Properties

Label 10.120.3.a.1
Level $10$
Index $120$
Genus $3$
Analytic rank $0$
Cusps $12$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $10$ $\SL_2$-level: $10$ Newform level: $100$
Index: $120$ $\PSL_2$-index:$120$
Genus: $3 = 1 + \frac{ 120 }{12} - \frac{ 0 }{4} - \frac{ 6 }{3} - \frac{ 12 }{2}$
Cusps: $12$ (none of which are rational) Cusp widths $10^{12}$ Cusp orbits $4^{3}$
Elliptic points: $0$ of order $2$ and $6$ of order $3$
Analytic rank: $0$
$\Q$-gonality: $3 \le \gamma \le 4$
$\overline{\Q}$-gonality: $3$
Rational cusps: $0$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 10D3
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 10.120.3.2

Level structure

$\GL_2(\Z/10\Z)$-generators: $\begin{bmatrix}3&9\\1&4\end{bmatrix}$
$\GL_2(\Z/10\Z)$-subgroup: $C_{24}$
Contains $-I$: yes
Quadratic refinements: 20.240.3-10.a.1.1, 20.240.3-10.a.1.2, 40.240.3-10.a.1.1, 40.240.3-10.a.1.2, 60.240.3-10.a.1.1, 60.240.3-10.a.1.2, 120.240.3-10.a.1.1, 120.240.3-10.a.1.2, 140.240.3-10.a.1.1, 140.240.3-10.a.1.2, 220.240.3-10.a.1.1, 220.240.3-10.a.1.2, 260.240.3-10.a.1.1, 260.240.3-10.a.1.2, 280.240.3-10.a.1.1, 280.240.3-10.a.1.2
Cyclic 10-isogeny field degree: $6$
Cyclic 10-torsion field degree: $24$
Full 10-torsion field degree: $24$

Jacobian

Conductor: $2^{4}\cdot5^{6}$
Simple: no
Squarefree: no
Decomposition: $1^{3}$
Newforms: 50.2.a.b$^{2}$, 100.2.a.a

Models

Canonical model in $\mathbb{P}^{ 2 }$

$ 0 $ $=$ $ x^{4} - x^{3} y - x^{3} z + x^{2} y^{2} + 2 x^{2} y z + x^{2} z^{2} - x y^{3} + 2 x y^{2} z + 2 x y z^{2} + \cdots + z^{4} $
Copy content Toggle raw display

Rational points

This modular curve has no real points, and therefore no rational points.

