Properties

Label 961.2.g.m.338.1
Level $961$
Weight $2$
Character 961.338
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,6,-3,-11,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 338.1
Root \(0.176392i\) of defining polynomial
Character \(\chi\) \(=\) 961.338
Dual form 961.2.g.m.816.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.996848 + 0.724253i) q^{2} +(0.216894 - 2.06361i) q^{3} +(-0.148869 + 0.458173i) q^{4} +(0.772811 - 1.33855i) q^{5} +(1.27836 + 2.21419i) q^{6} +(3.72064 - 0.790846i) q^{7} +(-0.944957 - 2.90828i) q^{8} +(-1.27699 - 0.271433i) q^{9} +(0.199072 + 1.89404i) q^{10} +(2.51695 + 2.79536i) q^{11} +(0.913200 + 0.406583i) q^{12} +(2.40725 - 1.07178i) q^{13} +(-3.13614 + 3.48303i) q^{14} +(-2.59462 - 1.88510i) q^{15} +(2.26882 + 1.64839i) q^{16} +(-2.52553 + 2.80488i) q^{17} +(1.46955 - 0.654287i) q^{18} +(5.57109 + 2.48041i) q^{19} +(0.498239 + 0.553350i) q^{20} +(-0.825012 - 7.84947i) q^{21} +(-4.53356 - 0.963639i) q^{22} +(-0.281158 - 0.865316i) q^{23} +(-6.20650 + 1.31923i) q^{24} +(1.30553 + 2.26124i) q^{25} +(-1.62343 + 2.81186i) q^{26} +(1.08650 - 3.34392i) q^{27} +(-0.191545 + 1.82243i) q^{28} +(-5.50827 + 4.00199i) q^{29} +3.95173 q^{30} +2.66037 q^{32} +(6.31443 - 4.58770i) q^{33} +(0.486124 - 4.62516i) q^{34} +(1.81676 - 5.59143i) q^{35} +(0.314468 - 0.544675i) q^{36} +(-0.907032 - 1.57103i) q^{37} +(-7.34997 + 1.56228i) q^{38} +(-1.68961 - 5.20008i) q^{39} +(-4.62315 - 0.982680i) q^{40} +(-0.0352412 - 0.335298i) q^{41} +(6.50741 + 7.22721i) q^{42} +(-3.54821 - 1.57976i) q^{43} +(-1.65545 + 0.737056i) q^{44} +(-1.35020 + 1.49955i) q^{45} +(0.906980 + 0.658959i) q^{46} +(0.962040 + 0.698963i) q^{47} +(3.89373 - 4.32442i) q^{48} +(6.82288 - 3.03774i) q^{49} +(-2.93912 - 1.30858i) q^{50} +(5.24040 + 5.82006i) q^{51} +(0.132693 + 1.26249i) q^{52} +(-2.29290 - 0.487371i) q^{53} +(1.33876 + 4.12028i) q^{54} +(5.68685 - 1.20878i) q^{55} +(-5.81584 - 10.0733i) q^{56} +(6.32692 - 10.9586i) q^{57} +(2.59245 - 7.97875i) q^{58} +(-0.813109 + 7.73622i) q^{59} +(1.24996 - 0.908151i) q^{60} +2.72343 q^{61} -4.96588 q^{63} +(-7.18962 + 5.22357i) q^{64} +(0.425725 - 4.05050i) q^{65} +(-2.97187 + 9.14649i) q^{66} +(3.71059 - 6.42693i) q^{67} +(-0.909147 - 1.57469i) q^{68} +(-1.84665 + 0.392519i) q^{69} +(2.23857 + 6.88960i) q^{70} +(4.98677 + 1.05997i) q^{71} +(0.417300 + 3.97034i) q^{72} +(-3.60778 - 4.00685i) q^{73} +(2.04199 + 0.909154i) q^{74} +(4.94947 - 2.20364i) q^{75} +(-1.96582 + 2.18326i) q^{76} +(11.5754 + 8.40999i) q^{77} +(5.45046 + 3.95999i) q^{78} +(6.51548 - 7.23617i) q^{79} +(3.95982 - 1.76303i) q^{80} +(-10.2428 - 4.56040i) q^{81} +(0.277970 + 0.308717i) q^{82} +(-0.877532 - 8.34916i) q^{83} +(3.71923 + 0.790547i) q^{84} +(1.80271 + 5.54818i) q^{85} +(4.68117 - 0.995014i) q^{86} +(7.06383 + 12.2349i) q^{87} +(5.75127 - 9.96149i) q^{88} +(-1.57463 + 4.84620i) q^{89} +(0.259892 - 2.47271i) q^{90} +(8.10889 - 5.89146i) q^{91} +0.438320 q^{92} -1.46523 q^{94} +(7.62555 - 5.54028i) q^{95} +(0.577018 - 5.48996i) q^{96} +(3.37268 - 10.3800i) q^{97} +(-4.60129 + 7.96966i) q^{98} +(-2.45537 - 4.25283i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 6 q^{4} - 3 q^{5} - 11 q^{6} - 3 q^{7} - 8 q^{8} + 5 q^{9} + 18 q^{10} + 2 q^{11} + 20 q^{12} + 27 q^{13} - 6 q^{14} - 4 q^{15} - 2 q^{16} + 16 q^{17} + 22 q^{18} - 4 q^{19} - 18 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.996848 + 0.724253i −0.704878 + 0.512124i −0.881517 0.472152i \(-0.843477\pi\)
0.176639 + 0.984276i \(0.443477\pi\)
\(3\) 0.216894 2.06361i 0.125224 1.19142i −0.733755 0.679414i \(-0.762234\pi\)
0.858979 0.512011i \(-0.171099\pi\)
\(4\) −0.148869 + 0.458173i −0.0744347 + 0.229086i
\(5\) 0.772811 1.33855i 0.345612 0.598617i −0.639853 0.768497i \(-0.721005\pi\)
0.985465 + 0.169880i \(0.0543381\pi\)
\(6\) 1.27836 + 2.21419i 0.521890 + 0.903939i
\(7\) 3.72064 0.790846i 1.40627 0.298912i 0.558600 0.829437i \(-0.311339\pi\)
0.847669 + 0.530526i \(0.178005\pi\)
\(8\) −0.944957 2.90828i −0.334093 1.02823i
\(9\) −1.27699 0.271433i −0.425664 0.0904776i
\(10\) 0.199072 + 1.89404i 0.0629520 + 0.598948i
\(11\) 2.51695 + 2.79536i 0.758889 + 0.842832i 0.991550 0.129726i \(-0.0414098\pi\)
−0.232661 + 0.972558i \(0.574743\pi\)
\(12\) 0.913200 + 0.406583i 0.263618 + 0.117370i
\(13\) 2.40725 1.07178i 0.667651 0.297257i −0.0447827 0.998997i \(-0.514260\pi\)
0.712434 + 0.701739i \(0.247593\pi\)
\(14\) −3.13614 + 3.48303i −0.838168 + 0.930880i
\(15\) −2.59462 1.88510i −0.669928 0.486731i
\(16\) 2.26882 + 1.64839i 0.567204 + 0.412098i
\(17\) −2.52553 + 2.80488i −0.612530 + 0.680284i −0.966998 0.254785i \(-0.917995\pi\)
0.354468 + 0.935068i \(0.384662\pi\)
\(18\) 1.46955 0.654287i 0.346377 0.154217i
\(19\) 5.57109 + 2.48041i 1.27810 + 0.569045i 0.929705 0.368305i \(-0.120062\pi\)
0.348390 + 0.937350i \(0.386728\pi\)
\(20\) 0.498239 + 0.553350i 0.111410 + 0.123733i
\(21\) −0.825012 7.84947i −0.180032 1.71289i
\(22\) −4.53356 0.963639i −0.966559 0.205448i
\(23\) −0.281158 0.865316i −0.0586255 0.180431i 0.917455 0.397839i \(-0.130240\pi\)
−0.976081 + 0.217408i \(0.930240\pi\)
\(24\) −6.20650 + 1.31923i −1.26690 + 0.269287i
\(25\) 1.30553 + 2.26124i 0.261105 + 0.452247i
\(26\) −1.62343 + 2.81186i −0.318380 + 0.551450i
\(27\) 1.08650 3.34392i 0.209098 0.643537i
\(28\) −0.191545 + 1.82243i −0.0361986 + 0.344407i
\(29\) −5.50827 + 4.00199i −1.02286 + 0.743151i −0.966867 0.255280i \(-0.917832\pi\)
−0.0559922 + 0.998431i \(0.517832\pi\)
\(30\) 3.95173 0.721485
\(31\) 0 0
\(32\) 2.66037 0.470292
\(33\) 6.31443 4.58770i 1.09920 0.798617i
\(34\) 0.486124 4.62516i 0.0833696 0.793208i
\(35\) 1.81676 5.59143i 0.307089 0.945124i
\(36\) 0.314468 0.544675i 0.0524114 0.0907792i
\(37\) −0.907032 1.57103i −0.149115 0.258275i 0.781786 0.623547i \(-0.214309\pi\)
−0.930901 + 0.365272i \(0.880976\pi\)
\(38\) −7.34997 + 1.56228i −1.19232 + 0.253436i
\(39\) −1.68961 5.20008i −0.270554 0.832680i
\(40\) −4.62315 0.982680i −0.730984 0.155375i
\(41\) −0.0352412 0.335298i −0.00550375 0.0523647i 0.991425 0.130675i \(-0.0417143\pi\)
−0.996929 + 0.0783099i \(0.975048\pi\)
\(42\) 6.50741 + 7.22721i 1.00411 + 1.11518i
\(43\) −3.54821 1.57976i −0.541096 0.240912i 0.117943 0.993020i \(-0.462370\pi\)
−0.659039 + 0.752109i \(0.729037\pi\)
\(44\) −1.65545 + 0.737056i −0.249569 + 0.111115i
\(45\) −1.35020 + 1.49955i −0.201276 + 0.223540i
\(46\) 0.906980 + 0.658959i 0.133727 + 0.0971582i
\(47\) 0.962040 + 0.698963i 0.140328 + 0.101954i 0.655735 0.754992i \(-0.272359\pi\)
−0.515407 + 0.856946i \(0.672359\pi\)
\(48\) 3.89373 4.32442i 0.562011 0.624177i
\(49\) 6.82288 3.03774i 0.974698 0.433963i
\(50\) −2.93912 1.30858i −0.415654 0.185061i
\(51\) 5.24040 + 5.82006i 0.733803 + 0.814971i
\(52\) 0.132693 + 1.26249i 0.0184012 + 0.175076i
\(53\) −2.29290 0.487371i −0.314954 0.0669456i 0.0477225 0.998861i \(-0.484804\pi\)
−0.362677 + 0.931915i \(0.618137\pi\)
\(54\) 1.33876 + 4.12028i 0.182182 + 0.560699i
\(55\) 5.68685 1.20878i 0.766815 0.162991i
\(56\) −5.81584 10.0733i −0.777175 1.34611i
\(57\) 6.32692 10.9586i 0.838022 1.45150i
\(58\) 2.59245 7.97875i 0.340406 1.04766i
\(59\) −0.813109 + 7.73622i −0.105858 + 1.00717i 0.804670 + 0.593722i \(0.202342\pi\)
−0.910528 + 0.413448i \(0.864324\pi\)
\(60\) 1.24996 0.908151i 0.161369 0.117242i
\(61\) 2.72343 0.348700 0.174350 0.984684i \(-0.444218\pi\)
0.174350 + 0.984684i \(0.444218\pi\)
\(62\) 0 0
\(63\) −4.96588 −0.625642
\(64\) −7.18962 + 5.22357i −0.898703 + 0.652946i
\(65\) 0.425725 4.05050i 0.0528047 0.502403i
\(66\) −2.97187 + 9.14649i −0.365812 + 1.12586i
\(67\) 3.71059 6.42693i 0.453321 0.785175i −0.545269 0.838261i \(-0.683573\pi\)
0.998590 + 0.0530864i \(0.0169059\pi\)
\(68\) −0.909147 1.57469i −0.110250 0.190959i
\(69\) −1.84665 + 0.392519i −0.222311 + 0.0472537i
\(70\) 2.23857 + 6.88960i 0.267560 + 0.823465i
\(71\) 4.98677 + 1.05997i 0.591821 + 0.125795i 0.494080 0.869416i \(-0.335505\pi\)
0.0977410 + 0.995212i \(0.468838\pi\)
\(72\) 0.417300 + 3.97034i 0.0491792 + 0.467909i
