L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.309 − 0.951i)5-s + (−0.809 − 0.587i)8-s + 0.999·10-s + (2.54 − 2.12i)11-s + (−1.11 − 3.44i)13-s + (0.309 − 0.951i)16-s + (0.190 − 0.587i)17-s + (−1.61 − 1.17i)19-s + (0.309 + 0.951i)20-s + (2.80 + 1.76i)22-s + 1.85·23-s + (−0.809 − 0.587i)25-s + (2.92 − 2.12i)26-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (−0.404 + 0.293i)4-s + (0.138 − 0.425i)5-s + (−0.286 − 0.207i)8-s + 0.316·10-s + (0.767 − 0.641i)11-s + (−0.310 − 0.954i)13-s + (0.0772 − 0.237i)16-s + (0.0463 − 0.142i)17-s + (−0.371 − 0.269i)19-s + (0.0690 + 0.212i)20-s + (0.598 + 0.375i)22-s + 0.386·23-s + (−0.161 − 0.117i)25-s + (0.574 − 0.417i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.288i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.957 + 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62885 - 0.239660i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62885 - 0.239660i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-2.54 + 2.12i)T \) |
good | 7 | \( 1 + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.11 + 3.44i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.190 + 0.587i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (1.61 + 1.17i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 1.85T + 23T^{2} \) |
| 29 | \( 1 + (-3.54 + 2.57i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (3.35 + 10.3i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-0.118 + 0.0857i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-7.85 - 5.70i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 3.85T + 43T^{2} \) |
| 47 | \( 1 + (-8.16 - 5.93i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (2.14 + 6.60i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-6.35 + 4.61i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.76 + 5.42i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 10.3T + 67T^{2} \) |
| 71 | \( 1 + (-2.14 + 6.60i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.281 - 0.865i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (1.61 - 4.97i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 4.47T + 89T^{2} \) |
| 97 | \( 1 + (-1.47 - 4.53i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.642752767376433007472038021066, −9.112153999944820851749673351761, −8.135402600357292182732506216062, −7.53959964377747684025275039157, −6.34859534061095635240282168534, −5.78911371402618603315384344224, −4.76443999855550186828502120109, −3.86654615883181816840702878874, −2.62968408974280825859323671820, −0.76828585891427704041847145933,
1.47365803245381312926306666952, 2.53526591237601285627317162460, 3.75111592659723812714565320994, 4.53619947349174470798499809402, 5.61715179263608508980609904255, 6.71801833622637522130213915188, 7.29072089498054440954754353497, 8.747701208241430809884253211394, 9.199600246061414224731726967036, 10.23560802769395126164791861800