Properties

Label 112.24.0-8.n.1.4
Level $112$
Index $24$
Genus $0$
Cusps $4$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $112$ $\SL_2$-level: $16$
Index: $24$ $\PSL_2$-index:$12$
Genus: $0 = 1 + \frac{ 12 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (all of which are rational) Cusp widths $1^{2}\cdot2\cdot8$ Cusp orbits $1^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C0

Level structure

$\GL_2(\Z/112\Z)$-generators: $\begin{bmatrix}20&39\\111&92\end{bmatrix}$, $\begin{bmatrix}51&80\\56&11\end{bmatrix}$, $\begin{bmatrix}54&81\\23&40\end{bmatrix}$, $\begin{bmatrix}70&57\\103&104\end{bmatrix}$, $\begin{bmatrix}89&78\\46&25\end{bmatrix}$, $\begin{bmatrix}103&36\\98&73\end{bmatrix}$
Contains $-I$: no $\quad$ (see 8.12.0.n.1 for the level structure with $-I$)
Cyclic 112-isogeny field degree: $16$
Cyclic 112-torsion field degree: $768$
Full 112-torsion field degree: $2064384$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 5199 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 12 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{x^{12}(x^{4}-16x^{2}y^{2}+16y^{4})^{3}}{y^{8}x^{14}(x-4y)(x+4y)}$

Modular covers

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
112.48.0-16.e.1.7 $112$ $2$ $2$ $0$
112.48.0-16.e.1.12 $112$ $2$ $2$ $0$
112.48.0-16.e.2.7 $112$ $2$ $2$ $0$
112.48.0-16.e.2.14 $112$ $2$ $2$ $0$
112.48.0-112.e.1.1 $112$ $2$ $2$ $0$
112.48.0-112.e.1.24 $112$ $2$ $2$ $0$
112.48.0-112.e.2.3 $112$ $2$ $2$ $0$
112.48.0-112.e.2.22 $112$ $2$ $2$ $0$
112.48.0-16.f.1.6 $112$ $2$ $2$ $0$
112.48.0-16.f.1.12 $112$ $2$ $2$ $0$
112.48.0-16.f.2.7 $112$ $2$ $2$ $0$
112.48.0-16.f.2.14 $112$ $2$ $2$ $0$
112.48.0-112.f.1.3 $112$ $2$ $2$ $0$
112.48.0-112.f.1.22 $112$ $2$ $2$ $0$
112.48.0-112.f.2.1 $112$ $2$ $2$ $0$
112.48.0-112.f.2.28 $112$ $2$ $2$ $0$
112.48.0-16.g.1.7 $112$ $2$ $2$ $0$
112.48.0-16.g.1.14 $112$ $2$ $2$ $0$
112.48.0-112.g.1.6 $112$ $2$ $2$ $0$
112.48.0-112.g.1.19 $112$ $2$ $2$ $0$
112.48.0-16.h.1.5 $112$ $2$ $2$ $0$
112.48.0-16.h.1.16 $112$ $2$ $2$ $0$
112.48.0-112.h.1.2 $112$ $2$ $2$ $0$
112.48.0-112.h.1.23 $112$ $2$ $2$ $0$
112.48.0-8.i.1.2 $112$ $2$ $2$ $0$
112.48.0-8.k.1.4 $112$ $2$ $2$ $0$
112.48.0-8.q.1.2 $112$ $2$ $2$ $0$
112.48.0-8.r.1.1 $112$ $2$ $2$ $0$
112.48.0-8.ba.1.3 $112$ $2$ $2$ $0$
112.48.0-8.ba.1.5 $112$ $2$ $2$ $0$
112.48.0-8.ba.2.1 $112$ $2$ $2$ $0$
112.48.0-8.ba.2.4 $112$ $2$ $2$ $0$
112.48.0-8.bb.1.2 $112$ $2$ $2$ $0$
112.48.0-8.bb.1.5 $112$ $2$ $2$ $0$
112.48.0-8.bb.2.1 $112$ $2$ $2$ $0$
112.48.0-8.bb.2.7 $112$ $2$ $2$ $0$
112.48.0-56.bf.1.4 $112$ $2$ $2$ $0$
112.48.0-56.bh.1.2 $112$ $2$ $2$ $0$
112.48.0-56.bj.1.8 $112$ $2$ $2$ $0$
112.48.0-56.bl.1.4 $112$ $2$ $2$ $0$
112.48.0-56.bu.1.9 $112$ $2$ $2$ $0$
112.48.0-56.bu.1.16 $112$ $2$ $2$ $0$
112.48.0-56.bu.2.6 $112$ $2$ $2$ $0$
112.48.0-56.bu.2.15 $112$ $2$ $2$ $0$
112.48.0-56.bv.1.10 $112$ $2$ $2$ $0$
112.48.0-56.bv.1.15 $112$ $2$ $2$ $0$
112.48.0-56.bv.2.3 $112$ $2$ $2$ $0$
112.48.0-56.bv.2.16 $112$ $2$ $2$ $0$
112.48.1-16.a.1.5 $112$ $2$ $2$ $1$
112.48.1-16.a.1.16 $112$ $2$ $2$ $1$
112.48.1-112.a.1.2 $112$ $2$ $2$ $1$
112.48.1-112.a.1.23 $112$ $2$ $2$ $1$
112.48.1-16.b.1.7 $112$ $2$ $2$ $1$
112.48.1-16.b.1.14 $112$ $2$ $2$ $1$
112.48.1-112.b.1.6 $112$ $2$ $2$ $1$
112.48.1-112.b.1.19 $112$ $2$ $2$ $1$
112.192.5-56.bl.1.18 $112$ $8$ $8$ $5$
112.504.16-56.cj.1.14 $112$ $21$ $21$ $16$