Properties

Label 2-9984-1.1-c1-0-144
Degree $2$
Conductor $9984$
Sign $-1$
Analytic cond. $79.7226$
Root an. cond. $8.92875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 1.28·5-s − 0.442·7-s + 9-s + 0.841·11-s − 13-s − 1.28·15-s + 0.351·17-s + 3.67·19-s + 0.442·21-s + 7.04·23-s − 3.35·25-s − 27-s − 0.217·29-s − 5.14·31-s − 0.841·33-s − 0.568·35-s − 5.60·37-s + 39-s − 4.49·41-s − 10.4·43-s + 1.28·45-s − 6.90·47-s − 6.80·49-s − 0.351·51-s + 3.35·53-s + 1.08·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.574·5-s − 0.167·7-s + 0.333·9-s + 0.253·11-s − 0.277·13-s − 0.331·15-s + 0.0851·17-s + 0.843·19-s + 0.0965·21-s + 1.46·23-s − 0.670·25-s − 0.192·27-s − 0.0402·29-s − 0.924·31-s − 0.146·33-s − 0.0960·35-s − 0.922·37-s + 0.160·39-s − 0.702·41-s − 1.59·43-s + 0.191·45-s − 1.00·47-s − 0.972·49-s − 0.0491·51-s + 0.461·53-s + 0.145·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9984\)    =    \(2^{8} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(79.7226\)
Root analytic conductor: \(8.92875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9984,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 - 1.28T + 5T^{2} \)
7 \( 1 + 0.442T + 7T^{2} \)
11 \( 1 - 0.841T + 11T^{2} \)
17 \( 1 - 0.351T + 17T^{2} \)
19 \( 1 - 3.67T + 19T^{2} \)
23 \( 1 - 7.04T + 23T^{2} \)
29 \( 1 + 0.217T + 29T^{2} \)
31 \( 1 + 5.14T + 31T^{2} \)
37 \( 1 + 5.60T + 37T^{2} \)
41 \( 1 + 4.49T + 41T^{2} \)
43 \( 1 + 10.4T + 43T^{2} \)
47 \( 1 + 6.90T + 47T^{2} \)
53 \( 1 - 3.35T + 53T^{2} \)
59 \( 1 - 4.74T + 59T^{2} \)
61 \( 1 + 7.23T + 61T^{2} \)
67 \( 1 - 7.67T + 67T^{2} \)
71 \( 1 - 7.78T + 71T^{2} \)
73 \( 1 + 4.23T + 73T^{2} \)
79 \( 1 + 0.230T + 79T^{2} \)
83 \( 1 + 7.86T + 83T^{2} \)
89 \( 1 + 5.81T + 89T^{2} \)
97 \( 1 - 9.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.09290186738568260881270933027, −6.70585107609904060977033179121, −5.92134213744530468862084249800, −5.18868883790016784689255960938, −4.88233440618776662214109811394, −3.69210964643690594824939977230, −3.12618206207055273948886856775, −1.98889913287750167620520545470, −1.25615845997167763041357388811, 0, 1.25615845997167763041357388811, 1.98889913287750167620520545470, 3.12618206207055273948886856775, 3.69210964643690594824939977230, 4.88233440618776662214109811394, 5.18868883790016784689255960938, 5.92134213744530468862084249800, 6.70585107609904060977033179121, 7.09290186738568260881270933027

Graph of the $Z$-function along the critical line