Properties

Label 9984.2.a.y
Level $9984$
Weight $2$
Character orbit 9984.a
Self dual yes
Analytic conductor $79.723$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9984,2,Mod(1,9984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9984 = 2^{8} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,2,0,-2,0,4,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7226413780\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + (\beta_{3} - \beta_{2} + \beta_1 + 1) q^{5} - \beta_{2} q^{7} + q^{9} + (\beta_{3} - 2 \beta_{2} + \beta_1 + 1) q^{11} - q^{13} + ( - \beta_{3} + \beta_{2} - \beta_1 - 1) q^{15} + ( - \beta_{2} - \beta_1 - 2) q^{17}+ \cdots + (\beta_{3} - 2 \beta_{2} + \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 2 q^{5} - 2 q^{7} + 4 q^{9} - 4 q^{13} - 2 q^{15} - 8 q^{17} + 6 q^{19} + 2 q^{21} + 4 q^{23} - 4 q^{25} - 4 q^{27} - 4 q^{29} - 2 q^{31} + 4 q^{35} + 8 q^{37} + 4 q^{39} - 18 q^{41} + 16 q^{43}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{20} + \zeta_{20}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + \nu + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.17557
−1.90211
−1.17557
1.90211
0 −1.00000 0 −2.52015 0 −2.79360 0 1.00000 0
1.2 0 −1.00000 0 0.442463 0 2.52015 0 1.00000 0
1.3 0 −1.00000 0 1.28408 0 −0.442463 0 1.00000 0
1.4 0 −1.00000 0 2.79360 0 −1.28408 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9984.2.a.y 4
4.b odd 2 1 9984.2.a.bh 4
8.b even 2 1 9984.2.a.bb 4
8.d odd 2 1 9984.2.a.s 4
16.e even 4 2 312.2.g.a 8
16.f odd 4 2 1248.2.g.a 8
48.i odd 4 2 936.2.g.d 8
48.k even 4 2 3744.2.g.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.g.a 8 16.e even 4 2
936.2.g.d 8 48.i odd 4 2
1248.2.g.a 8 16.f odd 4 2
3744.2.g.d 8 48.k even 4 2
9984.2.a.s 4 8.d odd 2 1
9984.2.a.y 4 1.a even 1 1 trivial
9984.2.a.bb 4 8.b even 2 1
9984.2.a.bh 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9984))\):

\( T_{5}^{4} - 2T_{5}^{3} - 6T_{5}^{2} + 12T_{5} - 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 2T_{7}^{3} - 6T_{7}^{2} - 12T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 20T_{11}^{2} + 40T_{11} - 20 \) Copy content Toggle raw display
\( T_{19}^{4} - 6T_{19}^{3} - 14T_{19}^{2} + 84T_{19} - 4 \) Copy content Toggle raw display
\( T_{29}^{4} + 4T_{29}^{3} - 44T_{29}^{2} + 64T_{29} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( T^{4} - 20 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{4} - 6 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 316 \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 976 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots - 2644 \) Copy content Toggle raw display
$43$ \( T^{4} - 16 T^{3} + \cdots - 7024 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots - 964 \) Copy content Toggle raw display
$53$ \( T^{4} + 4 T^{3} + \cdots + 1216 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 76 \) Copy content Toggle raw display
$61$ \( (T^{2} + 10 T + 20)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 22 T^{3} + \cdots + 76 \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 956 \) Copy content Toggle raw display
$73$ \( T^{4} + 16 T^{3} + \cdots - 304 \) Copy content Toggle raw display
$79$ \( T^{4} - 120 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$83$ \( T^{4} + 16 T^{3} + \cdots - 1604 \) Copy content Toggle raw display
$89$ \( T^{4} + 30 T^{3} + \cdots - 2420 \) Copy content Toggle raw display
$97$ \( T^{4} + 28 T^{3} + \cdots - 18544 \) Copy content Toggle raw display
show more
show less