\(73\) −3.60778 4.00685i −0.422259 0.468966i 0.494053 0.869432i \(-0.335515\pi\)
−0.916312 + 0.400466i \(0.868848\pi\)
\(74\) 2.04199 + 0.909154i 0.237377 + 0.105687i
\(75\) 4.94947 2.20364i 0.571515 0.254455i
\(76\) −1.96582 + 2.18326i −0.225495 + 0.250438i
\(77\) 11.5754 + 8.40999i 1.31913 + 0.958407i
\(78\) 5.45046 + 3.95999i 0.617143 + 0.448380i
\(79\) 6.51548 7.23617i 0.733048 0.814133i −0.255216 0.966884i \(-0.582147\pi\)
0.988265 + 0.152751i \(0.0488134\pi\)
\(80\) 3.95982 1.76303i 0.442721 0.197112i
\(81\) −10.2428 4.56040i −1.13809 0.506711i
\(82\) 0.277970 + 0.308717i 0.0306967 + 0.0340921i
\(83\) −0.877532 8.34916i −0.0963216 0.916439i −0.930832 0.365447i \(-0.880916\pi\)
0.834511 0.550992i \(-0.185751\pi\)
\(84\) 3.71923 + 0.790547i 0.405801 + 0.0862558i
\(85\) 1.80271 + 5.54818i 0.195532 + 0.601785i
\(86\) 4.68117 0.995014i 0.504784 0.107295i
\(87\) 7.06383 + 12.2349i 0.757322 + 1.31172i
\(88\) 5.75127 9.96149i 0.613087 1.06190i
\(89\) −1.57463 + 4.84620i −0.166910 + 0.513696i −0.999172 0.0406863i \(-0.987046\pi\)
0.832262 + 0.554383i \(0.187046\pi\)
\(90\) 0.259892 2.47271i 0.0273950 0.260646i
\(91\) 8.10889 5.89146i 0.850043 0.617592i
\(92\) 0.438320 0.0456980
\(93\) 0 0
\(94\) −1.46523 −0.151127
\(95\) 7.62555 5.54028i 0.782365 0.568421i
\(96\) 0.577018 5.48996i 0.0588917 0.560317i
\(97\) 3.37268 10.3800i 0.342444 1.05393i −0.620494 0.784211i \(-0.713068\pi\)
0.962938 0.269723i \(-0.0869320\pi\)
\(98\) −4.60129 + 7.96966i −0.464800 + 0.805057i
\(99\) −2.45537 4.25283i −0.246774 0.427426i
\(100\) −1.23039 + 0.261527i −0.123039 + 0.0261527i
\(101\) −0.123213 0.379212i −0.0122602 0.0377330i 0.944739 0.327823i \(-0.106315\pi\)
−0.956999 + 0.290090i \(0.906315\pi\)
\(102\) −9.43908 2.00634i −0.934608 0.198657i
\(103\) −0.342519 3.25885i −0.0337494 0.321104i −0.998352 0.0573947i \(-0.981721\pi\)
0.964602 0.263709i \(-0.0849460\pi\)
\(104\) −5.39177 5.98817i −0.528707 0.587189i
\(105\) −11.1445 4.96184i −1.08759 0.484226i
\(106\) 2.63865 1.17480i 0.256289 0.114107i
\(107\) 2.11234 2.34599i 0.204208 0.226796i −0.632338 0.774693i \(-0.717905\pi\)
0.836546 + 0.547897i \(0.184571\pi\)
\(108\) 1.37035 + 0.995614i 0.131862 + 0.0958030i
\(109\) −5.62770 4.08876i −0.539036 0.391632i 0.284691 0.958619i \(-0.408109\pi\)
−0.823727 + 0.566987i \(0.808109\pi\)
\(110\) −4.79347 + 5.32368i −0.457039 + 0.507593i
\(111\) −3.43871 + 1.53101i −0.326388 + 0.145317i
\(112\) 9.74507 + 4.33878i 0.920822 + 0.409977i
\(113\) −10.2021 11.3306i −0.959732 1.06589i −0.997779 0.0666144i \(-0.978780\pi\)
0.0380468 0.999276i \(-0.487886\pi\)
\(114\) 1.62978 + 15.5063i 0.152643 + 1.45230i
\(115\) −1.37555 0.292382i −0.128271 0.0272648i
\(116\) −1.01359 3.11951i −0.0941096 0.289639i
\(117\) −3.36495 + 0.715243i −0.311090 + 0.0661242i
\(118\) −4.79243 8.30073i −0.441179 0.764144i
\(119\) −7.17834 + 12.4332i −0.658037 + 1.13975i
\(120\) −3.03060 + 9.32722i −0.276655 + 0.851455i
\(121\) −0.329167 + 3.13181i −0.0299243 + 0.284710i
\(122\) −2.71485 + 1.97245i −0.245791 + 0.178578i
\(123\) −0.699567 −0.0630778
\(124\) 0 0
\(125\) 11.7638 1.05219
\(126\) 4.95023 3.59655i 0.441002 0.320407i
\(127\) −2.11423 + 20.1156i −0.187608 + 1.78497i 0.344997 + 0.938604i \(0.387880\pi\)
−0.532605 + 0.846364i \(0.678787\pi\)
\(128\) 1.73958 5.35388i 0.153759 0.473220i
\(129\) −4.02960 + 6.97946i −0.354786 + 0.614508i
\(130\) 2.50920 + 4.34607i 0.220072 + 0.381175i
\(131\) −12.3748 + 2.63035i −1.08119 + 0.229815i −0.713870 0.700279i \(-0.753059\pi\)
−0.367323 + 0.930093i \(0.619726\pi\)
\(132\) 1.16194 + 3.57607i 0.101134 + 0.311257i
\(133\) 22.6896 + 4.82283i 1.96744 + 0.418192i
\(134\) 0.955826 + 9.09408i 0.0825708 + 0.785609i
\(135\) −3.63633 4.03856i −0.312966 0.347584i
\(136\) 10.5439 + 4.69444i 0.904131 + 0.402545i
\(137\) 9.02401 4.01775i 0.770974 0.343260i 0.0167349 0.999860i \(-0.494673\pi\)
0.754239 + 0.656600i \(0.228006\pi\)
\(138\) 1.55655 1.72873i 0.132502 0.147159i
\(139\) −12.5389 9.11007i −1.06354 0.772706i −0.0887990 0.996050i \(-0.528303\pi\)
−0.974740 + 0.223343i \(0.928303\pi\)
\(140\) 2.29138 + 1.66479i 0.193657 + 0.140700i
\(141\) 1.65105 1.83367i 0.139043 0.154423i
\(142\) −5.73874 + 2.55505i −0.481585 + 0.214415i
\(143\) 9.05493 + 4.03151i 0.757211 + 0.337132i
\(144\) −2.44983 2.72081i −0.204153 0.226735i
\(145\) 1.10001 + 10.4659i 0.0913506 + 0.869143i
\(146\) 6.49838 + 1.38127i 0.537810 + 0.114315i
\(147\) −4.78887 14.7386i −0.394979 1.21562i
\(148\) 0.854831 0.181700i 0.0702666 0.0149356i
\(149\) 7.62162 + 13.2010i 0.624388 + 1.08147i 0.988659 + 0.150178i \(0.0479848\pi\)
−0.364271 + 0.931293i \(0.618682\pi\)
\(150\) −3.33787 + 5.78136i −0.272536 + 0.472046i
\(151\) 0.0809093 0.249013i 0.00658430 0.0202644i −0.947710 0.319132i \(-0.896609\pi\)
0.954295 + 0.298867i \(0.0966088\pi\)
\(152\) 1.94928 18.5462i 0.158107 1.50429i
\(153\) 3.98641 2.89630i 0.322282 0.234152i
\(154\) −17.6298 −1.42065
\(155\) 0 0
\(156\) 2.63407 0.210894
\(157\) −12.8848 + 9.36138i −1.02832 + 0.747120i −0.967972 0.251058i \(-0.919222\pi\)
−0.0603497 + 0.998177i \(0.519222\pi\)
\(158\) −1.25413 + 11.9322i −0.0997729 + 0.949276i
\(159\) −1.50306 + 4.62594i −0.119200 + 0.366861i
\(160\) 2.05597 3.56104i 0.162538 0.281525i
\(161\) −1.73042 2.99717i −0.136376 0.236210i
\(162\) 13.5134 2.87237i 1.06172 0.225675i
\(163\) −0.0411534 0.126657i −0.00322339 0.00992056i 0.949432 0.313973i \(-0.101660\pi\)
−0.952655 + 0.304053i \(0.901660\pi\)
\(164\) 0.158871 + 0.0337690i 0.0124057 + 0.00263692i
\(165\) −1.26100 11.9976i −0.0981686 0.934012i
\(166\) 6.92166 + 7.68729i 0.537225 + 0.596649i
\(167\) 3.60739 + 1.60611i 0.279148 + 0.124285i 0.541536 0.840678i \(-0.317843\pi\)
−0.262387 + 0.964963i \(0.584510\pi\)
\(168\) −22.0488 + 9.81677i −1.70110 + 0.757380i
\(169\) −4.05255 + 4.50081i −0.311735 + 0.346216i
\(170\) −5.81532 4.22508i −0.446015 0.324049i
\(171\) −6.44097 4.67964i −0.492553 0.357861i
\(172\) 1.25202 1.39051i 0.0954659 0.106026i
\(173\) −13.2071 + 5.88017i −1.00412 + 0.447061i −0.841865 0.539689i \(-0.818542\pi\)
−0.162250 + 0.986750i \(0.551875\pi\)
\(174\) −15.9027 7.08035i −1.20558 0.536760i
\(175\) 6.64567 + 7.38077i 0.502366 + 0.557934i
\(176\) 1.10266 + 10.4911i 0.0831159 + 0.790795i
\(177\) 15.7882 + 3.35588i 1.18671 + 0.252243i
\(178\) −1.94021 5.97136i −0.145425 0.447572i
\(179\) −17.3327 + 3.68417i −1.29550 + 0.275368i −0.803542 0.595248i \(-0.797054\pi\)
−0.491962 + 0.870616i \(0.663720\pi\)
\(180\) −0.486049 0.841862i −0.0362280 0.0627487i
\(181\) −6.02958 + 10.4435i −0.448175 + 0.776262i −0.998267 0.0588418i \(-0.981259\pi\)
0.550092 + 0.835104i \(0.314593\pi\)
\(182\) −3.81643 + 11.7458i −0.282893 + 0.870655i
\(183\) 0.590696 5.62010i 0.0436655 0.415450i
\(184\) −2.25090 + 1.63537i −0.165938 + 0.120561i
\(185\) −2.80386 −0.206144
\(186\) 0 0
\(187\) −14.1973 −1.03821
\(188\) −0.463464 + 0.336727i −0.0338016 + 0.0245583i
\(189\) 1.39797 13.3008i 0.101687 0.967488i
\(190\) −3.58895 + 11.0456i −0.260370 + 0.801335i
\(191\) −2.53576 + 4.39207i −0.183481 + 0.317799i −0.943064 0.332612i \(-0.892070\pi\)
0.759583 + 0.650411i \(0.225403\pi\)
\(192\) 9.22001 + 15.9695i 0.665397 + 1.15250i
\(193\) 19.6038 4.16691i 1.41111 0.299941i 0.561555 0.827439i \(-0.310203\pi\)
0.849556 + 0.527498i \(0.176870\pi\)
\(194\) 4.15572 + 12.7900i 0.298364 + 0.918269i
\(195\) −8.26631 1.75706i −0.591963 0.125826i
\(196\) 0.376093 + 3.57829i 0.0268638 + 0.255592i
\(197\) −14.5257 16.1325i −1.03492 1.14939i −0.988616 0.150462i \(-0.951924\pi\)
−0.0462995 0.998928i \(-0.514743\pi\)
\(198\) 5.52776 + 2.46112i 0.392841 + 0.174904i
\(199\) −13.8544 + 6.16837i −0.982111 + 0.437264i −0.834035 0.551712i \(-0.813975\pi\)
−0.148076 + 0.988976i \(0.547308\pi\)
\(200\) 5.34264 5.93360i 0.377782 0.419569i
\(201\) −12.4579 9.05117i −0.878710 0.638420i
\(202\) 0.397470 + 0.288779i 0.0279659 + 0.0203184i
\(203\) −17.3293 + 19.2461i −1.21628 + 1.35081i
\(204\) −3.44673 + 1.53458i −0.241319 + 0.107442i
\(205\) −0.476047 0.211950i −0.0332486 0.0148032i
