Properties

Label 2-99-99.16-c1-0-4
Degree $2$
Conductor $99$
Sign $0.737 - 0.674i$
Analytic cond. $0.790518$
Root an. cond. $0.889111$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.45 + 0.308i)2-s + (0.266 + 1.71i)3-s + (0.183 + 0.0816i)4-s + (0.0707 − 0.0150i)5-s + (−0.141 + 2.56i)6-s + (−0.203 − 1.93i)7-s + (−2.15 − 1.56i)8-s + (−2.85 + 0.910i)9-s + 0.107·10-s + (3.25 + 0.610i)11-s + (−0.0909 + 0.335i)12-s + (0.742 − 0.824i)13-s + (0.302 − 2.87i)14-s + (0.0445 + 0.117i)15-s + (−2.91 − 3.24i)16-s + (−0.0576 + 0.177i)17-s + ⋯
L(s)  = 1  + (1.02 + 0.218i)2-s + (0.153 + 0.988i)3-s + (0.0917 + 0.0408i)4-s + (0.0316 − 0.00672i)5-s + (−0.0578 + 1.04i)6-s + (−0.0770 − 0.733i)7-s + (−0.763 − 0.554i)8-s + (−0.952 + 0.303i)9-s + 0.0339·10-s + (0.982 + 0.184i)11-s + (−0.0262 + 0.0969i)12-s + (0.205 − 0.228i)13-s + (0.0808 − 0.768i)14-s + (0.0115 + 0.0302i)15-s + (−0.729 − 0.810i)16-s + (−0.0139 + 0.0430i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.737 - 0.674i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.737 - 0.674i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $0.737 - 0.674i$
Analytic conductor: \(0.790518\)
Root analytic conductor: \(0.889111\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{99} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :1/2),\ 0.737 - 0.674i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.39757 + 0.542769i\)
\(L(\frac12)\) \(\approx\) \(1.39757 + 0.542769i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.266 - 1.71i)T \)
11 \( 1 + (-3.25 - 0.610i)T \)
good2 \( 1 + (-1.45 - 0.308i)T + (1.82 + 0.813i)T^{2} \)
5 \( 1 + (-0.0707 + 0.0150i)T + (4.56 - 2.03i)T^{2} \)
7 \( 1 + (0.203 + 1.93i)T + (-6.84 + 1.45i)T^{2} \)
13 \( 1 + (-0.742 + 0.824i)T + (-1.35 - 12.9i)T^{2} \)
17 \( 1 + (0.0576 - 0.177i)T + (-13.7 - 9.99i)T^{2} \)
19 \( 1 + (4.20 + 3.05i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-3.42 - 5.93i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-0.337 - 3.21i)T + (-28.3 + 6.02i)T^{2} \)
31 \( 1 + (-1.10 + 1.22i)T + (-3.24 - 30.8i)T^{2} \)
37 \( 1 + (7.75 - 5.63i)T + (11.4 - 35.1i)T^{2} \)
41 \( 1 + (0.529 - 5.03i)T + (-40.1 - 8.52i)T^{2} \)
43 \( 1 + (-4.06 + 7.03i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-7.93 + 3.53i)T + (31.4 - 34.9i)T^{2} \)
53 \( 1 + (-0.467 - 1.43i)T + (-42.8 + 31.1i)T^{2} \)
59 \( 1 + (4.84 + 2.15i)T + (39.4 + 43.8i)T^{2} \)
61 \( 1 + (-4.73 - 5.25i)T + (-6.37 + 60.6i)T^{2} \)
67 \( 1 + (0.447 + 0.775i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (0.476 - 1.46i)T + (-57.4 - 41.7i)T^{2} \)
73 \( 1 + (-9.31 + 6.76i)T + (22.5 - 69.4i)T^{2} \)
79 \( 1 + (-12.9 - 2.75i)T + (72.1 + 32.1i)T^{2} \)
83 \( 1 + (12.0 + 13.3i)T + (-8.67 + 82.5i)T^{2} \)
89 \( 1 + 12.3T + 89T^{2} \)
97 \( 1 + (10.2 + 2.17i)T + (88.6 + 39.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.96415593366434024133923328183, −13.41483349619565344057689023745, −12.02586248925259006465444676448, −10.87826191677207213308181085090, −9.703446287103939137305197888588, −8.789878770175484267687754017713, −6.93848584597814154352320717803, −5.58449427182586789881642411274, −4.37333417218524324796483209685, −3.48143470626888574839013394029, 2.38969404137463023082822904052, 3.99119036820923900059262934875, 5.71774802218106025235724905372, 6.58394127969582390352964999751, 8.335264723472617141762522004534, 9.112915551398739159497847938486, 11.11206099395363919736297342486, 12.26636574704058522273915956850, 12.51747215729735313616841130063, 13.83477923313632387265675589476

Graph of the $Z$-function along the critical line