Properties

Label 2-31e2-31.9-c1-0-3
Degree $2$
Conductor $961$
Sign $-0.998 - 0.0492i$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.831 + 2.55i)2-s + (−1.38 − 0.295i)3-s + (−4.23 − 3.07i)4-s + (−0.304 − 0.526i)5-s + (1.90 − 3.30i)6-s + (−1.57 + 0.702i)7-s + (7.04 − 5.11i)8-s + (−0.900 − 0.401i)9-s + (1.60 − 0.340i)10-s + (0.139 − 1.33i)11-s + (4.97 + 5.52i)12-s + (2.45 − 2.72i)13-s + (−0.485 − 4.62i)14-s + (0.266 + 0.821i)15-s + (4.00 + 12.3i)16-s + (0.288 + 2.74i)17-s + ⋯
L(s)  = 1  + (−0.587 + 1.80i)2-s + (−0.801 − 0.170i)3-s + (−2.11 − 1.53i)4-s + (−0.136 − 0.235i)5-s + (0.779 − 1.34i)6-s + (−0.596 + 0.265i)7-s + (2.49 − 1.80i)8-s + (−0.300 − 0.133i)9-s + (0.506 − 0.107i)10-s + (0.0421 − 0.401i)11-s + (1.43 + 1.59i)12-s + (0.681 − 0.756i)13-s + (−0.129 − 1.23i)14-s + (0.0688 + 0.212i)15-s + (1.00 + 3.07i)16-s + (0.0700 + 0.666i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0492i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-0.998 - 0.0492i$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (846, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ -0.998 - 0.0492i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.00869602 + 0.353208i\)
\(L(\frac12)\) \(\approx\) \(0.00869602 + 0.353208i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (0.831 - 2.55i)T + (-1.61 - 1.17i)T^{2} \)
3 \( 1 + (1.38 + 0.295i)T + (2.74 + 1.22i)T^{2} \)
5 \( 1 + (0.304 + 0.526i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + (1.57 - 0.702i)T + (4.68 - 5.20i)T^{2} \)
11 \( 1 + (-0.139 + 1.33i)T + (-10.7 - 2.28i)T^{2} \)
13 \( 1 + (-2.45 + 2.72i)T + (-1.35 - 12.9i)T^{2} \)
17 \( 1 + (-0.288 - 2.74i)T + (-16.6 + 3.53i)T^{2} \)
19 \( 1 + (1.71 + 1.90i)T + (-1.98 + 18.8i)T^{2} \)
23 \( 1 + (-0.436 + 0.316i)T + (7.10 - 21.8i)T^{2} \)
29 \( 1 + (2.51 - 7.73i)T + (-23.4 - 17.0i)T^{2} \)
37 \( 1 + (3.87 - 6.70i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.101 + 0.0216i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (2.01 + 2.23i)T + (-4.49 + 42.7i)T^{2} \)
47 \( 1 + (2.07 + 6.39i)T + (-38.0 + 27.6i)T^{2} \)
53 \( 1 + (-2.55 - 1.13i)T + (35.4 + 39.3i)T^{2} \)
59 \( 1 + (0.456 + 0.0969i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + 5.11T + 61T^{2} \)
67 \( 1 + (4.14 + 7.18i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-4.34 - 1.93i)T + (47.5 + 52.7i)T^{2} \)
73 \( 1 + (0.784 - 7.46i)T + (-71.4 - 15.1i)T^{2} \)
79 \( 1 + (-1.01 - 9.64i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-16.3 + 3.46i)T + (75.8 - 33.7i)T^{2} \)
89 \( 1 + (-12.3 - 9.00i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (-1.03 - 0.751i)T + (29.9 + 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33529954293179983720809764887, −9.150010752193533403213141835194, −8.624776671396156011557223962274, −7.964889613368457905584016321562, −6.70724062561119618140356290548, −6.39658465660661807764841412252, −5.55163462848977643660969080872, −4.92010571378005624900937627702, −3.48428990816806706277019065369, −0.913658607960050236145286282484, 0.31247548593109935308672818124, 1.82748159275620860052141187147, 3.03397043641906469183714704175, 3.94936188612689342134910589236, 4.82371584170105414862972490511, 6.05490655798255661348399463187, 7.25811120820037467485241815947, 8.304036410506398437801215209032, 9.230844737555443531460100255759, 9.780680482285410756937795048333

Graph of the $Z$-function along the critical line