Properties

Label 990.2.n.b
Level $990$
Weight $2$
Character orbit 990.n
Analytic conductor $7.905$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(91,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,-1,0,0,-1,0,4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{2} - \zeta_{10}^{3} q^{4} - \zeta_{10} q^{5} + \zeta_{10}^{2} q^{8} + q^{10} + (3 \zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{11} + ( - 2 \zeta_{10}^{3} + 3 \zeta_{10}^{2} + \cdots + 2) q^{13} + \cdots - 7 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} - q^{5} - q^{8} + 4 q^{10} - q^{11} - q^{16} + 3 q^{17} - 2 q^{19} - q^{20} + 9 q^{22} - 6 q^{23} - q^{25} + 5 q^{26} + 3 q^{29} + 4 q^{32} - 2 q^{34} - 4 q^{37} - 2 q^{38} - q^{40}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
0.809017 + 0.587785i
−0.309017 + 0.951057i
−0.309017 0.951057i
0.809017 0.587785i
−0.809017 + 0.587785i 0 0.309017 0.951057i −0.809017 0.587785i 0 0 0.309017 + 0.951057i 0 1.00000
181.1 0.309017 + 0.951057i 0 −0.809017 + 0.587785i 0.309017 0.951057i 0 0 −0.809017 0.587785i 0 1.00000
361.1 0.309017 0.951057i 0 −0.809017 0.587785i 0.309017 + 0.951057i 0 0 −0.809017 + 0.587785i 0 1.00000
631.1 −0.809017 0.587785i 0 0.309017 + 0.951057i −0.809017 + 0.587785i 0 0 0.309017 0.951057i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.2.n.b 4
3.b odd 2 1 990.2.n.g yes 4
11.c even 5 1 inner 990.2.n.b 4
33.h odd 10 1 990.2.n.g yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
990.2.n.b 4 1.a even 1 1 trivial
990.2.n.b 4 11.c even 5 1 inner
990.2.n.g yes 4 3.b odd 2 1
990.2.n.g yes 4 33.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{4} + 10T_{13}^{2} - 25T_{13} + 25 \) Copy content Toggle raw display
\( T_{17}^{4} - 3T_{17}^{3} + 4T_{17}^{2} - 2T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( T^{4} + 10 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$17$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( (T^{2} + 3 T - 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 3 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$31$ \( T^{4} + 90 T^{2} + \cdots + 2025 \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} - 18 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 11)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 17 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$53$ \( T^{4} + 22 T^{3} + \cdots + 5776 \) Copy content Toggle raw display
$59$ \( T^{4} - 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$61$ \( T^{4} - 16 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$67$ \( (T^{2} + 23 T + 131)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 22 T^{3} + \cdots + 5776 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} + 19 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$83$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$89$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 12 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
show more
show less