\(206\) 2.70167 + 3.00051i 0.188234 + 0.209055i
\(207\) 0.124161 + 1.18132i 0.00862981 + 0.0821072i
\(208\) 7.22832 + 1.53643i 0.501194 + 0.106532i
\(209\) 7.08853 + 21.8162i 0.490324 + 1.50906i
\(210\) 14.7030 3.12521i 1.01460 0.215660i
\(211\) −3.15220 5.45978i −0.217007 0.375867i 0.736885 0.676018i \(-0.236296\pi\)
−0.953891 + 0.300152i \(0.902963\pi\)
\(212\) 0.564643 0.977990i 0.0387798 0.0671687i
\(213\) 3.26897 10.0608i 0.223986 0.689358i
\(214\) −0.406593 + 3.86847i −0.0277941 + 0.264443i
\(215\) −4.85668 + 3.52859i −0.331223 + 0.240648i
\(216\) −10.7517 −0.731564
\(217\) 0 0
\(218\) 8.57126 0.580519
\(219\) −9.05107 + 6.57598i −0.611614 + 0.444364i
\(220\) −0.292769 + 2.78551i −0.0197385 + 0.187799i
\(221\) −3.07337 + 9.45885i −0.206737 + 0.636271i
\(222\) 2.31903 4.01668i 0.155643 0.269582i
\(223\) 3.69455 + 6.39915i 0.247406 + 0.428519i 0.962805 0.270196i \(-0.0870887\pi\)
−0.715400 + 0.698716i \(0.753755\pi\)
\(224\) 9.89828 2.10394i 0.661356 0.140576i
\(225\) −1.05337 3.24194i −0.0702247 0.216129i
\(226\) 18.3761 + 3.90597i 1.22236 + 0.259821i
\(227\) −2.01111 19.1344i −0.133482 1.26999i −0.832151 0.554549i \(-0.812891\pi\)
0.698669 0.715445i \(-0.253776\pi\)
\(228\) 4.07903 + 4.53022i 0.270140 + 0.300021i
\(229\) 5.56085 + 2.47585i 0.367471 + 0.163609i 0.582161 0.813074i \(-0.302207\pi\)
−0.214690 + 0.976682i \(0.568874\pi\)
\(230\) 1.58297 0.704785i 0.104378 0.0464721i
\(231\) 19.8655 22.0629i 1.30706 1.45163i
\(232\) 16.8440 + 12.2379i 1.10586 + 0.803455i
\(233\) −14.1805 10.3027i −0.928995 0.674954i 0.0167519 0.999860i \(-0.494667\pi\)
−0.945746 + 0.324906i \(0.894667\pi\)
\(234\) 2.83633 3.15007i 0.185417 0.205926i
\(235\) 1.67907 0.747571i 0.109531 0.0487662i
\(236\) −3.42348 1.52423i −0.222849 0.0992190i
\(237\) −13.5194 15.0149i −0.878183 0.975320i
\(238\) −1.84910 17.5930i −0.119859 1.14038i
\(239\) −27.3021 5.80324i −1.76603 0.375380i −0.793572 0.608476i \(-0.791781\pi\)
−0.972454 + 0.233096i \(0.925114\pi\)
\(240\) −2.77933 8.55391i −0.179405 0.552152i
\(241\) 22.2526 4.72994i 1.43342 0.304682i 0.575218 0.818000i \(-0.304917\pi\)
0.858198 + 0.513318i \(0.171584\pi\)
\(242\) −1.94010 3.36034i −0.124714 0.216011i
\(243\) −6.35849 + 11.0132i −0.407897 + 0.706499i
\(244\) −0.405436 + 1.24780i −0.0259554 + 0.0798824i
\(245\) 1.20663 11.4804i 0.0770891 0.733453i
\(246\) 0.697362 0.506663i 0.0444622 0.0323037i
\(247\) 16.0694 1.02247
\(248\) 0 0
\(249\) −17.4197 −1.10393
\(250\) −11.7267 + 8.51997i −0.741664 + 0.538850i
\(251\) −1.69697 + 16.1456i −0.107112 + 1.01910i 0.800513 + 0.599316i \(0.204561\pi\)
−0.907624 + 0.419783i \(0.862106\pi\)
\(252\) 0.739268 2.27523i 0.0465695 0.143326i
\(253\) 1.71121 2.96390i 0.107583 0.186339i
\(254\) −12.4612 21.5834i −0.781884 1.35426i
\(255\) 11.8403 2.51673i 0.741467 0.157604i
\(256\) −3.34892 10.3069i −0.209307 0.644182i
\(257\) −22.8418 4.85518i −1.42483 0.302858i −0.569950 0.821679i \(-0.693037\pi\)
−0.854882 + 0.518822i \(0.826371\pi\)
\(258\) −1.03800 9.87591i −0.0646231 0.614847i
\(259\) −4.61718 5.12789i −0.286897 0.318632i
\(260\) 1.79245 + 0.798052i 0.111163 + 0.0494931i
\(261\) 8.12028 3.61538i 0.502633 0.223786i
\(262\) 10.4308 11.5846i 0.644416 0.715696i
\(263\) −8.40921 6.10965i −0.518534 0.376737i 0.297517 0.954716i \(-0.403841\pi\)
−0.816051 + 0.577979i \(0.803841\pi\)
\(264\) −19.3092 14.0289i −1.18840 0.863422i
\(265\) −2.42435 + 2.69251i −0.148927 + 0.165400i
\(266\) −26.1110 + 11.6254i −1.60097 + 0.712798i
\(267\) 9.65913 + 4.30052i 0.591129 + 0.263188i
\(268\) 2.39225 + 2.65687i 0.146130 + 0.162294i
\(269\) −0.461812 4.39384i −0.0281571 0.267897i −0.999539 0.0303726i \(-0.990331\pi\)
0.971381 0.237525i \(-0.0763361\pi\)
\(270\) 6.54981 + 1.39220i 0.398609 + 0.0847269i
\(271\) −1.90134 5.85172i −0.115498 0.355467i 0.876552 0.481306i \(-0.159838\pi\)
−0.992051 + 0.125840i \(0.959838\pi\)
\(272\) −10.3535 + 2.20070i −0.627773 + 0.133437i
\(273\) −10.3989 18.0114i −0.629369 1.09010i
\(274\) −6.08571 + 10.5408i −0.367651 + 0.636790i
\(275\) −3.03502 + 9.34083i −0.183019 + 0.563273i
\(276\) 0.0950690 0.904521i 0.00572248 0.0544458i
\(277\) 17.8367 12.9591i 1.07171 0.778639i 0.0954872 0.995431i \(-0.469559\pi\)
0.976218 + 0.216791i \(0.0695591\pi\)
\(278\) 19.0974 1.14539
\(279\) 0 0
\(280\) −17.9782 −1.07440
\(281\) 24.8963 18.0882i 1.48519 1.07905i 0.509353 0.860557i \(-0.329885\pi\)
0.975838 0.218497i \(-0.0701154\pi\)
\(282\) −0.317800 + 3.02367i −0.0189247 + 0.180057i
\(283\) −6.59605 + 20.3005i −0.392094 + 1.20674i 0.539107 + 0.842237i \(0.318762\pi\)
−0.931202 + 0.364505i \(0.881238\pi\)
\(284\) −1.22803 + 2.12701i −0.0728701 + 0.126215i
\(285\) −9.77904 16.9378i −0.579260 1.00331i
\(286\) −11.9462 + 2.53925i −0.706395 + 0.150149i
\(287\) −0.396289 1.21965i −0.0233922 0.0719937i
\(288\) −3.39727 0.722112i −0.200186 0.0425509i
\(289\) 0.287909 + 2.73927i 0.0169358 + 0.161134i
\(290\) −8.67647 9.63619i −0.509500 0.565857i
\(291\) −20.6888 9.21126i −1.21280 0.539974i
\(292\) 2.37292 1.05649i 0.138864 0.0618264i
\(293\) −1.20378 + 1.33694i −0.0703258 + 0.0781047i −0.777281 0.629154i \(-0.783402\pi\)
0.706955 + 0.707258i \(0.250068\pi\)
\(294\) 15.4483 + 11.2238i 0.900961 + 0.654587i
\(295\) 9.72692 + 7.06702i 0.566323 + 0.411458i
\(296\) −3.71187 + 4.12245i −0.215748 + 0.239613i
\(297\) 12.0821 5.37931i 0.701076 0.312139i
\(298\) −17.1585 7.63945i −0.993965 0.442542i
\(299\) −1.60424 1.78169i −0.0927758 0.103038i
\(300\) 0.272826 + 2.59577i 0.0157516 + 0.149867i
\(301\) −14.4509 3.07164i −0.832938 0.177046i
\(302\) 0.0996942 + 0.306827i 0.00573676 + 0.0176559i
\(303\) −0.809269 + 0.172015i −0.0464913 + 0.00988203i
\(304\) 8.55109 + 14.8109i 0.490439 + 0.849465i
\(305\) 2.10470 3.64545i 0.120515 0.208738i
\(306\) −1.87620 + 5.77434i −0.107255 + 0.330097i
\(307\) −2.79816 + 26.6228i −0.159700 + 1.51944i 0.561943 + 0.827176i \(0.310054\pi\)
−0.721643 + 0.692265i \(0.756613\pi\)
\(308\) −5.57645 + 4.05153i −0.317748 + 0.230857i
\(309\) −6.79928 −0.386798
\(310\) 0 0
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) −13.5267 + 9.82771i −0.765798 + 0.556384i
\(313\) −1.18565 + 11.2807i −0.0670168 + 0.637622i 0.908528 + 0.417823i \(0.137207\pi\)
−0.975545 + 0.219799i \(0.929460\pi\)
\(314\) 6.06422 18.6638i 0.342224 1.05326i
\(315\) −3.83769 + 6.64708i −0.216229 + 0.374520i
\(316\) 2.34546 + 4.06246i 0.131943 + 0.228531i
\(317\) −25.3158 + 5.38103i −1.42188 + 0.302229i −0.853737 0.520704i \(-0.825669\pi\)
−0.568138 + 0.822933i \(0.692336\pi\)
\(318\) −1.85203 5.69996i −0.103857 0.319638i
\(319\) −25.0510 5.32476i −1.40259 0.298129i
\(320\) 1.43578 + 13.6605i 0.0802623 + 0.763644i
\(321\) −4.38306 4.86788i −0.244638 0.271698i
\(322\) 3.89568 + 1.73447i 0.217098 + 0.0966581i
\(323\) −21.0272 + 9.36190i −1.16998 + 0.520910i
\(324\) 3.61430 4.01408i 0.200794 0.223005i
\(325\) 5.56627 + 4.04413i 0.308761 + 0.224328i
\(326\) 0.132756 + 0.0964526i 0.00735265 + 0.00534202i
\(327\) −9.65822 + 10.7265i −0.534101 + 0.593179i
\(328\) −0.941838 + 0.419333i −0.0520043 + 0.0231538i
\(329\) 4.13217 + 1.83976i 0.227814 + 0.101429i
\(330\) 9.94632 + 11.0465i 0.547527 + 0.608090i
\(331\) 0.0800466 + 0.761593i 0.00439976 + 0.0418609i 0.996502 0.0835749i \(-0.0266338\pi\)
−0.992102 + 0.125436i \(0.959967\pi\)
\(332\) 3.95600 + 0.840873i 0.217113 + 0.0461489i
\(333\) 0.731844 + 2.25238i 0.0401048 + 0.123430i
\(334\) −4.75925 + 1.01161i −0.260415 + 0.0553528i
\(335\) −5.73517 9.93361i −0.313346 0.542731i
\(336\) 11.0672 19.1689i 0.603765 1.04575i
\(337\) −0.739892 + 2.27715i −0.0403045 + 0.124044i −0.969184 0.246337i \(-0.920773\pi\)
0.928880 + 0.370381i \(0.120773\pi\)
\(338\) 0.780052 7.42170i 0.0424292 0.403687i
\(339\) −25.5946 + 18.5956i −1.39011 + 1.00997i
\(340\) −2.81040 −0.152415
\(341\) 0 0
\(342\) 9.80991 0.530459
\(343\) 1.44195 1.04764i 0.0778580 0.0565672i
\(344\) −1.24149 + 11.8120i −0.0669366 + 0.636859i
\(345\) −0.901710 + 2.77518i −0.0485465 + 0.149411i
\(346\) 8.90672 15.4269i 0.478828 0.829355i
