sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(961, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([2]))
pari:[g,chi] = znchar(Mod(846,961))
\(\chi_{961}(235,\cdot)\)
\(\chi_{961}(338,\cdot)\)
\(\chi_{961}(448,\cdot)\)
\(\chi_{961}(547,\cdot)\)
\(\chi_{961}(732,\cdot)\)
\(\chi_{961}(816,\cdot)\)
\(\chi_{961}(844,\cdot)\)
\(\chi_{961}(846,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{1}{15}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 961 }(846, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)