Maps to other modular curves

$j$-invariant map of degree 120 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{125x^{3}y^{25}z^{2}-325x^{3}y^{24}z^{3}+425x^{3}y^{23}z^{4}-7250x^{3}y^{22}z^{5}-2625x^{3}y^{21}z^{6}+5200x^{3}y^{20}z^{7}+13975x^{3}y^{19}z^{8}+75725x^{3}y^{18}z^{9}+61000x^{3}y^{17}z^{10}+10500x^{3}y^{16}z^{11}+13425x^{3}y^{15}z^{12}+89025x^{3}y^{14}z^{13}+89025x^{3}y^{13}z^{14}+13425x^{3}y^{12}z^{15}+10500x^{3}y^{11}z^{16}+61000x^{3}y^{10}z^{17}+75725x^{3}y^{9}z^{18}+13975x^{3}y^{8}z^{19}+5200x^{3}y^{7}z^{20}-2625x^{3}y^{6}z^{21}-7250x^{3}y^{5}z^{22}+425x^{3}y^{4}z^{23}-325x^{3}y^{3}z^{24}+125x^{3}y^{2}z^{25}+10x^{2}y^{27}z-80x^{2}y^{26}z^{2}-2175x^{2}y^{24}z^{4}+6000x^{2}y^{23}z^{5}-765x^{2}y^{22}z^{6}+38610x^{2}y^{21}z^{7}+50125x^{2}y^{20}z^{8}-28100x^{2}y^{19}z^{9}-61300x^{2}y^{18}z^{10}-75650x^{2}y^{17}z^{11}-74590x^{2}y^{16}z^{12}-94950x^{2}y^{15}z^{13}-93150x^{2}y^{14}z^{14}-94950x^{2}y^{13}z^{15}-74590x^{2}y^{12}z^{16}-75650x^{2}y^{11}z^{17}-61300x^{2}y^{10}z^{18}-28100x^{2}y^{9}z^{19}+50125x^{2}y^{8}z^{20}+38610x^{2}y^{7}z^{21}-765x^{2}y^{6}z^{22}+6000x^{2}y^{5}z^{23}-2175x^{2}y^{4}z^{24}-80x^{2}y^{2}z^{26}+10x^{2}yz^{27}+10xy^{28}z-35xy^{27}z^{2}+140xy^{26}z^{3}-1200xy^{25}z^{4}-2825xy^{24}z^{5}+11150xy^{23}z^{6}-7315xy^{22}z^{7}+55425xy^{21}z^{8}+24725xy^{20}z^{9}-72900xy^{19}z^{10}-57315xy^{18}z^{11}-6845xy^{17}z^{12}-8810xy^{16}z^{13}-89725xy^{15}z^{14}-89725xy^{14}z^{15}-8810xy^{13}z^{16}-6845xy^{12}z^{17}-57315xy^{11}z^{18}-72900xy^{10}z^{19}+24725xy^{9}z^{20}+55425xy^{8}z^{21}-7315xy^{7}z^{22}+11150xy^{6}z^{23}-2825xy^{5}z^{24}-1200xy^{4}z^{25}+140xy^{3}z^{26}-35xy^{2}z^{27}+10xyz^{28}+y^{30}-10y^{29}z+10y^{28}z^{2}-435y^{27}z^{3}+1185y^{26}z^{4}+1048y^{25}z^{5}+3050y^{24}z^{6}+12325y^{23}z^{7}-23925y^{22}z^{8}-525y^{21}z^{9}-14294y^{20}z^{10}+6965y^{19}z^{11}-13265y^{18}z^{12}-34785y^{17}z^{13}-12090y^{16}z^{14}-16398y^{15}z^{15}-12090y^{14}z^{16}-34785y^{13}z^{17}-13265y^{12}z^{18}+6965y^{11}z^{19}-14294y^{10}z^{20}-525y^{9}z^{21}-23925y^{8}z^{22}+12325y^{7}z^{23}+3050y^{6}z^{24}+1048y^{5}z^{25}+1185y^{4}z^{26}-435y^{3}z^{27}+10y^{2}z^{28}-10yz^{29}+z^{30}}{z^{10}y^{10}(25x^{3}y^{5}z^{2}+125x^{3}y^{4}z^{3}+125x^{3}y^{3}z^{4}+25x^{3}y^{2}z^{5}+10x^{2}y^{7}z-15x^{2}y^{6}z^{2}-100x^{2}y^{5}z^{3}-125x^{2}y^{4}z^{4}-100x^{2}y^{3}z^{5}-15x^{2}y^{2}z^{6}+10x^{2}yz^{7}+35xy^{7}z^{2}-125xy^{5}z^{4}-125xy^{4}z^{5}+35xy^{2}z^{7}+y^{10}-25y^{8}z^{2}-25y^{7}z^{3}+2y^{5}z^{5}-25y^{3}z^{7}-25y^{2}z^{8}+z^{10})}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
$X_{\mathrm{ns}}(10)$ $10$ $3$ $3$ $1$ $0$ $1^{2}$
10.60.1.a.1 $10$ $2$ $2$ $1$ $0$ $1^{2}$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
10.360.13.b.1 $10$ $3$ $3$ $13$ $0$ $1^{10}$
20.480.27.a.1 $20$ $4$ $4$ $27$ $7$ $1^{24}$
30.360.25.v.1 $30$ $3$ $3$ $25$ $6$ $1^{16}\cdot2^{3}$
30.480.27.a.1 $30$ $4$ $4$ $27$ $1$ $1^{24}$
50.600.35.a.1 $50$ $5$ $5$ $35$ $20$ $2^{4}\cdot4^{2}\cdot8^{2}$
50.600.35.b.1 $50$ $5$ $5$ $35$ $0$ $4^{2}\cdot8\cdot16$
50.600.35.c.1 $50$ $5$ $5$ $35$ $0$ $4^{2}\cdot8\cdot16$
50.3000.219.a.1 $50$ $25$ $25$ $219$ $88$ $2^{22}\cdot4^{16}\cdot6^{2}\cdot8^{12}$
70.360.13.f.1 $70$ $3$ $3$ $13$ $0$ $2^{5}$
70.960.65.h.1 $70$ $8$ $8$ $65$ $13$ $1^{36}\cdot2^{13}$
70.2520.193.v.1 $70$ $21$ $21$ $193$ $82$ $1^{38}\cdot2^{41}\cdot3^{6}\cdot4^{13}$
70.3360.255.b.1 $70$ $28$ $28$ $255$ $95$ $1^{74}\cdot2^{54}\cdot3^{6}\cdot4^{13}$
90.360.13.d.1 $90$ $3$ $3$ $13$ $?$ not computed
130.360.13.f.1 $130$ $3$ $3$ $13$ $?$ not computed
190.360.13.f.1 $190$ $3$ $3$ $13$ $?$ not computed
310.360.13.f.1 $310$ $3$ $3$ $13$ $?$ not computed