\(347\) 2.82890 + 4.89980i 0.151863 + 0.263035i 0.931912 0.362683i \(-0.118139\pi\)
−0.780049 + 0.625718i \(0.784806\pi\)
\(348\) −6.65729 + 1.41505i −0.356868 + 0.0758547i
\(349\) 8.98238 + 27.6449i 0.480816 + 1.47980i 0.837950 + 0.545746i \(0.183754\pi\)
−0.357134 + 0.934053i \(0.616246\pi\)
\(350\) −11.9703 2.54436i −0.639838 0.136002i
\(351\) −0.968445 9.21414i −0.0516918 0.491814i
\(352\) 6.69603 + 7.43669i 0.356899 + 0.396377i
\(353\) 17.6088 + 7.83993i 0.937220 + 0.417277i 0.817759 0.575561i \(-0.195216\pi\)
0.119462 + 0.992839i \(0.461883\pi\)
\(354\) −18.1689 + 8.08932i −0.965666 + 0.429942i
\(355\) 5.27266 5.85588i 0.279844 0.310798i
\(356\) −1.98598 1.44290i −0.105257 0.0764737i
\(357\) 24.1004 + 17.5100i 1.27553 + 0.926726i
\(358\) 14.6098 16.2258i 0.772150 0.857560i
\(359\) 9.44996 4.20739i 0.498750 0.222058i −0.141914 0.989879i \(-0.545326\pi\)
0.640664 + 0.767821i \(0.278659\pi\)
\(360\) 5.63699 + 2.50975i 0.297095 + 0.132275i
\(361\) 12.1711 + 13.5174i 0.640585 + 0.711441i
\(362\) −1.55318 14.7776i −0.0816336 0.776691i
\(363\) 6.39144 + 1.35854i 0.335464 + 0.0713050i
\(364\) 1.49214 + 4.59233i 0.0782094 + 0.240704i
\(365\) −8.15149 + 1.73265i −0.426669 + 0.0906912i
\(366\) 3.48154 + 6.03020i 0.181983 + 0.315203i
\(367\) −0.0682819 + 0.118268i −0.00356428 + 0.00617352i −0.867802 0.496910i \(-0.834468\pi\)
0.864238 + 0.503084i \(0.167801\pi\)
\(368\) 0.788484 2.42670i 0.0411025 0.126501i
\(369\) −0.0460081 + 0.437738i −0.00239509 + 0.0227877i
\(370\) 2.79502 2.03070i 0.145306 0.105571i
\(371\) −8.91649 −0.462921
\(372\) 0 0
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) 14.1525 10.2824i 0.731810 0.531691i
\(375\) 2.55150 24.2759i 0.131759 1.25360i
\(376\) 1.12369 3.45837i 0.0579500 0.178352i
\(377\) −8.97053 + 15.5374i −0.462006 + 0.800218i
\(378\) 8.23955 + 14.2713i 0.423797 + 0.734038i
\(379\) 4.50744 0.958085i 0.231531 0.0492135i −0.0906847 0.995880i \(-0.528906\pi\)
0.322216 + 0.946666i \(0.395572\pi\)
\(380\) 1.40320 + 4.31860i 0.0719825 + 0.221539i
\(381\) 41.0521 + 8.72589i 2.10316 + 0.447041i
\(382\) −0.653197 6.21475i −0.0334205 0.317974i
\(383\) 21.6094 + 23.9997i 1.10419 + 1.22633i 0.971969 + 0.235107i \(0.0755441\pi\)
0.132221 + 0.991220i \(0.457789\pi\)
\(384\) −10.6710 4.75103i −0.544552 0.242450i
\(385\) 20.2027 8.99484i 1.02963 0.458420i
\(386\) −16.5241 + 18.3519i −0.841055 + 0.934086i
\(387\) 4.10223 + 2.98044i 0.208528 + 0.151504i
\(388\) 4.25377 + 3.09054i 0.215952 + 0.156898i
\(389\) 23.6011 26.2117i 1.19662 1.32898i 0.265573 0.964091i \(-0.414439\pi\)
0.931049 0.364893i \(-0.118895\pi\)
\(390\) 9.51281 4.23538i 0.481700 0.214467i
\(391\) 3.13718 + 1.39676i 0.158654 + 0.0706373i
\(392\) −15.2819 16.9723i −0.771854 0.857231i
\(393\) 2.74399 + 26.1073i 0.138416 + 1.31694i
\(394\) 26.1639 + 5.56131i 1.31812 + 0.280175i
\(395\) −4.65073 14.3135i −0.234004 0.720189i
\(396\) 2.31406 0.491869i 0.116286 0.0247174i
\(397\) 2.01701 + 3.49356i 0.101231 + 0.175337i 0.912192 0.409763i \(-0.134389\pi\)
−0.810961 + 0.585100i \(0.801055\pi\)
\(398\) 9.34326 16.1830i 0.468335 0.811181i
\(399\) 14.8737 45.7764i 0.744614 2.29169i
\(400\) −0.765406 + 7.28235i −0.0382703 + 0.364117i
\(401\) 20.1309 14.6260i 1.00529 0.730387i 0.0420750 0.999114i \(-0.486603\pi\)
0.963216 + 0.268728i \(0.0866032\pi\)
\(402\) 18.9739 0.946334
\(403\) 0 0
\(404\) 0.192087 0.00955671
\(405\) −14.0201 + 10.1862i −0.696664 + 0.506156i
\(406\) 3.33562 31.7363i 0.165544 1.57504i
\(407\) 2.10862 6.48967i 0.104521 0.321681i
\(408\) 11.9744 20.7403i 0.592821 1.02680i
\(409\) 1.75361 + 3.03734i 0.0867105 + 0.150187i 0.906119 0.423023i \(-0.139031\pi\)
−0.819408 + 0.573210i \(0.805698\pi\)
\(410\) 0.628052 0.133497i 0.0310173 0.00659293i
\(411\) −6.33381 19.4935i −0.312424 0.961541i
\(412\) 1.54411 + 0.328210i 0.0760728 + 0.0161698i
\(413\) 3.09287 + 29.4267i 0.152190 + 1.44799i
\(414\) −0.979342 1.08767i −0.0481320 0.0534560i
\(415\) −11.8539 5.27770i −0.581886 0.259072i
\(416\) 6.40418 2.85132i 0.313991 0.139798i
\(417\) −21.5192 + 23.8995i −1.05380 + 1.17037i
\(418\) −22.8667 16.6136i −1.11844 0.812598i
\(419\) −3.33340 2.42186i −0.162847 0.118316i 0.503377 0.864067i \(-0.332091\pi\)
−0.666224 + 0.745751i \(0.732091\pi\)
\(420\) 3.93245 4.36743i 0.191884 0.213109i
\(421\) 25.2151 11.2265i 1.22891 0.547146i 0.313469 0.949598i \(-0.398509\pi\)
0.915441 + 0.402452i \(0.131842\pi\)
\(422\) 7.09653 + 3.15958i 0.345454 + 0.153806i
\(423\) −1.03880 1.15370i −0.0505080 0.0560948i
\(424\) 0.749282 + 7.12894i 0.0363883 + 0.346212i
\(425\) −9.63964 2.04897i −0.467591 0.0993895i
\(426\) 4.02793 + 12.3967i 0.195154 + 0.600622i
\(427\) 10.1329 2.15382i 0.490366 0.104230i
\(428\) 0.760408 + 1.31706i 0.0367557 + 0.0636627i
\(429\) 10.2834 17.8114i 0.496488 0.859943i
\(430\) 2.28579 7.03493i 0.110230 0.339255i
\(431\) 1.55475 14.7925i 0.0748897 0.712528i −0.891075 0.453855i \(-0.850048\pi\)
0.965965 0.258672i \(-0.0832850\pi\)
\(432\) 7.97717 5.79575i 0.383802 0.278848i
\(433\) −9.26195 −0.445101 −0.222550 0.974921i \(-0.571438\pi\)
−0.222550 + 0.974921i \(0.571438\pi\)
\(434\) 0 0
\(435\) 21.8360 1.04696
\(436\) 2.71115 1.96977i 0.129841 0.0943348i
\(437\) 0.579980 5.51814i 0.0277442 0.263968i
\(438\) 4.25987 13.1105i 0.203544 0.626445i
\(439\) −8.85909 + 15.3444i −0.422821 + 0.732348i −0.996214 0.0869324i \(-0.972294\pi\)
0.573393 + 0.819281i \(0.305627\pi\)
\(440\) −8.88929 15.3967i −0.423780 0.734009i
\(441\) −9.53731 + 2.02722i −0.454158 + 0.0965342i
\(442\) −3.78692 11.6549i −0.180125 0.554369i
\(443\) 18.0471 + 3.83602i 0.857441 + 0.182255i 0.615598 0.788060i \(-0.288915\pi\)
0.241843 + 0.970315i \(0.422248\pi\)
\(444\) −0.189550 1.80344i −0.00899563 0.0855877i
\(445\) 5.26999 + 5.85291i 0.249821 + 0.277455i
\(446\) −8.31751 3.70320i −0.393846 0.175351i
\(447\) 28.8949 12.8648i 1.36668 0.608485i
\(448\) −22.6189 + 25.1209i −1.06864 + 1.18685i
\(449\) 18.3730 + 13.3487i 0.867073 + 0.629966i 0.929800 0.368065i \(-0.119980\pi\)
−0.0627268 + 0.998031i \(0.519980\pi\)
\(450\) 3.39804 + 2.46882i 0.160185 + 0.116381i
\(451\) 0.848577 0.942440i 0.0399579 0.0443778i
\(452\) 6.71014 2.98755i 0.315618 0.140522i
\(453\) −0.496317 0.220974i −0.0233190 0.0103823i
\(454\) 15.8629 + 17.6175i 0.744483 + 0.826832i
\(455\) −1.61935 15.4071i −0.0759165 0.722297i
\(456\) −37.8492 8.04510i −1.77245 0.376746i
\(457\) 4.99429 + 15.3708i 0.233623 + 0.719018i 0.997301 + 0.0734205i \(0.0233915\pi\)
−0.763678 + 0.645597i \(0.776608\pi\)
\(458\) −7.33646 + 1.55941i −0.342810 + 0.0728666i
\(459\) 6.63529 + 11.4927i 0.309709 + 0.536432i
\(460\) 0.338739 0.586713i 0.0157938 0.0273556i
\(461\) −6.65584 + 20.4846i −0.309993 + 0.954062i 0.667773 + 0.744365i \(0.267248\pi\)
−0.977766 + 0.209697i \(0.932752\pi\)
\(462\) −3.82380 + 36.3811i −0.177899 + 1.69260i
\(463\) −14.1657 + 10.2920i −0.658337 + 0.478310i −0.866101 0.499869i \(-0.833381\pi\)
0.207764 + 0.978179i \(0.433381\pi\)
\(464\) −19.0941 −0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) 9.55176 6.93976i 0.442003 0.321134i −0.344427 0.938813i \(-0.611927\pi\)
0.786430 + 0.617679i \(0.211927\pi\)
\(468\) 0.173234 1.64821i 0.00800773 0.0761885i
\(469\) 8.72305 26.8468i 0.402793 1.23967i
\(470\) −1.13235 + 1.96129i −0.0522314 + 0.0904674i
\(471\) 16.5236 + 28.6197i 0.761366 + 1.31872i
\(472\) 23.2674 4.94565i 1.07097 0.227642i
\(473\) −4.51466 13.8947i −0.207584 0.638879i
\(474\) 24.3514 + 5.17605i 1.11850 + 0.237744i
\(475\) 1.66441 + 15.8358i 0.0763683 + 0.726595i
\(476\) −4.62794 5.13985i −0.212121 0.235585i
\(477\) 2.79573 + 1.24474i 0.128008 + 0.0569926i
\(478\) 31.4191 13.9887i 1.43707 0.639827i
\(479\) −10.5781 + 11.7482i −0.483326 + 0.536787i −0.934648 0.355573i \(-0.884286\pi\)
0.451323 + 0.892361i \(0.350952\pi\)
\(480\) −6.90266 5.01507i −0.315062 0.228906i
\(481\) −3.86724 2.80972i −0.176331 0.128112i
\(482\) −18.7568 + 20.8315i −0.854349 + 0.948850i
\(483\) −6.56031 + 2.92084i −0.298504 + 0.132903i
