L(s) = 1 | + 5.00·2-s + 17.0·4-s + 7.07i·5-s + 10.4i·7-s + 45.5·8-s + 35.4i·10-s + (13.0 − 34.0i)11-s − 43.7i·13-s + 52.4i·14-s + 91.2·16-s − 115.·17-s − 89.3i·19-s + 120. i·20-s + (65.4 − 170. i)22-s + 213. i·23-s + ⋯ |
L(s) = 1 | + 1.77·2-s + 2.13·4-s + 0.632i·5-s + 0.565i·7-s + 2.01·8-s + 1.11i·10-s + (0.358 − 0.933i)11-s − 0.932i·13-s + 1.00i·14-s + 1.42·16-s − 1.64·17-s − 1.07i·19-s + 1.35i·20-s + (0.634 − 1.65i)22-s + 1.93i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 - 0.246i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.969 - 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.95176 + 0.495078i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.95176 + 0.495078i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-13.0 + 34.0i)T \) |
good | 2 | \( 1 - 5.00T + 8T^{2} \) |
| 5 | \( 1 - 7.07iT - 125T^{2} \) |
| 7 | \( 1 - 10.4iT - 343T^{2} \) |
| 13 | \( 1 + 43.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 115.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 89.3iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 213. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 124.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 149.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 161.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 172.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 258. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 240. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 334. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 382. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 609. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 260T + 3.00e5T^{2} \) |
| 71 | \( 1 + 17.3iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 787. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.00e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 183.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 11.1iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.79e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.43109678540484231130061826537, −12.74744084975544375697755475771, −11.28427373034384760473713162757, −11.08116275507617065475598517522, −9.075076693417420284466621003871, −7.30730290414058895205055051596, −6.19365053826785475717336994666, −5.23439529866529323825736240340, −3.67522681921224379340901119962, −2.54353184525994104238703694397,
2.08385315222652905755081719439, 4.11072530015319317112594811754, 4.66893560433983426044055522571, 6.26566285730800381610266695383, 7.19078681083784253703996424160, 8.970081034862188775336679799567, 10.58619889079451033624159423792, 11.67525022119339358998788738123, 12.63737688117609310101645363462, 13.23301096541369852590429687882