Properties

Label 2-99-1.1-c7-0-13
Degree $2$
Conductor $99$
Sign $-1$
Analytic cond. $30.9261$
Root an. cond. $5.56112$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 15.0·2-s + 97.9·4-s − 367.·5-s − 91.9·7-s + 451.·8-s + 5.52e3·10-s − 1.33e3·11-s + 5.11e3·13-s + 1.38e3·14-s − 1.93e4·16-s + 8.83e3·17-s + 1.33e4·19-s − 3.59e4·20-s + 2.00e4·22-s + 7.07e4·23-s + 5.67e4·25-s − 7.69e4·26-s − 9.00e3·28-s + 1.23e5·29-s + 1.16e5·31-s + 2.32e5·32-s − 1.32e5·34-s + 3.37e4·35-s − 4.45e5·37-s − 2.00e5·38-s − 1.65e5·40-s + 5.86e5·41-s + ⋯
L(s)  = 1  − 1.32·2-s + 0.765·4-s − 1.31·5-s − 0.101·7-s + 0.311·8-s + 1.74·10-s − 0.301·11-s + 0.646·13-s + 0.134·14-s − 1.17·16-s + 0.436·17-s + 0.445·19-s − 1.00·20-s + 0.400·22-s + 1.21·23-s + 0.726·25-s − 0.858·26-s − 0.0775·28-s + 0.937·29-s + 0.700·31-s + 1.25·32-s − 0.579·34-s + 0.133·35-s − 1.44·37-s − 0.591·38-s − 0.409·40-s + 1.32·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(30.9261\)
Root analytic conductor: \(5.56112\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 99,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + 1.33e3T \)
good2 \( 1 + 15.0T + 128T^{2} \)
5 \( 1 + 367.T + 7.81e4T^{2} \)
7 \( 1 + 91.9T + 8.23e5T^{2} \)
13 \( 1 - 5.11e3T + 6.27e7T^{2} \)
17 \( 1 - 8.83e3T + 4.10e8T^{2} \)
19 \( 1 - 1.33e4T + 8.93e8T^{2} \)
23 \( 1 - 7.07e4T + 3.40e9T^{2} \)
29 \( 1 - 1.23e5T + 1.72e10T^{2} \)
31 \( 1 - 1.16e5T + 2.75e10T^{2} \)
37 \( 1 + 4.45e5T + 9.49e10T^{2} \)
41 \( 1 - 5.86e5T + 1.94e11T^{2} \)
43 \( 1 + 4.70e5T + 2.71e11T^{2} \)
47 \( 1 + 8.18e5T + 5.06e11T^{2} \)
53 \( 1 + 2.08e6T + 1.17e12T^{2} \)
59 \( 1 + 1.96e6T + 2.48e12T^{2} \)
61 \( 1 - 1.31e6T + 3.14e12T^{2} \)
67 \( 1 - 2.43e6T + 6.06e12T^{2} \)
71 \( 1 - 2.63e6T + 9.09e12T^{2} \)
73 \( 1 + 5.76e5T + 1.10e13T^{2} \)
79 \( 1 + 1.00e6T + 1.92e13T^{2} \)
83 \( 1 + 8.42e6T + 2.71e13T^{2} \)
89 \( 1 + 3.80e6T + 4.42e13T^{2} \)
97 \( 1 - 1.53e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.57754444733410506117670840602, −10.82420333799950858948631252527, −9.683491495356719184855626064883, −8.497099498838615298773336764512, −7.85335003320488045400802429182, −6.77334985801154164989925109788, −4.75965155861440804605976923978, −3.25202754697679852925386096635, −1.18682916133191141120369281167, 0, 1.18682916133191141120369281167, 3.25202754697679852925386096635, 4.75965155861440804605976923978, 6.77334985801154164989925109788, 7.85335003320488045400802429182, 8.497099498838615298773336764512, 9.683491495356719184855626064883, 10.82420333799950858948631252527, 11.57754444733410506117670840602

Graph of the $Z$-function along the critical line