\(484\) −1.38591 0.617047i −0.0629959 0.0280476i
\(485\) −11.2877 12.5363i −0.512550 0.569245i
\(486\) −1.63791 15.5837i −0.0742971 0.706890i
\(487\) 12.5121 + 2.65953i 0.566978 + 0.120515i 0.482477 0.875909i \(-0.339737\pi\)
0.0845007 + 0.996423i \(0.473070\pi\)
\(488\) −2.57353 7.92050i −0.116498 0.358544i
\(489\) −0.270297 + 0.0574534i −0.0122232 + 0.00259813i
\(490\) 7.11185 + 12.3181i 0.321281 + 0.556475i
\(491\) −9.26410 + 16.0459i −0.418083 + 0.724141i −0.995747 0.0921341i \(-0.970631\pi\)
0.577664 + 0.816275i \(0.303964\pi\)
\(492\) 0.104144 0.320523i 0.00469518 0.0144503i
\(493\) 2.68617 25.5572i 0.120979 1.15104i
\(494\) −16.0188 + 11.6383i −0.720720 + 0.523634i
\(495\) −7.59016 −0.341152
\(496\) 0 0
\(497\) 19.3922 0.869861
\(498\) 17.3648 12.6163i 0.778136 0.565349i
\(499\) 4.27388 40.6633i 0.191325 1.82034i −0.305169 0.952298i \(-0.598713\pi\)
0.496495 0.868040i \(-0.334620\pi\)
\(500\) −1.75127 + 5.38986i −0.0783193 + 0.241042i
\(501\) 4.09681 7.09588i 0.183032 0.317021i
\(502\) −10.0018 17.3237i −0.446404 0.773195i
\(503\) −19.6384 + 4.17426i −0.875631 + 0.186121i −0.623738 0.781634i \(-0.714387\pi\)
−0.251894 + 0.967755i \(0.581053\pi\)
\(504\) 4.69255 + 14.4422i 0.209023 + 0.643306i
\(505\) −0.602814 0.128132i −0.0268249 0.00570181i
\(506\) 0.440797 + 4.19390i 0.0195958 + 0.186442i
\(507\) 8.40894 + 9.33907i 0.373454 + 0.414763i
\(508\) −8.90166 3.96328i −0.394947 0.175842i
\(509\) 29.1523 12.9795i 1.29215 0.575304i 0.358517 0.933523i \(-0.383282\pi\)
0.933638 + 0.358219i \(0.116616\pi\)
\(510\) −9.98021 + 11.0841i −0.441931 + 0.490814i
\(511\) −16.5920 12.0548i −0.733989 0.533274i
\(512\) 19.9117 + 14.4667i 0.879983 + 0.639345i
\(513\) 14.3473 15.9343i 0.633448 0.703516i
\(514\) 26.2862 11.7034i 1.15943 0.516213i
\(515\) −4.62683 2.06000i −0.203883 0.0907744i
\(516\) −2.59792 2.88528i −0.114367 0.127017i
\(517\) 0.467556 + 4.44850i 0.0205631 + 0.195645i
\(518\) 8.31651 + 1.76773i 0.365407 + 0.0776696i
\(519\) 9.26983 + 28.5296i 0.406900 + 1.25231i
\(520\) −12.1823 + 2.58942i −0.534228 + 0.113554i
\(521\) −1.05378 1.82520i −0.0461670 0.0799635i 0.842019 0.539449i \(-0.181367\pi\)
−0.888185 + 0.459485i \(0.848034\pi\)
\(522\) −5.47624 + 9.48512i −0.239688 + 0.415152i
\(523\) −1.51658 + 4.66757i −0.0663156 + 0.204098i −0.978723 0.205184i \(-0.934221\pi\)
0.912408 + 0.409282i \(0.134221\pi\)
\(524\) 0.637077 6.06139i 0.0278309 0.264793i
\(525\) 16.6724 12.1132i 0.727644 0.528664i
\(526\) 12.8076 0.558440
\(527\) 0 0
\(528\) 21.8886 0.952580
\(529\) 17.9377 13.0325i 0.779899 0.566630i
\(530\) 0.466649 4.43987i 0.0202699 0.192856i
\(531\) 3.13820 9.65838i 0.136186 0.419138i
\(532\) −5.58748 + 9.67780i −0.242248 + 0.419586i
\(533\) −0.444199 0.769375i −0.0192404 0.0333253i
\(534\) −12.7434 + 2.70868i −0.551459 + 0.117216i
\(535\) −1.50778 4.64048i −0.0651872 0.200626i
\(536\) −22.1977 4.71826i −0.958793 0.203798i
\(537\) 3.84334 + 36.5669i 0.165852 + 1.57798i
\(538\) 3.64261 + 4.04553i 0.157044 + 0.174415i
\(539\) 25.6644 + 11.4265i 1.10545 + 0.492176i
\(540\) 2.39170 1.06485i 0.102922 0.0458239i
\(541\) −8.32199 + 9.24251i −0.357790 + 0.397366i −0.894988 0.446090i \(-0.852816\pi\)
0.537198 + 0.843456i \(0.319483\pi\)
\(542\) 6.13347 + 4.45623i 0.263455 + 0.191411i
\(543\) 20.2436 + 14.7078i 0.868736 + 0.631173i
\(544\) −6.71884 + 7.46203i −0.288068 + 0.319932i
\(545\) −9.82216 + 4.37311i −0.420735 + 0.187323i
\(546\) 23.4109 + 10.4232i 1.00189 + 0.446072i
\(547\) −9.34442 10.3780i −0.399538 0.443732i 0.509484 0.860480i \(-0.329836\pi\)
−0.909022 + 0.416748i \(0.863170\pi\)
\(548\) 0.497425 + 4.73268i 0.0212489 + 0.202170i
\(549\) −3.47780 0.739229i −0.148429 0.0315495i
\(550\) −3.73967 11.5095i −0.159460 0.490767i
\(551\) −40.6136 + 8.63269i −1.73020 + 0.367765i
\(552\) 2.88656 + 4.99967i 0.122860 + 0.212800i
\(553\) 18.5190 32.0759i 0.787509 1.36401i
\(554\) −8.39482 + 25.8366i −0.356662 + 1.09769i
\(555\) −0.608140 + 5.78606i −0.0258141 + 0.245605i
\(556\) 6.04065 4.38879i 0.256181 0.186126i
\(557\) 37.2207 1.57709 0.788546 0.614976i \(-0.210834\pi\)
0.788546 + 0.614976i \(0.210834\pi\)
\(558\) 0 0
\(559\) −10.2346 −0.432876
\(560\) 13.3388 9.69119i 0.563666 0.409527i
\(561\) −3.07930 + 29.2976i −0.130008 + 1.23695i
\(562\) −11.7174 + 36.0625i −0.494269 + 1.52120i
\(563\) 15.0134 26.0039i 0.632738 1.09593i −0.354252 0.935150i \(-0.615264\pi\)
0.986990 0.160784i \(-0.0514023\pi\)
\(564\) 0.594349 + 1.02944i 0.0250266 + 0.0433474i
\(565\) −23.0508 + 4.89960i −0.969755 + 0.206128i
\(566\) −8.12746 25.0138i −0.341623 1.05141i
\(567\) −41.7164 8.86710i −1.75193 0.372383i
\(568\) −1.62959 15.5046i −0.0683763 0.650557i
\(569\) 27.0137 + 30.0017i 1.13247 + 1.25774i 0.962201 + 0.272341i \(0.0877978\pi\)
0.170272 + 0.985397i \(0.445536\pi\)
\(570\) 22.0155 + 9.80191i 0.922126 + 0.410557i
\(571\) −38.9184 + 17.3276i −1.62869 + 0.725138i −0.998676 0.0514487i \(-0.983616\pi\)
−0.630011 + 0.776587i \(0.716949\pi\)
\(572\) −3.19513 + 3.54855i −0.133595 + 0.148373i
\(573\) 8.51351 + 6.18543i 0.355657 + 0.258400i
\(574\) 1.27837 + 0.928794i 0.0533583 + 0.0387671i
\(575\) 1.58962 1.76546i 0.0662919 0.0736246i
\(576\) 10.5989 4.71895i 0.441622 0.196623i
\(577\) −5.97255 2.65915i −0.248640 0.110702i 0.278633 0.960398i \(-0.410119\pi\)
−0.527273 + 0.849696i \(0.676785\pi\)
\(578\) −2.27093 2.52212i −0.0944582 0.104906i
\(579\) −4.34693 41.3583i −0.180652 1.71879i
\(580\) −4.95893 1.05405i −0.205908 0.0437672i
\(581\) −9.86787 30.3702i −0.409388 1.25997i
\(582\) 27.2949 5.80171i 1.13141 0.240489i
\(583\) −4.40874 7.63617i −0.182591 0.316258i
\(584\) −8.24383 + 14.2787i −0.341132 + 0.590858i
\(585\) −1.64309 + 5.05690i −0.0679333 + 0.209077i
\(586\) 0.231709 2.20457i 0.00957183 0.0910699i
\(587\) −17.2949 + 12.5655i −0.713838 + 0.518634i −0.884410 0.466712i \(-0.845439\pi\)
0.170572 + 0.985345i \(0.445439\pi\)
\(588\) 7.46576 0.307883
\(589\) 0 0
\(590\) −14.8146 −0.609907
\(591\) −36.4416 + 26.4764i −1.49901 + 1.08909i
\(592\) 0.531776 5.05951i 0.0218559 0.207945i
\(593\) 8.03153 24.7185i 0.329816 1.01507i −0.639404 0.768871i \(-0.720819\pi\)
0.969220 0.246197i \(-0.0791811\pi\)
\(594\) −8.14807 + 14.1129i −0.334319 + 0.579058i
\(595\) 11.0950 + 19.2171i 0.454851 + 0.787824i
\(596\) −7.18299 + 1.52679i −0.294227 + 0.0625398i
\(597\) 9.72416 + 29.9279i 0.397983 + 1.22487i
\(598\) 2.88958 + 0.614200i 0.118164 + 0.0251165i
\(599\) 0.960403 + 9.13762i 0.0392410 + 0.373353i 0.996465 + 0.0840061i \(0.0267715\pi\)
−0.957224 + 0.289347i \(0.906562\pi\)
\(600\) −11.0858 12.3121i −0.452578 0.502638i
\(601\) −30.4385 13.5521i −1.24161 0.552801i −0.322414 0.946599i \(-0.604494\pi\)
−0.919197 + 0.393798i \(0.871161\pi\)
\(602\) 16.6300 7.40417i 0.677790 0.301771i
\(603\) −6.48287 + 7.19996i −0.264003 + 0.293205i
\(604\) 0.102046 + 0.0741409i 0.00415220 + 0.00301675i
\(605\) 3.93770 + 2.86091i 0.160090 + 0.116312i
\(606\) 0.682136 0.757589i 0.0277099 0.0307749i
\(607\) −44.4904 + 19.8084i −1.80581 + 0.803998i −0.841003 + 0.541030i \(0.818035\pi\)
−0.964805 + 0.262968i \(0.915299\pi\)
\(608\) 14.8212 + 6.59881i 0.601078 + 0.267617i
\(609\) 35.9579 + 39.9352i 1.45709 + 1.61826i
\(610\) 0.542158 + 5.15829i 0.0219513 + 0.208853i
\(611\) 3.06500 + 0.651487i 0.123997 + 0.0263563i
\(612\) 0.733551 + 2.25764i 0.0296520 + 0.0912595i
\(613\) 20.4570 4.34827i 0.826250 0.175625i 0.224667 0.974436i \(-0.427870\pi\)
0.601582 + 0.798811i \(0.294537\pi\)
\(614\) −16.4923 28.5654i −0.665573 1.15281i
\(615\) −0.540633 + 0.936404i −0.0218004 + 0.0377594i
\(616\) 13.5204 41.6114i 0.544752 1.67657i
\(617\) −4.74392 + 45.1353i −0.190983 + 1.81708i 0.309019 + 0.951056i \(0.399999\pi\)
−0.500001 + 0.866025i \(0.666667\pi\)
\(618\) 6.77785 4.92440i 0.272645 0.198088i
\(619\) 10.2462 0.411832 0.205916 0.978570i \(-0.433983\pi\)
0.205916 + 0.978570i \(0.433983\pi\)
\(620\) 0 0
\(621\) −3.19902 −0.128372
\(622\) −4.16796 + 3.02820i −0.167120 + 0.121420i
\(623\) −2.02601 + 19.2762i −0.0811706 + 0.772286i
\(624\) 4.73836 14.5832i 0.189686 0.583794i
