1^{2}$
Elliptic points: $2$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 4C0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 12.6.0.3

Level structure

$\GL_2(\Z/12\Z)$-generators: $\begin{bmatrix}1&4\\4&11\end{bmatrix}$, $\begin{bmatrix}9&1\\4&9\end{bmatrix}$, $\begin{bmatrix}11&9\\10&11\end{bmatrix}$
$\GL_2(\Z/12\Z)$-subgroup: $(C_2\times \GL(2,3)):D_4$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 12-isogeny field degree: $8$
Cyclic 12-torsion field degree: $32$
Full 12-torsion field degree: $768$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 1518 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 6 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{1}{2^4\cdot3}\cdot\frac{x^{6}(3x^{2}-64y^{2})^{3}}{y^{4}x^{8}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_0(2)$ $2$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
12.12.0.b.1 $12$ $2$ $2$ $0$
12.12.0.c.1 $12$ $2$ $2$ $0$
12.12.0.f.1 $12$ $2$ $2$ $0$
12.12.0.g.1 $12$ $2$ $2$ $0$
12.18.0.i.1 $12$ $3$ $3$ $0$
12.24.1.i.1 $12$ $4$ $4$ $1$
24.12.0.e.1 $24$ $2$ $2$ $0$
24.12.0.i.1 $24$ $2$ $2$ $0$
24.12.0.r.1 $24$ $2$ $2$ $0$
24.12.0.u.1 $24$ $2$ $2$ $0$
36.162.10.o.1 $36$ $27$ $27$ $10$
60.12.0.z.1 $60$ $2$ $2$ $0$
60.12.0.ba.1 $60$ $2$ $2$ $0$
60.12.0.bd.1 $60$ $2$ $2$ $0$
60.12.0.be.1 $60$ $2$ $2$ $0$
60.30.2.m.1 $60$ $5$ $5$ $2$
60.36.1.dq.1 $60$ $6$ $6$ $1$
60.60.3.bu.1 $60$ $10$ $10$ $3$
84.12.0.z.1 $84$ $2$ $2$ $0$
84.12.0.ba.1 $84$ $2$ $2$ $0$
84.12.0.bd.1 $84$ $2$ $2$ $0$
84.12.0.be.1 $84$ $2$ $2$ $0$
84.48.3.ce.1 $84$ $8$ $8$ $3$
84.126.6.e.1 $84$ $21$ $21$ $6$
84.168.9.bg.1 $84$ $28$ $28$ $9$
120.12.0.dc.1 $120$ $2$ $2$ $0$
120.12.0.df.1 $120$ $2$ $2$ $0$
120.12.0.do.1 $120$ $2$ $2$ $0$
120.12.0.dr.1 $120$ $2$ $2$ $0$
132.12.0.z.1 $132$ $2$ $2$ $0$
132.12.0.ba.1 $132$ $2$ $2$ $0$
132.12.0.bd.1 $132$ $2$ $2$ $0$
132.12.0.be.1 $132$ $2$ $2$ $0$
132.72.5.e.1 $132$ $12$ $12$ $5$
132.330.20.e.1 $132$ $55$ $55$ $20$
132.330.22.i.1 $132$ $55$ $55$ $22$
156.12.0.z.1 $156$ $2$ $2$ $0$
156.12.0.ba.1 $156$ $2$ $2$ $0$
156.12.0.bd.1 $156$ $2$ $2$ $0$
156.12.0.be.1 $156$ $2$ $2$ $0$
156.84.5.o.1 $156$ $14$ $14$ $5$
168.12.0.dc.1 $168$ $2$ $2$ $0$
168.12.0.df.1 $168$ $2$ $2$ $0$
168.12.0.do.1 $168$ $2$ $2$ $0$
168.12.0.dr.1 $168$ $2$ $2$ $0$
204.12.0.z.1 $204$ $2$ $2$ $0$
204.12.0.ba.1 $204$ $2$ $2$ $0$
204.12.0.bd.1 $204$ $2$ $2$ $0$
204.12.0.be.1 $204$ $2$ $2$ $0$
204.108.7.p.1 $204$ $18$ $18$ $7$
228.12.0.z.1 $228$ $2$ $2$ $0$
228.12.0.ba.1 $228$ $2$ $2$ $0$
228.12.0.bd.1 $228$ $2$ $2$ $0$
228.12.0.be.1 $228$ $2$ $2$ $0$
228.120.9.e.1 $228$ $20$ $20$ $9$
264.12.0.dc.1 $264$ $2$ $2$ $0$
264.12.0.df.1 $264$ $2$ $2$ $0$
264.12.0.do.1 $264$ $2$ $2$ $0$
264.12.0.dr.1 $264$ $2$ $2$ $0$
276.12.0.z.1 $276$ $2$ $2$ $0$
276.12.0.ba.1 $276$ $2$ $2$ $0$
276.12.0.bd.1 $276$ $2$ $2$ $0$
276.12.0.be.1 $276$ $2$ $2$ $0$
276.144.11.e.1 $276$ $24$ $24$ $11$
312.12.0.dc.1 $312$ $2$ $2$ $0$
312.12.0.df.1 $312$ $2$ $2$ $0$
312.12.0.do.1 $312$ $2$ $2$ $0$
312.12.0.dr.1 $312$ $2$ $2$ $0$