Properties

Label 16-99e8-1.1-c3e8-0-1
Degree $16$
Conductor $9.227\times 10^{15}$
Sign $1$
Analytic cond. $1.35522\times 10^{6}$
Root an. cond. $2.41685$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·4-s + 75·16-s + 800·25-s − 80·31-s − 560·37-s + 2.12e3·49-s − 1.14e3·64-s + 2.08e3·67-s + 8.80e3·97-s − 8.00e3·100-s − 7.52e3·103-s + 676·121-s + 800·124-s + 127-s + 131-s + 137-s + 139-s + 5.60e3·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.40e3·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 5/4·4-s + 1.17·16-s + 32/5·25-s − 0.463·31-s − 2.48·37-s + 6.18·49-s − 2.22·64-s + 3.79·67-s + 9.21·97-s − 8·100-s − 7.19·103-s + 0.507·121-s + 0.579·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 3.11·148-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 0.637·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{16} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(1.35522\times 10^{6}\)
Root analytic conductor: \(2.41685\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{16} \cdot 11^{8} ,\ ( \ : [3/2]^{8} ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(6.362865633\)
\(L(\frac12)\) \(\approx\) \(6.362865633\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - 676 T^{2} - 14154 p^{2} T^{4} - 676 p^{6} T^{6} + p^{12} T^{8} \)
good2 \( ( 1 + 5 T^{2} + 5 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
5 \( ( 1 - 8 p^{2} T^{2} + p^{6} T^{4} )^{4} \)
7 \( ( 1 - 1060 T^{2} + 514050 T^{4} - 1060 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
13 \( ( 1 - 700 T^{2} + 5230950 T^{4} - 700 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
17 \( ( 1 + 6080 T^{2} + 14812350 T^{4} + 6080 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
19 \( ( 1 - 18436 T^{2} + 166980786 T^{4} - 18436 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
23 \( ( 1 + 9932 T^{2} + 57602934 T^{4} + 9932 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
29 \( ( 1 + 69056 T^{2} + 2380486926 T^{4} + 69056 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
31 \( ( 1 + 20 T + 40350 T^{2} + 20 p^{3} T^{3} + p^{6} T^{4} )^{4} \)
37 \( ( 1 + 140 T + 52506 T^{2} + 140 p^{3} T^{3} + p^{6} T^{4} )^{4} \)
41 \( ( 1 + 163184 T^{2} + 15447280446 T^{4} + 163184 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
43 \( ( 1 - 240340 T^{2} + 26312850450 T^{4} - 240340 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
47 \( ( 1 - 149846 T^{2} + p^{6} T^{4} )^{4} \)
53 \( ( 1 - 380608 T^{2} + 80522854674 T^{4} - 380608 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
59 \( ( 1 - 314500 T^{2} + 97626686982 T^{4} - 314500 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
61 \( ( 1 - 377524 T^{2} + 127308921366 T^{4} - 377524 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
67 \( ( 1 - 260 T + p^{3} T^{2} )^{8} \)
71 \( ( 1 - 978700 T^{2} + 444510659142 T^{4} - 978700 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
73 \( ( 1 + 379940 T^{2} + 218125296150 T^{4} + 379940 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
79 \( ( 1 - 160756 T^{2} + 483387051426 T^{4} - 160756 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
83 \( ( 1 + 1970780 T^{2} + 1609400316150 T^{4} + 1970780 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
89 \( ( 1 - 1401424 T^{2} + 982134568866 T^{4} - 1401424 p^{6} T^{6} + p^{12} T^{8} )^{2} \)
97 \( ( 1 - 2200 T + 2552046 T^{2} - 2200 p^{3} T^{3} + p^{6} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.97724073314869673571793506554, −5.63108985443938994705947591344, −5.51522873156281486848838766787, −5.23965957533741317478846544450, −5.23439529866529323825736240340, −5.20967757345229288175472990744, −4.83365329074903548123375771090, −4.76181372811766746769088005796, −4.66893560433983426044055522571, −4.23558615121352822911528988264, −4.11072530015319317112594811754, −4.01892062113478652049515215829, −3.67522681921224379340901119962, −3.37046151588962614975612165024, −3.28954342758646696344039579399, −3.26974492363847643678859257167, −2.59597655020485297334633156775, −2.54353184525994104238703694397, −2.52547317147681956120262272061, −2.08385315222652905755081719439, −1.47432702258862953238167277875, −1.30008869453229184012365063684, −0.77073262116733273510402524057, −0.72795141777962244672796958517, −0.51646543360713453030962755960, 0.51646543360713453030962755960, 0.72795141777962244672796958517, 0.77073262116733273510402524057, 1.30008869453229184012365063684, 1.47432702258862953238167277875, 2.08385315222652905755081719439, 2.52547317147681956120262272061, 2.54353184525994104238703694397, 2.59597655020485297334633156775, 3.26974492363847643678859257167, 3.28954342758646696344039579399, 3.37046151588962614975612165024, 3.67522681921224379340901119962, 4.01892062113478652049515215829, 4.11072530015319317112594811754, 4.23558615121352822911528988264, 4.66893560433983426044055522571, 4.76181372811766746769088005796, 4.83365329074903548123375771090, 5.20967757345229288175472990744, 5.23439529866529323825736240340, 5.23965957533741317478846544450, 5.51522873156281486848838766787, 5.63108985443938994705947591344, 5.97724073314869673571793506554

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.