\(625\) 2.56358 4.44025i 0.102543 0.177610i
\(626\) −6.98816 12.1038i −0.279303 0.483767i
\(627\) 46.5576 9.89613i 1.85933 0.395213i
\(628\) −2.37097 7.29711i −0.0946121 0.291186i
\(629\) 6.69727 + 1.42355i 0.267038 + 0.0567606i
\(630\) −0.988567 9.40558i −0.0393854 0.374727i
\(631\) 7.14429 + 7.93453i 0.284410 + 0.315869i 0.868373 0.495911i \(-0.165166\pi\)
−0.583964 + 0.811780i \(0.698499\pi\)
\(632\) −27.2016 12.1110i −1.08202 0.481748i
\(633\) −11.9505 + 5.32072i −0.474991 + 0.211480i
\(634\) 21.3388 23.6991i 0.847470 0.941211i
\(635\) 25.2918 + 18.3755i 1.00367 + 0.729211i
\(636\) −1.89572 1.37732i −0.0751702 0.0546144i
\(637\) 13.1686 14.6252i 0.521759 0.579472i
\(638\) 28.8285 12.8353i 1.14133 0.508154i
\(639\) −6.08036 2.70715i −0.240535 0.107093i
\(640\) −5.82206 6.46605i −0.230137 0.255593i
\(641\) 2.49427 + 23.7314i 0.0985177 + 0.937333i 0.926428 + 0.376472i \(0.122863\pi\)
−0.827910 + 0.560861i \(0.810470\pi\)
\(642\) 7.89482 + 1.67810i 0.311584 + 0.0662291i
\(643\) 2.45337 + 7.55069i 0.0967513 + 0.297770i 0.987706 0.156322i \(-0.0499637\pi\)
−0.890955 + 0.454092i \(0.849964\pi\)
\(644\) 1.63083 0.346644i 0.0642637 0.0136597i
\(645\) 6.22823 + 10.7876i 0.245237 + 0.424762i
\(646\) 14.1805 24.5614i 0.557925 0.966355i
\(647\) −0.765625 + 2.35635i −0.0300998 + 0.0926377i −0.964978 0.262331i \(-0.915509\pi\)
0.934878 + 0.354969i \(0.115509\pi\)
\(648\) −3.58389 + 34.0984i −0.140788 + 1.33951i
\(649\) −23.6721 + 17.1988i −0.929209 + 0.675110i
\(650\) −8.47769 −0.332523
\(651\) 0 0
\(652\) 0.0641574 0.00251260
\(653\) −18.1981 + 13.2217i −0.712145 + 0.517404i −0.883865 0.467742i \(-0.845068\pi\)
0.171720 + 0.985146i \(0.445068\pi\)
\(654\) 1.85905 17.6877i 0.0726948 0.691644i
\(655\) −6.04255 + 18.5971i −0.236102 + 0.726647i
\(656\) 0.472746 0.818821i 0.0184576 0.0319696i
\(657\) 3.51952 + 6.09598i 0.137309 + 0.237827i
\(658\) −5.45160 + 1.15877i −0.212526 + 0.0451737i
\(659\) −3.69573 11.3743i −0.143965 0.443079i 0.852911 0.522056i \(-0.174835\pi\)
−0.996876 + 0.0789765i \(0.974835\pi\)
\(660\) 5.68470 + 1.20832i 0.221277 + 0.0470338i
\(661\) −2.49154 23.7054i −0.0969096 0.922033i −0.929668 0.368397i \(-0.879907\pi\)
0.832759 0.553636i \(-0.186760\pi\)
\(662\) −0.631380 0.701218i −0.0245393 0.0272536i
\(663\) 18.8528 + 8.39379i 0.732181 + 0.325988i
\(664\) −23.4524 + 10.4417i −0.910131 + 0.405217i
\(665\) 23.9904 26.6440i 0.930307 1.03321i
\(666\) −2.36083 1.71525i −0.0914804 0.0664644i
\(667\) 5.01168 + 3.64120i 0.194053 + 0.140988i
\(668\) −1.27291 + 1.41371i −0.0492503 + 0.0546980i
\(669\) 14.0067 6.23617i 0.541529 0.241104i
\(670\) 12.9115 + 5.74859i 0.498816 + 0.222087i
\(671\) 6.85475 + 7.61297i 0.264625 + 0.293895i
\(672\) −2.19484 20.8825i −0.0846677 0.805560i
\(673\) 3.41777 + 0.726469i 0.131745 + 0.0280033i 0.273312 0.961925i \(-0.411881\pi\)
−0.141567 + 0.989929i \(0.545214\pi\)
\(674\) −0.911675 2.80585i −0.0351164 0.108077i
\(675\) 8.97985 1.90873i 0.345634 0.0734669i
\(676\) −1.45885 2.52680i −0.0561096 0.0971847i
\(677\) −9.62287 + 16.6673i −0.369837 + 0.640576i −0.989540 0.144260i \(-0.953920\pi\)
0.619703 + 0.784836i \(0.287253\pi\)
\(678\) 12.0461 37.0740i 0.462626 1.42382i
\(679\) 4.33951 41.2876i 0.166535 1.58447i
\(680\) 14.4322 10.4856i 0.553449 0.402104i
\(681\) −39.9221 −1.52982
\(682\) 0 0
\(683\) −39.8738 −1.52573 −0.762865 0.646558i \(-0.776208\pi\)
−0.762865 + 0.646558i \(0.776208\pi\)
\(684\) 3.10295 2.25442i 0.118644 0.0862000i
\(685\) 1.59591 15.1840i 0.0609765 0.580152i
\(686\) −0.678651 + 2.08867i −0.0259110 + 0.0797459i
\(687\) 6.31529 10.9384i 0.240944 0.417326i
\(688\) −5.44616 9.43303i −0.207633 0.359631i
\(689\) −6.04194 + 1.28425i −0.230180 + 0.0489262i
\(690\) −1.11106 3.41950i −0.0422974 0.130178i
\(691\) −37.5711 7.98598i −1.42927 0.303801i −0.572673 0.819784i \(-0.694093\pi\)
−0.856599 + 0.515983i \(0.827427\pi\)
\(692\) −0.728005 6.92650i −0.0276746 0.263306i
\(693\) −12.4989 13.8814i −0.474793 0.527311i
\(694\) −6.36868 2.83552i −0.241752 0.107635i
\(695\) −21.8845 + 9.74361i −0.830127 + 0.369596i
\(696\) 28.9075 32.1050i 1.09574 1.21694i
\(697\) 1.02947 + 0.747956i 0.0389941 + 0.0283308i
\(698\) −28.9760 21.0523i −1.09676 0.796841i
\(699\) −24.3364 + 27.0284i −0.920489 + 1.02231i
\(700\) −4.37101 + 1.94610i −0.165209 + 0.0735556i
\(701\) −32.3628 14.4088i −1.22233 0.544214i −0.308851 0.951111i \(-0.599944\pi\)
−0.913474 + 0.406896i \(0.866611\pi\)
\(702\) 7.63876 + 8.48370i 0.288306 + 0.320197i
\(703\) −1.15637 11.0021i −0.0436133 0.414953i
\(704\) −32.6977 6.95010i −1.23234 0.261942i
\(705\) −1.17851 3.62709i −0.0443854 0.136604i
\(706\) −23.2314 + 4.93798i −0.874324 + 0.185843i
\(707\) −0.758331 1.31347i −0.0285200 0.0493980i
\(708\) −3.88795 + 6.73412i −0.146118 + 0.253084i
\(709\) 7.97551 24.5461i 0.299526 0.921848i −0.682137 0.731225i \(-0.738949\pi\)
0.981663 0.190623i \(-0.0610508\pi\)
\(710\) −1.01490 + 9.65616i −0.0380886 + 0.362389i
\(711\) −10.2843 + 7.47201i −0.385693 + 0.280222i
\(712\) 15.5821 0.583962
\(713\) 0 0
\(714\) −36.7061 −1.37369
\(715\) 12.3941 9.00486i 0.463514 0.336763i
\(716\) 0.892316 8.48982i 0.0333474 0.317279i
\(717\) −17.8973 + 55.0821i −0.668386 + 2.05708i
\(718\) −6.37296 + 11.0383i −0.237837 + 0.411945i
\(719\) −19.5234 33.8155i −0.728099 1.26110i −0.957686 0.287816i \(-0.907071\pi\)
0.229587 0.973288i \(-0.426262\pi\)
\(720\) −5.53520 + 1.17654i −0.206285 + 0.0438472i
\(721\) −3.85164 11.8541i −0.143443 0.441471i
\(722\) −21.9228 4.65983i −0.815880 0.173421i
\(723\) −4.93428 46.9465i −0.183508 1.74596i
\(724\) −3.88733 4.31731i −0.144471 0.160452i
\(725\) −16.2406 7.23079i −0.603162 0.268545i
\(726\) −7.35523 + 3.27476i −0.272978 + 0.121538i
\(727\) 16.7173 18.5665i 0.620011 0.688592i −0.348572 0.937282i \(-0.613333\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(728\) −24.7966 18.0158i −0.919021 0.667708i
\(729\) −5.86467 4.26093i −0.217210 0.157812i
\(730\) 6.87092 7.63093i 0.254304 0.282433i
\(731\) 13.3921 5.96256i 0.495326 0.220533i
\(732\) 2.48704 + 1.10730i 0.0919236 + 0.0409270i
\(733\) −11.3411 12.5956i −0.418894 0.465229i 0.496354 0.868120i \(-0.334672\pi\)
−0.915248 + 0.402891i \(0.868005\pi\)
\(734\) −0.0175890 0.167348i −0.000649222 0.00617694i
\(735\) −23.4293 4.98004i −0.864201 0.183692i
\(736\) −0.747985 2.30206i −0.0275711 0.0848551i
\(737\) 27.3049 5.80385i 1.00579 0.213787i
\(738\) −0.271170 0.469680i −0.00998190 0.0172892i
\(739\) 7.19107 12.4553i 0.264528 0.458175i −0.702912 0.711277i \(-0.748117\pi\)
0.967440 + 0.253101i \(0.0814506\pi\)
\(740\) 0.417409 1.28465i 0.0153442 0.0472247i
\(741\) 3.48537 33.1610i 0.128038 1.21820i
\(742\) 8.88838 6.45779i 0.326303 0.237073i
\(743\) 27.7705 1.01880 0.509400 0.860530i \(-0.329867\pi\)
0.509400 + 0.860530i \(0.329867\pi\)
\(744\) 0 0
\(745\) 23.5603 0.863183
\(746\) 7.34072 5.33334i 0.268763 0.195268i
\(747\) −1.14564 + 10.9000i −0.0419166 + 0.398810i
\(748\) 2.11354 6.50480i 0.0772786 0.237839i
\(749\) 6.00394 10.3991i 0.219379 0.379976i
\(750\) 15.0384 + 26.0473i 0.549126 + 0.951113i
\(751\) 42.6181 9.05875i 1.55516 0.330559i 0.651443 0.758698i \(-0.274164\pi\)
0.903713 + 0.428139i \(0.140831\pi\)
\(752\) 1.03053 + 3.17164i 0.0375795 + 0.115658i
\(753\) 32.9501 + 7.00375i 1.20077 + 0.255231i
\(754\) −2.31076 21.9854i −0.0841528 0.800660i
\(755\) −0.270789 0.300741i −0.00985501 0.0109451i
\(756\) 5.88593 + 2.62059i 0.214069 + 0.0953098i
\(757\) −23.0370 + 10.2567i −0.837293 + 0.372787i −0.780160 0.625580i \(-0.784862\pi\)
−0.0571327 + 0.998367i \(0.518196\pi\)
\(758\) −3.79933 + 4.21959i −0.137998 + 0.153262i
\(759\) −5.74517 4.17411i −0.208536 0.151511i
\(760\) −23.3185 16.9419i −0.845851 0.614547i
\(761\) 1.75040 1.94402i 0.0634519 0.0704705i −0.710583 0.703613i \(-0.751569\pi\)
0.774035 + 0.633143i \(0.218235\pi\)
\(762\) −47.2424 + 21.0337i −1.71141 + 0.761970i
\(763\) −24.1722 10.7622i −0.875093 0.389616i
\(764\) −1.63483 1.81566i −0.0591460 0.0656883i
\(765\) −0.796091 7.57430i −0.0287827 0.273849i
