Base \(\Q_{23}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $D_4$ (as 8T4)

Related objects

Learn more about

Defining polynomial

\( x^{8} - 1633 x^{4} + 1270129 \)


Base field: $\Q_{23}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{23}$
Root number: $1$
$|\Gal(K/\Q_{ 23 })|$: $8$
This field is Galois over $\Q_{23}.$

Intermediate fields

$\Q_{23}(\sqrt{5})$, $\Q_{23}(\sqrt{23})$, $\Q_{23}(\sqrt{23\cdot 5})$,, x2, x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{23}(\sqrt{5})$ $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{2} - x + 7 \)
Relative Eisenstein polynomial:$ x^{4} - 23 t^{4} \in\Q_{23}(t)[x]$

Invariants of the Galois closure

Galois group:$D_4$ (as 8T4)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:Not computed