Properties

Label 2-31e2-31.28-c1-0-41
Degree $2$
Conductor $961$
Sign $0.912 + 0.409i$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.996 + 0.724i)2-s + (0.216 − 2.06i)3-s + (−0.148 + 0.458i)4-s + (0.772 − 1.33i)5-s + (1.27 + 2.21i)6-s + (3.72 − 0.790i)7-s + (−0.944 − 2.90i)8-s + (−1.27 − 0.271i)9-s + (0.199 + 1.89i)10-s + (2.51 + 2.79i)11-s + (0.913 + 0.406i)12-s + (2.40 − 1.07i)13-s + (−3.13 + 3.48i)14-s + (−2.59 − 1.88i)15-s + (2.26 + 1.64i)16-s + (−2.52 + 2.80i)17-s + ⋯
L(s)  = 1  + (−0.704 + 0.512i)2-s + (0.125 − 1.19i)3-s + (−0.0744 + 0.229i)4-s + (0.345 − 0.598i)5-s + (0.521 + 0.903i)6-s + (1.40 − 0.298i)7-s + (−0.334 − 1.02i)8-s + (−0.425 − 0.0904i)9-s + (0.0629 + 0.598i)10-s + (0.758 + 0.842i)11-s + (0.263 + 0.117i)12-s + (0.667 − 0.297i)13-s + (−0.838 + 0.930i)14-s + (−0.669 − 0.486i)15-s + (0.567 + 0.412i)16-s + (−0.612 + 0.680i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.912 + 0.409i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.912 + 0.409i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $0.912 + 0.409i$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (338, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ 0.912 + 0.409i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.45854 - 0.312260i\)
\(L(\frac12)\) \(\approx\) \(1.45854 - 0.312260i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (0.996 - 0.724i)T + (0.618 - 1.90i)T^{2} \)
3 \( 1 + (-0.216 + 2.06i)T + (-2.93 - 0.623i)T^{2} \)
5 \( 1 + (-0.772 + 1.33i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + (-3.72 + 0.790i)T + (6.39 - 2.84i)T^{2} \)
11 \( 1 + (-2.51 - 2.79i)T + (-1.14 + 10.9i)T^{2} \)
13 \( 1 + (-2.40 + 1.07i)T + (8.69 - 9.66i)T^{2} \)
17 \( 1 + (2.52 - 2.80i)T + (-1.77 - 16.9i)T^{2} \)
19 \( 1 + (-5.57 - 2.48i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (0.281 + 0.865i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (5.50 - 4.00i)T + (8.96 - 27.5i)T^{2} \)
37 \( 1 + (0.907 + 1.57i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (0.0352 + 0.335i)T + (-40.1 + 8.52i)T^{2} \)
43 \( 1 + (3.54 + 1.57i)T + (28.7 + 31.9i)T^{2} \)
47 \( 1 + (-0.962 - 0.698i)T + (14.5 + 44.6i)T^{2} \)
53 \( 1 + (2.29 + 0.487i)T + (48.4 + 21.5i)T^{2} \)
59 \( 1 + (0.813 - 7.73i)T + (-57.7 - 12.2i)T^{2} \)
61 \( 1 - 2.72T + 61T^{2} \)
67 \( 1 + (-3.71 + 6.42i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-4.98 - 1.05i)T + (64.8 + 28.8i)T^{2} \)
73 \( 1 + (3.60 + 4.00i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (-6.51 + 7.23i)T + (-8.25 - 78.5i)T^{2} \)
83 \( 1 + (0.877 + 8.34i)T + (-81.1 + 17.2i)T^{2} \)
89 \( 1 + (1.57 - 4.84i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (-3.37 + 10.3i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.631646015053375469542278424958, −8.827547386442388932998241045643, −8.206070196262460242282266091819, −7.49624894255615066522820546221, −6.99361537290854156806461364193, −5.93286793691805000600495225060, −4.76719664861256056202519056826, −3.68987770223656490770238357389, −1.76137000115694517783896238306, −1.19760498993459381065031113114, 1.25118120754862596623467659603, 2.50370061639270252552493513804, 3.72066889298551237816894367995, 4.84734834096519023921686264839, 5.49567126174240933453052035139, 6.62653289412077995976165427421, 7.973677293390664691760373599340, 8.822004559437516743974066929981, 9.327615990073298388907778703112, 10.00205057223140824866486687910

Graph of the $Z$-function along the critical line