\(766\) −38.9232 8.27337i −1.40635 0.298929i
\(767\) 6.33414 + 19.4945i 0.228713 + 0.703905i
\(768\) −21.9958 + 4.67535i −0.793705 + 0.168707i
\(769\) −5.67534 9.82998i −0.204658 0.354478i 0.745366 0.666656i \(-0.232275\pi\)
−0.950024 + 0.312178i \(0.898942\pi\)
\(770\) −13.6245 + 23.5984i −0.490994 + 0.850427i
\(771\) −14.9734 + 46.0835i −0.539255 + 1.65966i
\(772\) −1.00924 + 9.60225i −0.0363232 + 0.345593i
\(773\) −9.23685 + 6.71097i −0.332226 + 0.241377i −0.741375 0.671091i \(-0.765826\pi\)
0.409148 + 0.912468i \(0.365826\pi\)
\(774\) −6.24789 −0.224576
\(775\) 0 0
\(776\) −33.3751 −1.19810
\(777\) −11.5834 + 8.41583i −0.415552 + 0.301916i
\(778\) −4.54284 + 43.2222i −0.162869 + 1.54959i
\(779\) 0.635343 1.95539i 0.0227635 0.0700590i
\(780\) 2.03564 3.52583i 0.0728875 0.126245i
\(781\) 9.58846 + 16.6077i 0.343102 + 0.594270i
\(782\) −4.13890 + 0.879751i −0.148007 + 0.0314598i
\(783\) 7.39756 + 22.7674i 0.264367 + 0.813639i
\(784\) 20.4873 + 4.35470i 0.731688 + 0.155525i
\(785\) 2.57312 + 24.4816i 0.0918384 + 0.873784i
\(786\) −21.6436 24.0377i −0.772002 0.857395i
\(787\) 24.7472 + 11.0182i 0.882143 + 0.392755i 0.797260 0.603635i \(-0.206282\pi\)
0.0848828 + 0.996391i \(0.472948\pi\)
\(788\) 9.55389 4.25367i 0.340343 0.151531i
\(789\) −14.4318 + 16.0282i −0.513787 + 0.570618i
\(790\) 15.0026 + 10.9001i 0.533770 + 0.387807i
\(791\) −46.9190 34.0887i −1.66825 1.21205i
\(792\) −10.0482 + 11.1597i −0.357047 + 0.396541i
\(793\) 6.55598 2.91891i 0.232810 0.103654i
\(794\) −4.54087 2.02173i −0.161150 0.0717484i
\(795\) 5.03046 + 5.58690i 0.178412 + 0.198147i
\(796\) −0.763686 7.26598i −0.0270681 0.257536i
\(797\) 47.5926 + 10.1161i 1.68582 + 0.358331i 0.948392 0.317100i \(-0.102709\pi\)
0.737423 + 0.675431i \(0.236042\pi\)
\(798\) 18.3269 + 56.4044i 0.648766 + 1.99670i
\(799\) −4.39017 + 0.933159i −0.155313 + 0.0330128i
\(800\) 3.47318 + 6.01573i 0.122796 + 0.212688i
\(801\) 3.32620 5.76115i 0.117526 0.203560i
\(802\) −9.47458 + 29.1598i −0.334559 + 1.02967i
\(803\) 2.11996 20.1701i 0.0748118 0.711786i
\(804\) 6.00159 4.36041i 0.211660 0.153780i
\(805\) −5.34915 −0.188533
\(806\) 0 0
\(807\) −9.16733 −0.322705
\(808\) −0.986423 + 0.716678i −0.0347022 + 0.0252127i
\(809\) −1.96609 + 18.7061i −0.0691240 + 0.657671i 0.904023 + 0.427485i \(0.140600\pi\)
−0.973147 + 0.230186i \(0.926066\pi\)
\(810\) 6.59853 20.3082i 0.231849 0.713557i
\(811\) 19.7693 34.2414i 0.694193 1.20238i −0.276259 0.961083i \(-0.589095\pi\)
0.970452 0.241294i \(-0.0775720\pi\)
\(812\) −6.23826 10.8050i −0.218920 0.379180i
\(813\) −12.4880 + 2.65442i −0.437975 + 0.0930944i
\(814\) 2.59819 + 7.99639i 0.0910664 + 0.280273i
\(815\) −0.201341 0.0427963i −0.00705266 0.00149909i
\(816\) 2.29578 + 21.8429i 0.0803684 + 0.764654i
\(817\) −15.8489 17.6020i −0.554483 0.615816i
\(818\) −3.94789 1.75771i −0.138035 0.0614570i
\(819\) −11.9541 + 5.32232i −0.417711 + 0.185977i
\(820\) 0.167979 0.186559i 0.00586606 0.00651492i
\(821\) −11.8414 8.60325i −0.413266 0.300255i 0.361657 0.932311i \(-0.382211\pi\)
−0.774923 + 0.632056i \(0.782211\pi\)
\(822\) 20.4320 + 14.8447i 0.712649 + 0.517770i
\(823\) −27.9608 + 31.0536i −0.974651 + 1.08246i 0.0219236 + 0.999760i \(0.493021\pi\)
−0.996574 + 0.0826999i \(0.973646\pi\)
\(824\) −9.15398 + 4.07562i −0.318894 + 0.141981i
\(825\) 18.6175 + 8.28906i 0.648179 + 0.288588i
\(826\) −24.3955 27.0939i −0.848828 0.942719i
\(827\) −0.983208 9.35460i −0.0341895 0.325291i −0.998227 0.0595246i \(-0.981042\pi\)
0.964037 0.265767i \(-0.0856251\pi\)
\(828\) −0.559731 0.118975i −0.0194520 0.00413465i
\(829\) −12.4629 38.3568i −0.432854 1.33219i −0.895270 0.445524i \(-0.853017\pi\)
0.462416 0.886663i \(-0.346983\pi\)
\(830\) 15.6389 3.32416i 0.542836 0.115383i
\(831\) −22.8739 39.6188i −0.793487 1.37436i
\(832\) −11.7087 + 20.2801i −0.405927 + 0.703086i
\(833\) −8.71086 + 26.8093i −0.301813 + 0.928886i
\(834\) 4.14211 39.4096i 0.143430 1.36464i
\(835\) 4.93769 3.58744i 0.170876 0.124149i
\(836\) −11.0509 −0.382203
\(837\) 0 0
\(838\) 5.07693 0.175380
\(839\) −5.78419 + 4.20246i −0.199692 + 0.145085i −0.683138 0.730290i \(-0.739385\pi\)
0.483445 + 0.875374i \(0.339385\pi\)
\(840\) −3.89936 + 37.0999i −0.134541 + 1.28007i
\(841\) 5.36358 16.5074i 0.184951 0.569221i
\(842\) −17.0048 + 29.4532i −0.586025 + 1.01503i
\(843\) −31.9272 55.2995i −1.09963 1.90462i
\(844\) 2.97079 0.631461i 0.102259 0.0217358i
\(845\) 2.89270 + 8.90281i 0.0995119 + 0.306266i
\(846\) 1.87109 + 0.397713i 0.0643295 + 0.0136736i
\(847\) 1.25207 + 11.9127i 0.0430217 + 0.409324i
\(848\) −4.39879 4.88536i −0.151055 0.167764i
\(849\) 40.4617 + 18.0147i 1.38864 + 0.618263i
\(850\) 11.0932 4.93902i 0.380494 0.169407i
\(851\) −1.10441 + 1.22658i −0.0378588 + 0.0420465i
\(852\) 4.12296 + 2.99550i 0.141250 + 0.102624i
\(853\) −0.911496 0.662240i −0.0312090 0.0226747i 0.572071 0.820204i \(-0.306140\pi\)
−0.603280 + 0.797529i \(0.706140\pi\)
\(854\) −8.54106 + 9.48581i −0.292269 + 0.324598i
\(855\) −11.2416 + 5.00507i −0.384454 + 0.171170i
\(856\) −8.81888 3.92642i −0.301423 0.134202i
\(857\) −15.9615 17.7270i −0.545233 0.605543i 0.406054 0.913849i \(-0.366904\pi\)
−0.951287 + 0.308306i \(0.900238\pi\)
\(858\) 2.64895 + 25.2031i 0.0904337 + 0.860419i
\(859\) 31.7562 + 6.75000i 1.08351 + 0.230307i 0.714864 0.699264i \(-0.246489\pi\)
0.368645 + 0.929570i \(0.379822\pi\)
\(860\) −0.893692 2.75050i −0.0304746 0.0937913i
\(861\) −2.60283 + 0.553249i −0.0887043 + 0.0188547i
\(862\) 9.16363 + 15.8719i 0.312114 + 0.540598i
\(863\) −11.9209 + 20.6476i −0.405793 + 0.702853i −0.994413 0.105556i \(-0.966338\pi\)
0.588621 + 0.808409i \(0.299671\pi\)
\(864\) 2.89051 8.89606i 0.0983370 0.302650i
\(865\) −2.33569 + 22.2226i −0.0794157 + 0.755590i
\(866\) 9.23276 6.70799i 0.313742 0.227947i
\(867\) 5.71523 0.194099
\(868\) 0 0
\(869\) 36.6268 1.24248
\(870\) −21.7672 + 15.8148i −0.737977 + 0.536172i
\(871\) 2.04408 19.4482i 0.0692611 0.658976i
\(872\) −6.57333 + 20.2306i −0.222601 + 0.685095i
\(873\) −7.12437 + 12.3398i −0.241123 + 0.417638i
\(874\) 3.41837 + 5.92080i 0.115628 + 0.200274i
\(875\) 43.7689 9.30336i 1.47966 0.314511i
\(876\) −1.66551 5.12592i −0.0562724 0.173189i
\(877\) −28.6349 6.08654i −0.966932 0.205528i −0.302726 0.953077i \(-0.597897\pi\)
−0.664206 + 0.747550i \(0.731230\pi\)
\(878\) −2.28205 21.7123i −0.0770155 0.732753i
\(879\) 2.49782 + 2.77411i 0.0842494 + 0.0935685i
\(880\) 14.8950 + 6.63166i 0.502109 + 0.223553i
\(881\) −8.24939 + 3.67286i −0.277929 + 0.123742i −0.540968 0.841043i \(-0.681942\pi\)
0.263039 + 0.964785i \(0.415275\pi\)
\(882\) 8.03903 8.92825i 0.270688 0.300630i
\(883\) 17.3191 + 12.5831i 0.582834 + 0.423454i 0.839745 0.542981i \(-0.182705\pi\)
−0.256911 + 0.966435i \(0.582705\pi\)
\(884\) −3.87626 2.81627i −0.130373 0.0947213i
\(885\) 16.6933 18.5398i 0.561138 0.623207i
\(886\) −20.7684 + 9.24670i −0.697729 + 0.310649i
\(887\) 22.4687 + 10.0037i 0.754424 + 0.335891i 0.747656 0.664086i \(-0.231179\pi\)
0.00676752 + 0.999977i \(0.497846\pi\)
\(888\) 7.70204 + 8.55399i 0.258464 + 0.287053i
\(889\) 8.04202 + 76.5148i 0.269721 + 2.56622i
\(890\) −9.49237 2.01766i −0.318185 0.0676323i
\(891\) −13.0328 40.1107i −0.436614 1.34376i
\(892\) −3.48193 + 0.740106i −0.116583 + 0.0247806i
\(893\) 3.62590 + 6.28024i 0.121336 + 0.210160i
\(894\) −19.4864 + 33.7514i −0.651723 + 1.12882i
\(895\) −8.46344 + 26.0478i −0.282902 + 0.870681i
\(896\) 2.23825 21.2956i 0.0747749 0.711435i
\(897\) −4.02467 + 2.92409i −0.134380 + 0.0976326i
\(898\) −27.9829 −0.933801
\(899\) 0 0
\(900\) 1.64218 0.0547395
\(901\) 7.15780 5.20044i 0.238461 0.173252i
\(902\) −0.163338 + 1.55405i −0.00543855 + 0.0517443i
\(903\) −9.47298 + 29.1548i −0.315241 + 0.970212i
\(904\) −23.3119 + 40.3774i −0.775343 + 1.34293i
\(905\) 9.31946 + 16.1418i 0.309789 + 0.536571i
\(906\) 0.654794 0.139181i 0.0217541 0.00462397i
\(907\) −6.10812 18.7989i −0.202817 0.624206i −0.999796 0.0201992i \(-0.993570\pi\)
0.796979 0.604007i \(-0.206430\pi\)
\(908\) 9.06625 + 1.92709i 0.300874 + 0.0639528i
\(909\) 0.0544119 + 0.517695i 0.00180473 + 0.0171708i
\(910\) 12.7729 + 14.1858i 0.423418 + 0.470253i
\(911\) 32.5419 + 14.4886i 1.07816 + 0.480029i 0.867453 0.497520i \(-0.165756\pi\)
0.210710 + 0.977549i \(0.432422\pi\)
\(912\) 32.4186 14.4337i 1.07349 0.477948i
\(913\) 21.1302 23.4674i 0.699307 0.776659i
\(914\) −16.1109 11.7053i −0.532902 0.387176i
\(915\) −7.06628 5.13395i −0.233604 0.169723i
\(916\) −1.96221 + 2.17925i −0.0648331 + 0.0720045i
\(917\) −43.9620 + 19.5732i −1.45175 + 0.646362i
\(918\) −14.9380 6.65082i −0.493027 0.219510i
\(919\) −11.4798 12.7496i −0.378685 0.420572i 0.523430 0.852069i \(-0.324652\pi\)
−0.902114 + 0.431497i \(0.857986\pi\)
\(920\) 0.449507 + 4.27677i 0.0148198 + 0.141001i
\(921\) 54.3320 + 11.5486i 1.79030 + 0.380540i
\(922\) −8.20114 25.2405i −0.270090 0.831252i
\(923\) 13.1405 2.79309i 0.432524 0.0919357i
\(924\) 7.15126 + 12.3863i 0.235259 + 0.407481i
\(925\) 2.36831 4.10203i 0.0778694 0.134874i
\(926\) 6.66707 20.5191i 0.219094 0.674301i
\(927\) −0.447166 + 4.25450i −0.0146868 + 0.139736i
\(928\) −14.6540 + 10.6468i −0.481042 + 0.349498i
\(929\) −45.5222 −1.49353 −0.746767 0.665086i \(-0.768395\pi\)
−0.746767 + 0.665086i \(0.768395\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) 6.83147 4.96335i 0.223772 0.162580i
\(933\) 0.906863 8.62823i 0.0296894 0.282475i
\(934\) −4.49552 + 13.8358i −0.147098 + 0.452720i
\(935\) −10.9718 + 19.0037i −0.358817 + 0.621489i
\(936\) 5.25986 + 9.11035i 0.171924 + 0.297781i
\(937\) −25.0577 + 5.32617i −0.818599 + 0.173999i −0.598134 0.801396i \(-0.704091\pi\)
−0.220465 + 0.975395i \(0.570757\pi\)
\(938\) 10.7483 + 33.0799i 0.350944 + 1.08010i
\(939\) 23.0218 + 4.89343i 0.751287 + 0.159691i
\(940\) 0.0925543 + 0.880596i 0.00301879 + 0.0287219i
\(941\) −8.11243 9.00977i −0.264458 0.293710i 0.596261 0.802790i \(-0.296652\pi\)
−0.860719 + 0.509080i \(0.829986\pi\)
\(942\) −37.1994 16.5622i −1.21202 0.539627i
\(943\) −0.280230 + 0.124766i −0.00912555 + 0.00406296i
\(944\) −14.5971 + 16.2117i −0.475096 + 0.527647i
\(945\) −16.7233 12.1502i −0.544011 0.395247i
\(946\) 14.5637 + 10.5811i 0.473507 + 0.344023i
\(947\) 18.2011 20.2143i 0.591455 0.656878i −0.370900 0.928673i \(-0.620951\pi\)
0.962355 + 0.271795i \(0.0876174\pi\)
\(948\) 8.89204 3.95899i 0.288800 0.128582i
\(949\) −12.9793 5.77875i −0.421325 0.187586i
\(950\) −13.1283 14.5804i −0.425937 0.473051i
\(951\) 5.61350 + 53.4089i 0.182030 + 1.73190i
\(952\) 42.9426 + 9.12772i 1.39178 + 0.295831i
\(953\) −7.69226 23.6743i −0.249177 0.766887i −0.994921 0.100655i \(-0.967906\pi\)
0.745745 0.666232i \(-0.232094\pi\)
\(954\) −3.68842 + 0.783998i −0.119417 + 0.0253829i
\(955\) 3.91933 + 6.78848i 0.126826 + 0.219670i
\(956\) 6.72333 11.6452i 0.217448 0.376631i
\(957\) −16.4216 + 50.5406i −0.530836 + 1.63374i
\(958\) 2.03612 19.3724i 0.0657839 0.625892i
\(959\) 30.3977 22.0852i 0.981592 0.713168i
\(960\) 28.5013 0.919876
\(961\) 0 0
\(962\) 5.89000 0.189901
\(963\) −3.33422 + 2.42246i −0.107444 + 0.0780625i
\(964\) −1.14560 + 10.8997i −0.0368974 + 0.351055i
\(965\) 9.57241 29.4609i 0.308147 0.948378i
\(966\) 4.42421 7.66295i 0.142347 0.246551i
\(967\) 26.0999 + 45.2064i 0.839316 + 1.45374i 0.890467 + 0.455048i \(0.150378\pi\)
−0.0511507 + 0.998691i \(0.516289\pi\)
\(968\) 9.41924 2.00212i 0.302746 0.0643506i
\(969\) 14.7586 + 45.4224i 0.474115 + 1.45918i
\(970\) 20.3316 + 4.32162i 0.652809 + 0.138759i
\(971\) 2.08648 + 19.8515i 0.0669582 + 0.637065i 0.975610 + 0.219510i \(0.0704460\pi\)
−0.908652 + 0.417554i \(0.862887\pi\)
\(972\) −4.09938 4.55282i −0.131488 0.146032i
\(973\) −53.8575 23.9789i −1.72659 0.768728i
\(974\) −14.3989 + 6.41078i −0.461369 + 0.205415i
\(975\) 9.55279 10.6094i 0.305934 0.339774i
\(976\) 6.17897 + 4.48929i 0.197784 + 0.143699i
\(977\) 48.7438 + 35.4144i 1.55945 + 1.13301i 0.936458 + 0.350781i \(0.114084\pi\)
0.622994 + 0.782227i \(0.285916\pi\)
\(978\) 0.227834 0.253036i 0.00728534 0.00809118i
\(979\) −17.5101 + 7.79601i −0.559626 + 0.249162i
\(980\) 5.08036 + 2.26192i 0.162286 + 0.0722545i
\(981\) 6.07670 + 6.74886i 0.194014 + 0.215474i
\(982\) −2.38638 22.7049i −0.0761524 0.724541i
\(983\) −11.2866 2.39904i −0.359986 0.0765174i 0.0243684 0.999703i \(-0.492243\pi\)
−0.384354 + 0.923186i \(0.625576\pi\)
\(984\) 0.661060 + 2.03453i 0.0210738 + 0.0648586i
\(985\) −32.8197 + 6.97605i −1.04572 + 0.222275i
\(986\) 15.8321 + 27.4221i 0.504198 + 0.873297i
\(987\) 4.69279 8.12816i 0.149373 0.258722i
\(988\) −2.39225 + 7.36259i −0.0761076 + 0.234235i
\(989\) −0.369387 + 3.51448i −0.0117458 + 0.111754i
\(990\) 7.56624 5.49719i 0.240471 0.174712i
\(991\) −37.3423 −1.18622 −0.593109 0.805122i \(-0.702100\pi\)
−0.593109 + 0.805122i \(0.702100\pi\)
\(992\) 0 0
\(993\) 1.58899 0.0504251
\(994\) −19.3311 + 14.0449i −0.613146 + 0.445477i
\(995\) −2.45016 + 23.3117i −0.0776754 + 0.739032i
\(996\) 2.59326 7.98124i 0.0821707 0.252895i
\(997\) −10.4012 + 18.0154i −0.329410 + 0.570555i −0.982395 0.186816i \(-0.940183\pi\)
0.652985 + 0.757371i \(0.273516\pi\)
\(998\) 25.1901 + 43.6305i 0.797378 + 1.38110i
\(999\) −6.23887 + 1.32611i −0.197389 + 0.0419564i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.m.338.1 16
31.2 even 5 961.2.g.n.732.1 16
31.3 odd 30 961.2.d.o.531.3 16
31.4 even 5 961.2.g.j.448.2 16
31.5 even 3 961.2.g.n.235.1 16
31.6 odd 6 961.2.d.p.388.2 16
31.7 even 15 961.2.d.n.628.3 16
31.8 even 5 961.2.c.i.521.5 16
31.9 even 15 961.2.c.i.439.5 16
31.10 even 15 inner 961.2.g.m.816.1 16
31.11 odd 30 31.2.g.a.9.2 yes 16
31.12 odd 30 961.2.d.p.374.2 16
31.13 odd 30 961.2.g.k.547.2 16
31.14 even 15 961.2.a.j.1.5 8
31.15 odd 10 31.2.g.a.7.2 16
31.16 even 5 961.2.g.l.844.2 16
31.17 odd 30 961.2.a.i.1.5 8
31.18 even 15 961.2.g.j.547.2 16
31.19 even 15 961.2.d.q.374.2 16
31.20 even 15 961.2.g.l.846.2 16
31.21 odd 30 961.2.g.s.816.1 16
31.22 odd 30 961.2.c.j.439.5 16
31.23 odd 10 961.2.c.j.521.5 16
31.24 odd 30 961.2.d.o.628.3 16
31.25 even 3 961.2.d.q.388.2 16
31.26 odd 6 961.2.g.t.235.1 16
31.27 odd 10 961.2.g.k.448.2 16
31.28 even 15 961.2.d.n.531.3 16
31.29 odd 10 961.2.g.t.732.1 16
31.30 odd 2 961.2.g.s.338.1 16
93.11 even 30 279.2.y.c.226.1 16
93.14 odd 30 8649.2.a.be.1.4 8
93.17 even 30 8649.2.a.bf.1.4 8
93.77 even 10 279.2.y.c.100.1 16
124.11 even 30 496.2.bg.c.257.2 16
124.15 even 10 496.2.bg.c.193.2 16
155.42 even 60 775.2.ck.a.474.3 32
155.73 even 60 775.2.ck.a.474.2 32
155.77 even 20 775.2.ck.a.224.2 32
155.104 odd 30 775.2.bl.a.226.1 16
155.108 even 20 775.2.ck.a.224.3 32
155.139 odd 10 775.2.bl.a.751.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 31.15 odd 10
31.2.g.a.9.2 yes 16 31.11 odd 30
279.2.y.c.100.1 16 93.77 even 10
279.2.y.c.226.1 16 93.11 even 30
496.2.bg.c.193.2 16 124.15 even 10
496.2.bg.c.257.2 16 124.11 even 30
775.2.bl.a.226.1 16 155.104 odd 30
775.2.bl.a.751.1 16 155.139 odd 10
775.2.ck.a.224.2 32 155.77 even 20
775.2.ck.a.224.3 32 155.108 even 20
775.2.ck.a.474.2 32 155.73 even 60
775.2.ck.a.474.3 32 155.42 even 60
961.2.a.i.1.5 8 31.17 odd 30
961.2.a.j.1.5 8 31.14 even 15
961.2.c.i.439.5 16 31.9 even 15
961.2.c.i.521.5 16 31.8 even 5
961.2.c.j.439.5 16 31.22 odd 30
961.2.c.j.521.5 16 31.23 odd 10
961.2.d.n.531.3 16 31.28 even 15
961.2.d.n.628.3 16 31.7 even 15
961.2.d.o.531.3 16 31.3 odd 30
961.2.d.o.628.3 16 31.24 odd 30
961.2.d.p.374.2 16 31.12 odd 30
961.2.d.p.388.2 16 31.6 odd 6
961.2.d.q.374.2 16 31.19 even 15
961.2.d.q.388.2 16 31.25 even 3
961.2.g.j.448.2 16 31.4 even 5
961.2.g.j.547.2 16 31.18 even 15
961.2.g.k.448.2 16 31.27 odd 10
961.2.g.k.547.2 16 31.13 odd 30
961.2.g.l.844.2 16 31.16 even 5
961.2.g.l.846.2 16 31.20 even 15
961.2.g.m.338.1 16 1.1 even 1 trivial
961.2.g.m.816.1 16 31.10 even 15 inner
961.2.g.n.235.1 16 31.5 even 3
961.2.g.n.732.1 16 31.2 even 5
961.2.g.s.338.1 16 31.30 odd 2
961.2.g.s.816.1 16 31.21 odd 30
961.2.g.t.235.1 16 31.26 odd 6
961.2.g.t.732.1 16 31.29 odd 10
8649.2.a.be.1.4 8 93.14 odd 30
8649.2.a.bf.1.4 8 93.17 even 30